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Outline and objectives

Objective: Provide state-of-the-art perspective on program synthesis, with
emphasis on genetic programming.

Outline:
1 Program synthesis: problem definition, paradigms, challenges
2 Evolutionary Computation 101
3 Genetic Programming: fundamentals, program representations, search

operators, and more
4 Recent developments in GP: semantic and behavioral GP
5 In between: applications, case studies and success stories
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Course organization

Too large field to be covered in a short course
A number of relatively short, focused sections
Questions and interactions welcome
Clickable hyperlinks in blue or red

if( more than 10% of people dozing off in the audience )
then goto Case study
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Program synthesis (PS) task (Programming task)

Given:
a programming language, i.e., implicitly a set of programs P
a correctness predicate Correct : P → B,

find a program p ∈ P such that:

Correct(p)

Note:
Follows [Manna & Waldinger, 1980], yet earlier attempts present in AI
In this purest form, program synthesis is a search problem
Not to be confused with (an older term of) automatic programming (e.g.,
translating higher-level source code into machine code)
Essential detail: how to define Correct
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What is a program?

Several mutually nonexclusive interpretations:
Source code
Abstract syntax tree
Discrete, finite, executable structure

[Turner & Miller, Neutral Genetic Drift: An Investigation using Cartesian Genetic Programming, 2016]
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What does it mean that a program is correct?

Programs are not any formal objects: they are functions I → O

We consider a program correct if it behaves as expected, i.e., produces the
desired output given input.

Possible definitions of Correct:
A program that passes all tests (a finite number thereof)
A program that is provably correct.

i.e., conforms certain formal specification.

A program mandated as correct by an oracle Correct.
User’s intent.
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Practictioner’s perspective

S. Gulvani (Microsoft Research), Dimensions in Program Synthesis
[Gulwani, 2010a]:

1 User intent: logical specifications, natural language, input-output examples
(tests), traces, programs

2 Search space: programs, grammars, logics
3 Search technique: brute-force search, version space algebra, machine

learning (probabilistic inference, genetic programming), logical reasoning
based techniques
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Importance of user intent

If a user is not capable of producing formal specification, how should we elicit if
from him?

Or: “How to program when you cannot” – The motto of software
engineering according to E. Dijkstra :) [Dijkstra, 1988]

Non-orthodox ways of specifying user intent [Gulwani, 2010b]:
demonstrations,
natural language,
partial or inefficient programs [Gulwani, 2010b]

Alternative phrasings of the PS task:
Program synthesis is the task of discovering an executable program from
user intent expressed in the form of some constraints [Gulwani, 2010b].
Program synthesis is the automatic translation of a specification into a
program.
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Ways to solve a programming task

State of the art: human programmer(s)
Slow, imperfect, unreliable, unsafe, ...
... yet getting better and more powerful (?)
More and more power delegated to computers, entailing growing
responsibility.

Dijkstra’s dream: human programmer, providing proofs of correctness
himself or using methods of formal verification

programs that are correct by construction [Dijkstra, nd]

Dijkstra’s nightmare: [automatic] program synthesis
Programming cannot be automated, and as such will be always
human-driven [Dijkstra, 1988]
Indeed: In the beginning, there is always human intent (user’s intent)
But: PS reached now further than Dijkstra probably dreamed (or rather
bad-dreamed)
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Edsgar Wybe Dijkstra

Edsger Wybe Dijkstra, 1930–2002
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On importance of correctness

Ariane-5 crash on June 4, 1996.
The culprit: conversion of 64-bit float

into a 16-bit int.

Other examples:
Bug in Intel Pentium processors
=⇒ $475 mln to replace
Bug in baggage handling system at
Denver airport =⇒ nine month
delay, $1.2 per day
Bug in radiation therapy device
=⇒ death of six patients
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Related: Formal verification and model checking

Model checking = an automated technique that, given a finite-state model of a
system and a formal property, systematically checks whether this property holds
for (a given state in) that model [Baier & Katoen, 2008, p. 11]

Phases:
Modeling: building a model of a system of consideration, in some language

Typically some form of finite-state automaton

Running: application of model checker
When checking fails, it produces a counterexample

Analysis: analyze counterexample, refine the model, etc.
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Specifying program correctness

Example of program specification [Manna & Waldinger, 1980]:

sqrt(n)⇐ find z such that integer(z) and z2 ≤ n ≤ (z+1)2

where integer(n) and 0≤ n

More generally:

f (a)⇐ find z such that R(a,z)
where P(a)

where:
a – program input
z – program output
P(a) – input condition (precondition, ’requires’)
R(a,z) – output condition (postcondition, ’ensures’)
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Specifying program correctness

