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The importance of visual motion

– Adds entirely new (temporal) dimension to visual information. 

– Extremely important in human perception: observable even in 

random dot images. 

– Enables us to compute useful properties of the observed 3D world. 
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Image sequence

Also: video sequence. 

An image sequence is a series of N images (frames), acquired at 

discrete time instants tk=t0+kt

 Same dimensions, depth ...

 Sampling interval t typically constant, but not always. 
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Tasks related to image sequences

Most common tasks:

 Motion detection: presence of motion

 Qualitative motion estimation: how much motion is there?

 Motion analysis: direction, speed,…

 Motion compensation

 Motion segmentation

 Object tracking
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Motion detection 

Motion detection: 

– Usually implemented as simple frame differencing

– A more advanced scheme: 

– Introducing pixel timestamps which store the last luminance change 

for each pixel separately.

– ‘Ageing’ the motion information according to timestamps.
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Example
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Quantitative motion estimation

In the simplest version, can only give an estimate of amount of motion in the 

scene. 
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Example
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Motion detection example
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Motion detection example
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The aspects of motion analysis problem

1. Correspondence: Which elements of the frame correspond to 

which elements of the next frame of the sequence?

2. Reconstruction: given:

– a number of corresponding elements, and

– [possibly] knowledge of the camera’s intrinsic parameters

what can we say about the 3D motion and structure of the 

observed world?

3. [Segmentation]: If there are multiple independently moving 

objects in the scene, what are the regions of the image plane 

which correspond to the different moving objects?
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Assumptions

In following, we assume that:

– There is only one, rigid, relative motion between the camera and the 

observed scene, 

– The illumination does not change. 
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The expected result: Motion field (MF) 

Definition:

– Motion field (MF) is the 2D vector field (array, matrix) of velocities of 

the image points, induced by the relative motion between the 

viewing camera and the observed scene. 

– For a single point (x,y):

– May be considered as the projection of the 3D velocity field on the 

image plane. 

– Motion analysis methods aim at estimating MF; MF estimate is 

called optical flow.

v=[vxvy ]
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Optical flow
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The task

Estimate the motion field from image sequence, i.e., from spatial and 

temporal variations of the image brightness. 

In following we formally assume that image brightness is continuous and 

differentiable as many times as needed in both spatial and temporal 

domain.
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Image brightness constancy equation

Motivation: Under most circumstances, the apparent brightness E of moving 

objects remains constant:

where E = E(x,y,t), and x and y depend on time t, i.e., x=x(t), y=y(t). Thus:
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Image brightness constancy equation

However, dx/dt and dy/dt define the speed of the relative motion, i.e., the 

motion field v:

The partial spatial derivates are components of the spatial image gradient, 

E

v= [v xv
y
]=[

dx

dt

dy

dt
]
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∂ E
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]=[ExE
y
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T
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Image brightness constancy equation

Thus, the equation

becomes:

called image Brightness Constancy Equation (BCE)

Note: Can be generalized to Color Constancy 

dE( x( t ) ,y ( t ) ,t )

dt
=

∂ E
∂ x

dx

dt
+

∂ E
∂ y

dy

dt
+Et=0

(∇ E )T v+Et=0
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Note: The aperture problem

– BCE allows to compute only a part of the motion field. 

– More precisely, the component in direction of the spatial image 

gradient, vn (so-called normal component).

– Thus: The component of v in the direction orthogonal to the spatial 

image gradient is not constrained by the BCE.

– The velocity in the parallel direction cannot be estimated.

t t+1

v

The aperture circle: 

the support for 

gradient computation
vn

(drawing for 

discrete case)
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Optical flow

– The optical flow (OF) is a vector field subject to constraint BCE. 

– a.k.a. apparent motion of the image brightness pattern.

– OF is an approximation of MF computed under the following 

assumptions:

– Lambertian surfaces (reflectance model assuming that each scene 

point appears equally bright from all viewing directions), 

– Pointwise light source at infinity, 

– No photometric distortion.

