ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton University of Toronto, NIPS 2012

Presenter: Guangnan Ye

Main Idea

- A deep convolutional neural network is trained to classify the 1.2 million ImageNet images into 1000 different classes.
- The neural network contains 60 million parameters and 650,000 neurons.
- The state-of-the-art performance is achieved with the error rate improving from 26.2% to 15.3%.

Neural Networks

A neuron

A neural network

$$x = W_1 f(Z_1) + W_2 f(Z_2) + W_3 f(Z_3)$$

x is called the total input to the neuron, and f(x)is its output A neural network computes a differentiable function of its input. For example, ours computes: p(label | an input image)

Model Overview

- Deep: 7 hidden "weight" layers
- Learned: all feature extractors initialized at white Gaussian noise and learned from the data
- Entirely supervised
- More data = good

Image

Convolutional layer: convolves its input with a bank of 3D filters, then applies point-wise non-linearity

Fully-connected layer: applies linear filters to its input, then applies point-wise non-linearity

Model Overview

- Trained with stochastic gradient descent on two NVIDIA GPUs for about a week
- 650,000 neurons

Image

- 60,000,000 parameters
- 630,000,000 connections
- Final feature layer: 4096-dimensional

Convolutional layer: convolves its input with a bank of 3D filters, then applies point-wise non-linearity

Fully-connected layer: applies linear filters to its input, then applies point-wise non-linearity

Model Achitecture

- Max-pooling layers follow first, second, and fifth convolutional layers
- The number of neurons in each layer is given by 253440, 186624, 64896, 64896, 43264, 4096, 4096, 1000

Detail: Input Representation

• Centered (0-mean) RGB values.

An input image (256x256)

Minus sign

The mean input image

Detail: Neurons

f(x) = tanh(x)

Other Details

• Training on Multiple GPUs (error rate \downarrow 1.2%)

• Local Response Normalization (error rate \downarrow 1.2%)

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

• Overlapping Pooling (error rate \downarrow 0.3%)

Reducing Overfitting

- Data augmentation
 - The neural net has 60M real-valued parameters and 650,000 neurons which overfits a lot. 224x224 patches extracted randomly from 256x256 images, and also their horizontal reflections
 - RGB intensities altered by PCA so that invariant to change in the intensity and color of the illumination

Reducing Overfitting

- Dropout
 - Motivation: Combining many different models is a successful way to reduce test errors.
 - Independently set each hidden unit activity to zero with 0.5 probability

A hidden layer's activity on a given training image

Training

Local convolutional filters

Fully-connected filters

Das: -orward Image

Using stochastic gradient descent and the backpropagation algorithm (just repeated application of the chain rule)

Update rule for weight w:

$$v_{i+1} := 0.9 \cdot v_i - 0.0005 \cdot \epsilon \cdot w_i - \epsilon \cdot \left\langle \frac{\partial L}{\partial w} \Big|_{w_i} \right\rangle_{D_i}$$

 $w_{i+1} := w_i + v_{i+1}$

Figure. 96 convolutional kernels of size 11X11X3 learned by the first convolutional layer on the 224X224X3 input images

Results on ImageNet

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table. Comparison of results on ILSVRC-2010 test set.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table. Comparison of error rates on ILSVRC-2012 validation and test sets.

Qualitative Evaluations- Validation Classification

squirrel monkey	dalmatian	agaric	convertible
spider monkey	grape	mushroom	grille
titi	elderberry	jelly fungus	pickup
indri	ffordshire bullterrier	gill fungus	beach wagon
howler monkey	currant 🛛	dead-man's-fingers	fire engine

Qualitative Evaluations- Retrieval

Query

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

Pierre Sermanet, David Eigen,

Xiang Zhang, Michael Mathieu, Rob Fergus,

Yann LeCun

Courant Institute, NYU

Classification

Model:

- Layer 1-5 for feature extraction
- Layer 6++ for classification
- Drop out (0.5) on layer 6++
- Convolution with linear filter + nonlinear function (max pooling)
- Trained on ImageNet 2012 (1.2 million images, 1000 classes)
- Fixed input size
- Trainin using gradient descent

Figure 2: Layer 1 (top) and layer 2 filters (bottom).

ConvNets and Sliding Windows

- Inherently efficient with convolution because computation is shared for overlapping windows
- explore image at each location, at multiple scales
- More views for voting = robust while efficcient

Image from developer.apple.com

Download your own trained network from GitHub!!

Localization

- Start with classification trained network
- Replace classification layer by a regression network
- Train it to predict object bounding boxes at each location and scale.
- Allow results to boost each other by merging bounding boxes
- Rewards bounding box coherence
- more robust than non-max surpression.

Detection

The main difference to the localization task is the necessety to predict a background class when no object is present.

Negative training, by manually selecting negative examples such as random images or the most offensive miss classifications.

Results: ILSVRC 2013: 4th in classification, 1st in localization, 1st in detection

I'm offended!

And it refused to recognize my apple!

Well, at least it can tell a cardigan!