Corresponding theorem to prove

∀a : P(a) =⇒ ∃z : R(a,z)

a – program input
z – program output
P(a) – input condition (precondition, ’requires’)
R(a,z) – output condition (postcondition, ’ensures’)

The proof must be constructive, i.e., must tell how to find z that satisfies the
output condition R(a,z).
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Curry-Howard correspondence (isomorphism)

Haskell Curry (1900-1982), William Alvin Howard (1926-)
One-to-one correspondence between programs and logic, i.e., programs and
proofs, and types and propositions
In a nutshell:

Proofs in logic are programs in computer science.
Propositions in logic are types in computer science.

A program is a proof of the formula being the type of the program
The rules of logic are search operators in the space of proofs.
Prolog ‘embodies’ the CH correspondence.
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Specifying correctness using examples (tests)
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Recap: What is special about program synthesis?

We are talking about programs that generate programs.
Note: generate, not manipulate (like, e.g., compilers)
This is not metaprogramming – this term is already reserved for a more
technical purpose (e.g., Java program composes a shell script which is then
executed).

Programs are in a sense not self-contained. Their meaning is externalized,
i.e., dwells in the semantics of a given programming language.
Thus, what matters is program ‘behavior’, which can be captured by, e.g.,

some external formalism (like proof of correctness),
examples of input-output behavior.

What is program synthesis about? 26



Main directions in program synthesis

As outlined in [Manna & Waldinger, 1980]:
Exact1 approaches:

Deductive program synthesis
Inductive programming
Transformation of specification (rewriting systems)

Heuristic approaches (including genetic programming)

1Meaning: Either you get a correct program, or you don’t get anything.
What is program synthesis about? 27



Deductive program synthesis

Assumption: specification is complete
Program synthesis = theorem proving
Involves transformation rules, unification, resolution, and mathematical
induction (for recursion)

What is program synthesis about? 28



Inductive programming

Assumption: specification is incomplete
Primary representative: inductive logic programming (ILP)

Synthesis of programs in logic, primarily in Prolog
Nowadays considered part of machine learning, mainly preoccupied with
learning with relational data, knowledge discovery, data mining

What is program synthesis about? 29



Inductive logic programming: An example

Source: [Flach & Lavrac, 2000]
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Inductive logic programming: An example

Exemplary hypothesis:

What is program synthesis about? 31



Anticipated benefits of program synthesis

Programs that are:
Provably correct, and thus

‘globally reusable’,
certifiable

Possibly also optimal with respect to non-functional requirements like
length, runtime, memory footprint, power consumption, etc.

Free of malicious insets
Cheap to produce

What is program synthesis about? 32



Challenges for formal approaches program synthesis

Size of the proof space
Limited effectiveness of theorem provers
Consequence: lack of scalability (depending on the paradigm, upper limit of
program length in the order of 20’s)

Limited premises for prioritizing the search
Which transformation rule should be applied at a given stage of
synthesis/proving process?

Requirement of formal specification may be problematic.
Programmers not always ready/willing to provide such2

end-users even less so (cf. end-user programming)
Describing the desired behaviors by means of examples can be more handy

May require domain-specific knowledge
Each domain ’has its own maths’ that encodes knowledge about that
domain;

“we can automate programming only when we can identify a
domain with such a well known body of knowledge, that existing
implementations are produced (or may be produced) in a routine
and obvious fashion” [Faitelson, 2010]

2This changing, albeit slowly: see, e.g., design by contract, a methodology of software
engineering.
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Genetic programming

GP mitigates the challenges by:
Relying on heuristic search algorithms to search the vast space of
programs3,
Abandoning (usually) formal specification in favor of examples of correct
behavior (thus belongs to inductive programming),
Naturally embracing domain-specific languages,
Re-stating the program synthesis task as an optimization problem,

and thus: relaxing the concept of program correctness (!).
A partially incorrect program may be sometimes favored, for instance when
advantageous in terms of non-functional properties.

Founded on the metaheuristic of evolutionary algorithms.

3Heuristics are being used also in other approaches to program synthesis.
What is program synthesis about? 34
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Evolutionary Computation (EC)

A branch of computational intelligence that deals with heuristic bio-inspired
global search algorithms with the following properties:

Operate on populations of candidate solutions
Candidate solutions are encoded as genotypes
Genotypes get decoded into phenotypes when evaluated by the fitness
function f being optimized.