– Under these assumptions, the error of approximating MF by OF is:

– Small at points with high spatial gradient

– Exactly zero for translational motion or for any rigid motion with the 

illumination direction parallel to the angular velocity.
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Two groups of methods

Two alternative strategies:

– Differential methods: 

Perform some computation (examine spatial and temporal 

variations) at each image pixel (dense measures)

– Matching methods, a.k.a. feature-based methods 

Perform computation only at a subset of image points – features 

(sparse measures)
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1. Differential (dense) techniques
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Differential techniques

Solve BCE by: 

1. Solving a system of partial differential equations, or

2. Computing second and higher-order derivatives of the image 

brightness, or

3. Computing least-squares estimates of parameters characterizing 

the optical flow. 

Advantages:

– Non-iterative, genuinely local, less biased than iterative methods. 

– Does not involve higher-order derivatives and are therefore less 

sensitive to noise. 
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Methods of estimating MF 

(computing OF)
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The OF algorithm (CONSTANT_FLOW)

A basic differential technique (group 1). 

Assumptions: 

– The BCE yields a good approximation of the MF. 

– The MF is well approximated by a constant vector field within any 

small patch of the image plane, i.e. the BCE

is fulfilled for each point pi within a small NxN patch Q (typically N=5)

(∇ E )T v+Et=0
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CONSTANT_FLOW

We are looking for a constant vector v that minimizes the following 

expression (within a given image patch Q):

=> Least squares problem:

where A is N2x2 matrix. i-th row of A is the spatial image gradient at point pi, 

i.e.:

∑
p
i
∈Q

[(∇ E )T v+E
t ]
2

A=[
∇ E ( p

1
)

∇ E ( p
2
)

⋮
∇ E ( pN×N )]

Av−b= 0

b=−[Et ( p1 ) ,… ,Et ( pN×N )]
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CONSTANT_FLOW

– The least squares solution of that overconstrained system can be 

computed as: 

– Solved using Gaussian elimination, but more often using singular 

value decomposition (SVD), or other forms of decomposition.

– Computed value is the optical flow at the center of patch Q

– In this way, we may compute optical flow for all image pixels, 

considering patches centered at particular image pixels. 

v̄=( AT A )−1 AT b
AT Av=AT b
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Algorithm CONSTANT_FLOW

Input: a time-varying sequence of n images E1, E2, …, En

1. Preprocessing:

a) Filter each image with a Gaussian filter of standard deviation s 

along each spatial dimension (typically s=1.5 pixels)

b) Filter each image along the temporal dimension with a Gaussian 

filter of standard deviation t along each spatial dimension (typically 

t=1.5 frames)

2. For each pixel of each image of the sequence:

a) Compute matrix A and vector b

b) Compute the optical flow v
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Remarks

Required preprocessing:

– spatial filtering to attenuate noise, and 

– temporal filtering to prevent aliasing1 in temporal domain. 

1 Different continuous signals to become indistinguishable (or aliases of one 

another) when sampled.

The maximum speed that can be ‘measured’ by the algorithm depends on 

the size of the temporal filter.
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More examples

http://eric-yuan.me/coarse-to-fine-optical-flow/
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Extension of CONSTANT_FLOW alg.

– The optical flow at the center of each patch Q is computed based 

on the entire patch. 

– The further from the center of the patch, the more the estimate 

differs from the estimate at the center. 

– Improvement: introduce weighting and pay more attention to the 

pixels close to the patch center. 

– Weighted least-square method (W – weight matrix): 

v̄=( AT W 2 A )−1 AT W 2b
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When CONSTANT_FLOW fails?

– The matrix:

computed over an image region Q is singular if and only if all the 

spatial gradients in Q are null or parallel. 

– In such a case, only the normal flow may be estimated (see: 

aperture problem). 

– (It may be shown that the eigenvectors of the above matrix encode 

edge directions, while eigenvalues encode edge strength)

– For uniform regions, both eigenvalues will be zero.

