Evolving Cascades of Voting Feature Detectors for Vehicle Detection in Satellite Imagery

Krzysztof Krawiec Bartosz Kukawka Tomasz Maciejewski

Institute of Computing Science Poznan University of Technology, Poznań, Poland

CEC 2010

- Use a compound GP classifier to detect vehicles in satellite imagery (visible band)
- Characteristics of the task:
 - extreme disproportion of the positive and negative classes,
 - heterogeneity of the positive class,
 - low spatial resolution,
 - uncontrolled lighting,
 - partial occlusions,
 - strong sunlight reflexes from wind shields, man-made objects that closely resemble cars (air conditioning equipment on rooftops, cargo containers, etc.)

- Binary classification task with [extremely] low share of positive examples
 - cars occupy around 1.5% of image area,
 - a priori probability of the positive class: 0.0001
- The idea: use a *cascade* of classifiers.
- Each classifier:
 - processes only the examples classified as positive by all its predecessors,
 - is trained to retain (accept) all (almost all) positive examples, while rejecting as many negative examples as possible,

Cascade of detectors

- Only examples that pass through *all* cascade nodes are classified as positive
- Famous representative: Viola & Jones [2001] face detector

Our contributions

- Employ GP to induce the base classifiers
- Use quad-tree-based features instead of Haar wavelets

Feature definition

- A quad tree stacked over 32 × 32 input window
 - Tree nodes correspond one-to-one to rectangular image regions (*tiles*).
 - The nodes at consecutive depths correspond to 16 × 16, 8 × 8, 4 × 4, and 2 × 2 tiles; there are, 4, 16, 64, and 256 of them ⇒ total of 340 tiles.
 - Each tile uniquely identified by *quad key* a variable-length sequence of quaternary digits.
- Feature d(m, n) = difference between mean brightness values in *two* tiles identified by m and n.
- Total number of features: $340 \times 340 = 115,600$
- A clever trick (integral image) makes extraction of such features very effective (4x memory access + 3 subtractions).

Exemplary tree and accessed features

An exemplary GP tree (base classifier):

The tiles accessed by particular features (16x16 grid not shown):

Parameter	Setting		
Individual	5 GP trees		
Population size	1024		
Population initialization	standard ramped half-and-half		
Selection	tournament (7)		
Crossover	tree-swap, probability 0.9		
Mutation	subtree-replacement, probability 0.1		
Elitism	no		
Tree depth limit	10		
Number of generations	100		

- Evolutionary Computation in Java, ECJ
- Runs repeated 5 times

• F-measure = the harmonic mean of *precision p* and *recall r* (sensitivity)

fitness =
$$F_{measure} = \frac{2pr}{p+r}$$
,
 $p = \frac{TP}{TP+FP}$, $r = \frac{TP}{TP+FN}$

The Experiment: Data

• 33 true-color satellite images of spatial resolution 0.2m/pixel

- Different environments: urban, rural, parking lots, bridges, etc
- 4 to 378 cars per image, 22×9 pixels on average
- Training example = 32x32 window of the original image
 - positive example: window centered on a vertically aligned car
 - negative example: any window non overlapping with any car
- Training set: 659 cars extracted from 24 training images,
- Testing set: 635 cars extracted from 9 testing images,
- All images converted to grayscale for further analysis

Cascade node	TP	TN	FP	FN
1	374	11865	135	285
2	368	87	48	6
3	367	18	30	1
4	367	5	25	0
5	367	8	17	0
Total	367	11983	17	292

On the training data, this detector attains precision p = 0.956, recall r = 0.557, and F-measure of 0.704.

Evaluation on test images

Detection density map (DDM):

- aggregated over 8 rotated versions of the test images (every 22.5 degrees)
- each detection increases the belief in vehicle presence at the particular location and its surroundings (Gaussian distribution with $\sigma = 2.6$)
- local maxima in DDM with belief values greater than t lead to detections

Detections

ROC curve

- Obtained by varying the t threshold of the DDM
- Detection within a true vehicle contour counted as TP, otherwise FP

Some false positives and false negatives

FP

FN

- Decent performance on a challenging task using simple features
- No contextual information used (particularly road/street locations)
- Further work: different aggregation schemes, colour, multiobjective evolutionary search for precision and recall