Example: a candidate solution to a traveling salesperson problem is a
permutation of cities (genotype), while its phenotype is a specific path of
certain length.

Attempt to find an optimal solution (an ideal) p∗:
p∗ = argmax

p∈P
f (p)

(or conversely ‘argmin’), where P is the considered space (search space) of
candidate solutions (solutions for short).

Note: an optimization, not a search problem!
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Generic evolutionary algorithm

Evolutionary Algorithm

Population P of individuals

Evaluation

Selection

Mutation and recombination

Initialization of population P

Solution/individual  s

f(s)

Output: Best solution s+

Termination criteria

Fitness function f

Historically, one of meta-heuristics, along with tabu search, simulated annealing,
etc.
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Features of EC

Generate-and-test approach
Iterative

coarse-grained: generational EA,
fine-grained: steady-state EA

Parallel global search
Not equivalent to parallel stochastic local search (SLS), particularly when
crossover present

Importance of crossover: a recombination operator that makes the
solutions exchange certain elements (variable values, features)

Without crossover, EC boils down parallel stochastic local search
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Features of EC

‘Black-box’ optimization (f ′s dependency on the independent variables
does not have to be known or meet any criteria)
Capable of ‘discovering’ both the global and local structure of the search
space

See: big valley hypothesis: good solutions are similar

No guarantees of finding a solution whatsoever
Finding an optimum cannot be guaranteed, but in practice a well-performing
suboptimal solution is often satisfactory.

Variables do not have to be explicitly defined
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Variants of evolutionary algorithms

Well rooted in EC:
Genetic algorithms (GA): discrete (binary) encoding
Evolutionary strategies (ES): real-valued encoding
Evolutionary programming (EP): not particularly popular nowadays, but
historically one of the first approaches to EC
Genetic Programming (GP)

Newer branches:
Estimation of distribution algorithms (EDA), generative and developmental
systems (GDS), differential evolution, learning classifier systems, ...
Not strictly EC: particle swarm optimization (PSO), ant colony
optimization (ACO),

Note:
EC = Evolutionary Computation, the name of the domain
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Major events of EC

Genetic and Evolutionary Computation Conference (GECCO)
IEEE Congress on Evolutionary Computation (CEC)
EvoStar (Evo*)
Parallel Problem Solving from Nature (PPSN)

Some facts:
ACM SIGEVO group
IEEE Task Forces
Several dozens of thousands of publications (GP alone has almost 10,000)
EC considered one of the three major branches of Computational
Intelligence (Fuzzy Systems and Neural Nets being the other ones)
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EAs are metaheuristics

Meta-heuristic = a generic algorithm template that can be adopted to a specific
problem class (meta-) and is able to generate solutions of good/acceptable
quality with limited computational resources (heuristic-)

Motivations:
hardness of most nontrivial search and optimization problems,
practical usefulness of good yet non-optimal solutions,

Example: a suboptimal solution (route) to a Traveling Salesperson Problem
(TSP) that is only 5% worse than the optimal one may be good enough,
given unpredictable factors that may interfere in the execution of that route.
Straining to achieve further (potentially miniscule) improvements may be
technically/economically unjustified.
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Convergence to good solutions may take some time ...

Source: http://xkcd.com/720/

(Actually, some variants of EC maintain and manipulate infeasible solutions)
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EAs is [getting] rigorous

A growing body of theoretical results: schemata theorems, runtime analysis,
first-hitting time proofs, performance bounds, fitness landscapes, ...
Of course, always conditioned on some assumptions (e.g., unimodality,
differentiability, ...)
Related milestones:

Schemata theorems: solutions’ components that occur in
higher-than-average fit individuals tend to dominate population.
No-free-lunch (NFL) theorems [Wolpert & Macready, 1997], sharpened NFL
theorems [Schumacher et al., 2001]
Elementary fitness landscapes [Whitley & Sutton, 2009]
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Applications of EAs

Too numerous to cover (see, e.g., the Real-World-Application track of GECCO).
optimization of car chassis (BMW),
design of analog and digital circuits,
design of antennae (NASA),
feature selection in machine learning tasks,
optimization of wind turbine placement (General Electric),
designing spacecraft trajectories,
sensor networks,
and more.