– For edges only one eigenvalue will be non-zero. 

– For corners both eigenvalues will be significantly greater than zero.  

AT A= [ ∑ Ex
2 ∑ Ex E y

∑ Ex E y ∑ E y
2 ]
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Benchmarking optical flow

Examples from:

B. McCane, K. Novins, D. Crannitch and B. Galvin, On Benchmarking 

Optical Flow

Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black, 

A Naturalistic Open Source Movie for Optical Flow Evaluation
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Benchmarking optical flow
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Problems with motion analysis

– More sensitive to noise than stereo analysis (as the ‘base’ shift 

between pairs is usually much smaller than in stereo)

– Often requires on-line processing at high frame rate => 

computational requirements
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2. Feature-based (matching) techiques
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Feature-based (matching) techiques

– Perform computation only at a subset of image points – features 

(sparse measures)

– Two subtypes:

– Two-frame methods = feature matching

– Multiple-frame methods = feature tracking
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2a. Two-frame method

– The idea: iterate the CONSTANT_FLOW algorithm over a set of 

feature points. 

– Feature points = centers of small, square image regions, 

preselected using some procedure. 

– E.g., the centers of those regions for which the smallest eigenvalue of 

ATA is larger than a threshold
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Alg. FEATURE_POINT_MATCHING

Input: 

– Two frames of video sequence I1 and I2

– The sets of feature points in I1 and I2

Let: 

– Q1, Q2, and Q’ be three NxN image regions, 

–  a fixed positive number

– d – unknown displacement between I1 and I2 of a feature point p on 

which Q1 is centered.
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Alg. FEATURE_POINT_MATCHING

For each feature point p:  

1. Set d=0 and center Q1 on p

2. By running CONSTANT_FLOW algorithm, estimate the 

displacement d0 of p (center of Q1), and let d:=d+d0

3. Warp (displace) Q1 according to d0, obtaining Q’

Sample Q’ from I2 and compare it to Q2 (corresponding patch), 

computing SSD(Q’,Q2) 

4. If SSD(Q’,Q2) > , set Q1:=Q’ and go to step 1; 

otherwise exit and proceed with next feature point
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Remarks

– SSD – sum of square differences

– For smoothing in CONSTANT_FLOW algorithm, it is recommended 

to use regions larger (at lest twice) than patches Q, 
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Demonstration

– Using pyramidal version of Lucas-Kanade 

– Extension: 

– finding good features to track using by locating pixels with significantly 

positive minimal eigenvalue

https://www.youtube.com/watch?v=zNqCNMefyV8 

https://www.youtube.com/watch?v=5rR_9YIcg_s 

https://www.youtube.com/watch?v=zNqCNMefyV8
https://www.youtube.com/watch?v=5rR_9YIcg_s
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Motion vs. stereo vision

– Spatial differences between consecutive frames are usually much 

smaller than those found in the typical stereo pairs. 

– => The correspondence problem may be cast as the problem of 

estimating the apparent motion of the image brightness pattern, i.e., 

optical flow.

– The relative displacement between the viewing camera and the 

scene is not necessarily caused by a single 3D rigid transformation 

(as it is the case in stereo).

– More data available in video stream than in stereo pair

– Past history of features’ motion enable predicting disparities in 

subsequent frames. 
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2b. Multiple-frame methods

A.k.a feature tracking: matching features from frame to frame in long 

sequences of images. 

Observations:

– If the motion of the observed scene is continuous, we should be 

able to make predictions on the motion of the image points. 