EC’s strength: relative ease of adjusting to a specific problem: defining
domain-specific search operators and fitness function is typically sufficient.
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Genetic programming

In a nutshell:
A variant of EA where the genotypes represent programs, i.e., entities
capable of reading in input data and producing some output data in
response to that input.
The candidate solutions in GP are being assembled from elementary
entities called instructions.
Most common program representation: expression trees.
Cardinality of search space large or infinite.

What is genetic programming? 47



Fitness function

EA solves optimization problems. Program synthesis is a search problem. How
to match them?

Fitness function f measures the similarity of the output produced by the
program to the desired output, given as a part of task statement.
The set of program inputs I , even if finite, is usually so large that running
each candidate solution on all possible inputs becomes intractable.
GP algorithms typically evaluate solutions on a sample I ′ ⊂ I , |I ′| � |I | of
possible inputs, and fitness is only an approximate estimate of solution
quality.
The task is given as a set of fitness cases, i.e., pairs (xi ,yi ) ∈ I ×O, where
xi usually comprises one or more independent variables and yi is the output
variable.
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Fitness function: Example

City-block fitness function:

f (p) =−∑
i

||yi −p(xi )||, (1)

where
p(xi ) is the output produced by program p for the input data xi ,
|| · || is a metric (a norm) in the output space O,
i iterates over all fitness cases.
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Genetic programming

Main evolution loop (‘vanilla GP’)

1: procedure GeneticProgramming(f ,I ) . f - fitness function, I - instruction set
2: P ←{p← RandomProgram(I )} . Initialize population
3: repeat . Main loop over generations
4: for p ∈P do . Evaluation
5: p.f ← f (p) . p.f is a ‘field’ in program p that stores its fitness
6: end for
7: P ′← /0 . Next population
8: repeat . Breeding loop
9: p1←TournamentSelection(P) . First parent
10: p2←TournamentSelection(P) . Second parent
11: (o1,o2)← Crossover(p1,p2)
12: o1←Mutation(o1,I )
13: o2←Mutation(o2,I )
14: P ′←P ′ ∪{o1,o2}
15: until |P ′|= |P|
16: P ←P ′

17: until StoppingCondition(P)
18: return argmaxp∈P p.f
19: end procedure
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Search operators: Mutation

Mutation: replace a randomly selected subexpression with a new randomly
generated subexpression.

1: function Mutation(p,I )
2: repeat
3: s← Random node in p
4: s ′← RandomProgram(I )
5: p′← Replace the subtree rooted in s with s ′

6: until Depth(p′)< dmax . dmax is the tree depth limit
7: return p′

8: end function

Source: [Poli et al., 2008]
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Search operators: Crossover

Crossover: exchange of randomly selected subexpressions (subtree swapping
crossover).

1: function Crossover(p1,p2)
2: repeat
3: s1← Random node in p1
4: s2← Random node in p2
5: (p′1,p

′
2)← Swap subtrees rooted in s1 and s2

6: until Depth(p′1)< dmax ∧Depth(p′2)< dmax . dmax is the tree depth limit
7: return (p′1,p

′
2)

8: end function

Source: [Poli et al., 2008]
What is genetic programming? 52



Q & A

Q: What is the most likely outcome of application of mutation/crossover to a
viable program?

Hint:
But, however many ways there may be of being alive, it is certain that
there are vastly more ways of being dead, or rather not alive. (The
Blind Watchmaker [Dawkins, 1996])

A: Most applications of genetic operators are harmful4

Yet, GP works. Why?

Mutation is random; natural selection is the very opposite of random
(The Blind Watchmaker [Dawkins, 1996])

4Turns out: In GP, quite many of them can be neutral (neutral mutations).
What is genetic programming? 53
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Exemplary run: Setup

A mini-run of GP applied to a symbolic regression problem (from:
[Poli et al., 2008])

Objective: Find a program whose output matches x2+x+1 over the range
[−1,1].

Such tasks can be considered as a form of regression.
As solutions are built by manipulating code (symbolic instructions), this is
referred to as symbolic regression.

Fitness: sum of absolute errors (City-block distance) for
x ∈ −1.0,−0.9, ...0.9,1.0:

xi -1.0 -0.9 . . . 0 . . . 0.9 1.0
yi 1 0.91 . . . 1 . . . 2.71 3
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Exemplary run: Setup

Instruction set:
Nonterminal (function) set: +, -, % (protected division), and x ; all
operating on floats
Terminal set: x , and constants chosen randomly between -5 and +5

Initial population: ramped half-and-half (depth 1 to 2; 50% of terminals are
constants)
Parameters:

population size 4,
50% subtree crossover,
25% reproduction,
25% subtree mutation, no tree size limits

Termination: when an individual with fitness better than 0.1 found
Selection: fitness proportionate (roulette wheel) non elitist
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Initial population (population 0)
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Fitness assignment for population 0

Fitness values: f(a)=7.7, f(b)=11.0, f(c)=17.98, f(d)=28.7
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Breeding

Assume:
a gets reproduced
c gets mutated (at locus 2)
a and d get crossed-over
a and b get crossed-over

Note:
All parents used; this in general does not have to be the case.
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Population 1

Population 0:

Population 1:

Individual d in population 1 has fitness 0.
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Summary of our first glimpse at GP
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Specific features of GP

The solutions evolving under the selection pressure of the fitness function
are themselves functions (programs).
GP operates on symbolic structures of varying length.

There are no variables for the algorithm to operate on (at least in the
common sense).

The program can be tested only on a limited number of fitness cases
(tests).
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Q: Is GP a ML technique?

A: Yes and no.
In contrast to most EC methods that are typically placed in optimization
framework, GP is by nature an inductive learning approach that fits into
the domain of machine learning [Mitchell, 1997].
As opposed to typical ML approaches, GP is very generic

Arbitrary programming language, arbitrary input and output representation

The syntax and semantic of the programming language of consideration
serve as means to provide the algorithm with prior knowledge

common sense knowledge, background knowledge, domain knowledge
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In a broader context

A rather non-human approach to programming

(...) Artificial Intelligence as mimicking the human mind prefers to
view itself as at the front line, whereas my explanation relegates it to
the rearguard. (The effort of using machines to mimic the human
mind has always struck me as rather silly: I’d rather use them to
mimic something better.) [Dijkstra, 1988]

This pertains to certain differences between AI and CI:
AI is (partially) engaged in research aiming at reproducing humans (in
particular in research areas closer to cognitive science),
CI focuses on intelligence as an emergent property (hence the prevailing
presence of learning).

Claim (mine):
GP embodies the ultimate goal of AI: to build a system capable of
self-programming (adaptation, learning).
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Why should GP be considered a viable approach of AI/CI?

GP combines two powerful concepts marked in underline in the above definition:

1 Representing candidate solutions as programs,
which in general can conduct any Turing-complete computation (e.g.,
classification, regression, clustering, reasoning, problem solving, etc.), and
thus enable capturing solutions to any type of problems (whether the task
is, e.g., learning, optimization, problem solving, game playing, etc.).

2 Searching the space of candidate solutions using the ‘mechanics’
borrowed from biological evolution,
which is unquestionably a very powerful computing paradigm, given that it
resulted in life on Earth and development of intelligent beings.
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Why should GP be considered a viable approach to program
synthesis?

Argument ‘from practice’:
Human programmers do not rely (usually) on formal apparatus when
programming.
Neither they perform exhaustive search in the space of programs.
Yet, they can program really5 well.

Other arguments:
numerous ‘success stories’ concerning stochastic techniques in other
domains, e.g.,

machine learning (bagging, random forests),
computer vision (random features)

Stochastic nature of a method does not preclude practical usefulness.

5
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What is GP? – Question revisited

Genetic programming is a branch of computer science studying
heuristic algorithms based on neo-Darwinian principles for synthesizing
programs, i.e., discrete symbolic compositional structures that process
data.

Consequences of the above definition:
Heuristic nature of search.
Symbolic program representation.
Unconstrained data types.
Unconstrained semantics.
Input sensitivity and inductive character.

Summary of our first glimpse at GP 68



Risks involved?

Source: http://xkcd.com/534/
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Origins of GP

Early work by:
John R. Koza [Koza, 1989, Koza, 1992b]
Similar ideas in early works of Schmidhuber [Schmidhuber, 1987]

http://www.genetic-programming.com/johnkoza.html
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Exemplary GP run using ECJ

Exemplary GP run using ECJ 71



Exemplary run of ECJ (EC in Java [Luke, 2010])

The task: synthesize a program that, given x ∈ [−1,1], returns an output equal
to y = x5−2x3+ x (symbolic regression)

Assumptions:
available instructions: +, −, ∗, /, sin, cos, exp, log
no constants
no conditional statements nor loops

the program space is the space of arithmetic functions.

set of 20 tests drawn randomly from x ∈ [−1,1]
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Exemplary run: Launch