– Possible improvement in comparison with two-frame matching

– In other words: we should be able to use the disparities from previous 

frames to make predictions on the disparities between following 

frames. 
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Intro

Consider one feature point pk=[xk,yk]T  (k-frame number) acquired at 

instant tk, moving with velocity vk=[vx,k,vy,k]T

The motion on the image plane may be described by the state vector

Assuming a sufficiently small sampling interval, we write the system 

model of the linear Kalman filter:

Where  and  are zero-mean, white Gaussian random processes 

modeling the system noise. 

x= [ xk ,yk ,v x,k ,v y,k ]
T

pk=pk−1+vk−1+ξk−1
vk=vk−1+ηk−1
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Linear Kalman filter

– a.k.a. Linear Quadratic Estimation (in control theory)

– An analog to Hidden Markov Model; the differences:

– The hidden state variables are continuous

– Assumes Gaussian noise

– Components:

– State vector x

– State transition model , 

– Control input model B,

– Observation model H

– Control vector u, 

– Noises: w,  given by 

covariance matrices Q and R




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In terms of state vector

xk=Φk−1 xk−1+wk−1

where Φk−1=[
1 1

1 1

1

1
] , wk−1=[ξk−1ηk−1 ]
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Measurements

– The precise position of the point is not known explicitly to the 

observer. 

– The observer knows only the measured position zk, which is subject 

to some measurements errors. 

– Measurement model of the Kalman filter for this case:

– Where k is a zero-mean, white Gaussian random process 

(measurement noise). 

zk=H [ pkvk ]+μk , H=[1 0 0 0

0 1 0 0 ]
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[Linear] Kalman Filter Algorithm

Input: 

– Covariance matrices of system and measurement noise

– ‘History’: position measurement at time tk 

– Output: the optimal estimation of the position and velocity at time tk

Pk
' =Φk−1Pk−1Φk−1Φk−1

T +Qk−1

K
k
=P

k
' H

k
T (H

k
P
k
' H

k
T +R

k
)−1

x̂k=Φk−1 x̂k−1+Kk ( zk−HkΦk−1 x̂k−1)

Pk=( I−Kk )Pk
' ( I−Kk )

T
+Kk Rk K k

T
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Remarks

– The filter integrates the noisy measurements with model 

predictions, 

– The filter quantifies the uncertainty on the state estimate, in the form 

of the diagonal elements of the state covariance matrix

– The size of the region to be searched is adjusted dynamically.
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Demonstration

– Tracking of a rotating point.

– Rotation speed is constant (?).

– Both state and measurements vectors are 1-element (a point angle),

– Measurement is the real point angle + Gaussian noise.

– The real and the estimated points are connected with yellow line 

segment,

– The real and the measured points are connected with red line 

segment.

– The yellow segment should be shorter than the red one.

https://www.youtube.com/watch?v=SxtY1jQJ2fc 

https://www.youtube.com/watch?v=SxtY1jQJ2fc
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Object tracking
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Object tracking

Methods: 

 Based on color histograms

 Based on snakes

https://www.youtube.com/watch?v=36j238XtcIE 

https://www.youtube.com/watch?v=36j238XtcIE
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Applications of motion estimation



75

Motion compensation

– The goal: To compensate the camera motion (relative to the scene). 

– Motion types:

– dolly (forward, backwards), 

– track (left, right), 

– boom (up, down), 

– pan (left, right), 

– tilt (up, down)

– roll (along the view axis).

– Subtypes:

– Global motion compensation

– Block motion compensation 

– Advanced case: with variable block size
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Motion compensation

Hardware solutions: physics-based image stabilization methods (a.k.a. 

vibration reduction), which usually involve:

– Moving a lense in the objective(e.g., Image Stabilizer by Canon, 

Vibration Reduction by Nikon), 

– Moving the image sensor (e.g., Sony’s Steady Shot), 

Software approach:

– Compute the OF and move the frame in the opposite direction

..\..\..\root\secpl\vis\bin\stabilizer.exe

file:///../../../../../../../../../../../../../../../../../../../../../../../../../root/secpl/vis/bin/stabilizer.exe
file:///../../../../../../../../../../../../../../../../../../../../../../../../../root/secpl/vis/bin/stabilizer.exe
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Related topics

– Figure-ground separation/segmentation

Cognitive ability to separate elements based upon contrast, that is, 

dark and light, black and white 

– May give not unique results: 