Standard output:
java ec.Evolve -file ./ec/app/regression/quinticerc.params
...
Threads: breed/1 eval/1
Seed: 1427743400
Job: 0
Setting up
Processing GP Types
Processing GP Node Constraints
Processing GP Function Sets
Processing GP Tree Constraints
{-0.13063322286594392,0.016487577414659428},
{0.6533404396941143,0.1402200189629743},
{-0.03750634856569701,0.0014027712093654706},
...
{0.6602806044824949,0.13869498395598084},
Initializing Generation 0
Subpop 0 best fitness of generation: Fitness: Standardized=1.1303205 Adjusted=0.46941292 Hits=10
Generation 1
Subpop 0 best fitness of generation: Fitness: Standardized=0.6804932 Adjusted=0.59506345 Hits=7
...
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Exemplary run: The result

The log file produced by the run (out.stat):
Generation: 0
Best Individual:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=1.1303205 Adjusted=0.46941292 Hits=10
Tree 0:
(* (sin (* x x)) (cos (+ x x)))
Generation: 1
Best Individual:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=0.6804932 Adjusted=0.59506345 Hits=7
Tree 0:
(* (rlog (+ (- x x) (cos x))) (rlog (- (cos (cos (* x x))) (- x x))))
....
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Exemplary run

The log file produced by the run:
Best Individual of Run:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=0.08413165 Adjusted=0.92239726 Hits=17
Tree 0:
(* (* (* (- (* (* (* (* x (sin x)) (rlog

x)) (+ (+ (sin x) x) (- x x))) (exp (* x
(% (* (- (* (* (* (* x x) (rlog x)) (+ (+

(sin x) x) (- x x))) (exp (* x (sin x))))
(sin x)) (rlog x)) (exp (rlog x)))))) (sin

x)) (rlog x)) x) (cos (cos (* (* (- (* (*
(exp (rlog x)) (+ x (* (* (exp (rlog x))
(rlog x)) x))) (exp (* (* (* (- (exp (rlog
x)) x) (rlog x)) x) (sin (* x x))))) (sin
x)) (* x (% (* (- (* (* (* (* x x) (rlog
x)) (+ (+ x (+ (+ (sin x) x) (- x x))) (-
x x))) (exp (* x (sin x)))) (sin x)) (rlog
x)) (exp (rlog x))))) x))))
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FUEL: FUnctional Evolutionary aLgorithms

Compact framework for implementing metaheuristic algorithms
written in Scala

~2000 LoC
Convenient on-the-fly manipulation of components
Single- and multiobjective evolutionary search
...
https://github.com/kkrawiec/fuel

Launching an EA run:
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There is much beyond the ‘vanilla GP’

Design choices to be made, involving:
population initialization, generating random programs (and subprograms),
search operators,

many possibilities here, given that no ‘natural’ similarity metrics for program
spaces exist,

program representations (trees prevail in GP, but other representations are
used as well)

... and the design choices characteristic for the more general domain of
Evolutionary computation:

generative vs. steady-state evolution,
selection operators (fitness-proportional, tournament, ...)
extensions: island models, estimation-of-distribution algorithms,
multiobjective EAs, ...
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Where to get the candidate solutions from?

Every stochastic search method needs some underlying sampling
algorithm(s)
The distribution of randomly generated solutions is important, as it implies
certain bias of the algorithm.
Problems:

We don’t know the ‘ideal’ distribution of GP programs.
Even if we knew it, it may be difficult to design an algorithm that obeys it.

The simplest initialization methods take care only of the syntax of
generated programs.

The parameter: the maximum depth of produced trees.
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Initialization: Full method

Specify the maximum tree height hmax.
The full method for initializing trees:

Choose nonterminal nodes at random until hmax is reached
Then choose only from terminals.
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Initialization: Grow method

Specify the maximum tree height hmax.
The grow method for initializing trees:

Choose nonterminal or terminal nodes at random until hmax is reached
Then choose only from terminals.
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Initialization: Comments

hmax is typically small (e.g., 5), because programs tend to grow with
evolution anyway,
If types are used, the choice of instructions has to be appropriately
constrained

Typically, every instruction declares the set of accepted types for every
input, and the type of output
The presence of types may make meeting size constraints difficult.

In an extreme case, generation of a syntactically correct program may be
impossible!

More sophisticated techniques exist, e.g., uniform sampling, see review in,
e.g., [Poli et al., 2008].

An extension: seeding the population with candidate solutions that are
believed to be good (domain knowledge required).
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Alternative crossover operators

Even though the conventional GP crossover operators care only about program
syntax, there are quite many of them. Examples:

homologous crossover (detailed in next slides),
uniform crossover (detailed in next slides),
size-fair crossover,
context-preserving crossover,
headless chicken crossover (!),
and more.

Why should crossover be considered important, particularly in GP?
Programs are by nature modular.
For instance, in purely functional programming, a piece of code
‘transplanted’ to a different location preserves its semantics (referential
transparency, a.k.a. closure in GP).
A GP run can be successful by the virtue of gradual accumulation of useful
modules.
Rich literature on modularity in evolution.
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Homologous crossover for GP

Earliest example: one-point crossover [Langdon & Poli, 2002]: identify a
common region in the parents and swap the corresponding trees.
The common region is the ‘intersection’ of parent trees.
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Uniform crossover for GP

Works similarly to uniform crossover in GAs
The offspring is build by iterating over nodes in the common region and
flipping a coin to decide from which parent should an instruction be copied
[Poli & Langdon, 1998]
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How to employ multiple operators for ‘breeding’?

How should the particular operators coexist in an evolutionary process? In other
words:

How should they be superimposed?
What should be the ‘piping’ of particular breeding pipelines?
A topic surprisingly underexplored in GP.

An example: Which is better:
pop.subpop.0.species.pipe = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.num-sources = 1
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline

or
pop.subpop.0.species.pipe.num-sources = 2
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.0.species.pipe.source.0.prob = 0.9
pop.subpop.0.species.pipe.source.1 = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.source.1.prob = 0.1
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Bloat

The evolving expressions tend to grow indefinitely in size.
For tree-based representations, this growth is typically exponential[-ish]
Evaluation becomes slow, algorithm stalls, memory overrun likely.
One of the most intensely studied topics in GP: > 250 papers.

Bloat example: Average number of
nodes per generation in a typical run of
GP solving the Sextic problem x6−2x4+
x2 (GP: dotted line)
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Countermeasures for bloat

Constraining tree height: discard the offspring that violates the upper limit
on tree height

Surprisingly, theory shows that this can speed up bloat!

Favoring small programs:
Lexicographic parsimony pressure: given two equally fit individuals, prefer
(select) the one represented by a smaller tree.

Bloat-aware operators: size-fair crossover.
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Highly non-uniform distribution of program ‘behaviors’

Convergence of binary Boolean random linear functions (composed of AND,
NAND, OR, NOR, 8 bits)

Source: [Langdon, 2002]
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High cost of evaluation

Running a program on multiple
inputs can be expensive.
Particularly for some types of data,
e.g., images

Solutions:
Caching of outcomes of
subprograms
Parallel execution of programs on
particular fitness cases
Bloat prevention methods

Right: Example from [Krawiec, 2004].
Synthesis of image analysis algorithms,
where evaluation by definition incurs
high computational cost.
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Strongly typed GP (STGP)

A way to incorporate prior knowledge and impose a structure on programs
[Montana, 1993]
Provide a set of types
For each instruction, define the types of its arguments and outcomes
Make the operators type-aware:

Mutation: substitute a random tree of a proper type
Crossover: swap trees of compatible6 types

6‘Compatible’ = belonging to the same ‘set type’
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Strongly typed GP: Example

Consider the problem of simple classifiers represented as decision trees:

Classifier syntax:
Classifier ::= Class_id
Classifier ::= if_then_else(Condition,
Classifier, Classifier)
Condition ::= Input_Variable =
Constant_Value

Implementaion of this type system in ECJ:

Types:
gp.type.a.size = 3
gp.type.a.0.name = class
gp.type.a.1.name = var
gp.type.a.2.name = const
gp.type.s.size = 0
Type constraints for programs:
gp.tc.size = 1
gp.tc.0 = ec.gp.GPTreeConstraints
gp.tc.0.name = tc0
gp.tc.0.fset = f0
gp.tc.0.returns = class

Type constraints for instructions:
(’templates’ of type constraints)
gp.nc.size = 4
gp.nc.0 = ec.gp.GPNodeConstraints
gp.nc.0.name = ncSimpleClassifier
gp.nc.0.returns = class
gp.nc.0.size = 0
gp.nc.1 = ec.gp.GPNodeConstraints
gp.nc.1.name = ncCompoundClassifier
gp.nc.1.returns = class
gp.nc.1.size = 4
gp.nc.1.child.0 = var
gp.nc.1.child.1 = const
gp.nc.1.child.2 = class
gp.nc.1.child.3 = class
gp.nc.2 = ec.gp.GPNodeConstraints
gp.nc.2.name = ncVariable
gp.nc.2.returns = var
gp.nc.2.size = 0
gp.nc.3 = ec.gp.GPNodeConstraints
gp.nc.3.name = ncConstant
gp.nc.3.returns = const
gp.nc.3.size = 0
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Linear Genetic Programming

Motivation: Tree-like structures are not natural for contemporary hardware
architectures
Program representation: a sequence of instructions
Passing data between instructions: via registers
Often directly portable to machine code, fast execution.
Natural correspondence to standard (GA-like) crossover operator.
Applications: direct evolution of machine code [Nordin & Banzhaf, 1995].
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Linear GP

Example from [Krawiec, 2004]: the process of program interpretation:

and the corresponding data flow, including the initial and final register contents:

Initial register 
contents

Final register 
contents

x1

x2 O1 O2

x3

O3 O4 g2

g3

g1r1

r2

r3

r1

r2

r3
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Cartesian GP

Developed from work on the evolution of digital circuits
[Miller & Thomson, 1998, Miller & Thomson, 2000].

Program representation: a graph of instructions
However, encoded as a sequence of integers.

Passing data between instructions: direct
Applications: evolution of digital and analog circuits.
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Cartesian GP
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Cartesian GP
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Stack-based GP

PushGP [Spector et al., 2004]
Program representation: a nested list of instructions
Syntax: program ::= instruction | literal | ( program* )
Passing data between instructions: via typed stacks
Simple cycle of program execution:

Pop an instruction from the EXEC stack and execute it.
The instruction will usually pop some data from a data stack and push the
results on the stack of the appropriate type.
Upon termination, the top element of a stack forms program outcome

Includes certain features that make it Turing-complete (e.g., YANK
instruction).
Natural possibility of implementing autoconstructive programs
[Spector, 2010]
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Push: Example 1

Program:

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR )

Initial stack states:

BOOLEAN STACK: ()
CODE STACK: ( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR )
FLOAT STACK: ()
INTEGER STACK: ()

Stack states after program execution:

BOOLEAN STACK: ( TRUE )
CODE STACK: ( ( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR ) )
FLOAT STACK: ( 9.3 )
INTEGER STACK: ( 6 )
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Push: Example 2

Fitness case 1 Fitness case 2 Fitness case 3
Step EXEC INT BOOL INT BOOL INT BOOL
0 (* + <) (1 3 4 5) ( ) (2 2 4 2) ( ) (1 2 3 8) ( )
1 (+ <) (3 4 5) ( ) (4 4 2) ( ) (2 3 8) ( )
2 (<) (7 5) ( ) (8 2) ( ) (5 8) ( )
3 ( ) ( ) (F) ( ) (F) ( ) (T)

More details: http://hampshire.edu/lspector/push3-description.html
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Grammatical Evolution (GE)

Grammatical Evolution: The grammar of the programming language of
consideration is given as input to the algorithm. [Ryan et al., 1998]
Individuals encode the choice of productions in the derivation tree (which
of available alternative production should be chosen, modulo the number of
productions available at given step of derivation).

Variants of GP 103



Other variants of GP

Multiobjective GP. The extra objectives can:
Come with the problem
Result from GP’s specifics: e.g., use program size as the second (minimized)
objective
Be associated with different tests (e.g., feature tests [Ross & Zhu, 2004])

Probabilistic GP (a variant of EDA, Estimation of Distribution Algorithms):
The algorithm maintains a probability distribution P instead of a population
Individuals are generated from P ‘on demand’
The results of individuals’ evaluation are used to update P
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Simple EDA-like GP: PIPE

Probabilistic Incremental Program Evolution [Salustowicz & Schmidhuber, 1997]
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Developmental GP

Programs generate solutions [Koza et al., 1999].
Or modify a ’baseline’ solution.

Intricate mapping between program and the final (evaluated) artifact.

http:
// www. genetic-programming. com/ gpcircuitanimation. gif

http:
// www. genetic-programming. com/ gplayoutanimation. gif
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Humies

GP produced a number of solutions that are human-competitive, i.e., a GP
algorithm automatically solved a problem for which a patent exists
[Koza et al., 2003b].

(...) Entries were solicited for cash awards for human-competitive results that
were produced by any form of genetic and evolutionary computation and that
were published

http://www.genetic-programming.org/combined.php
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Humies

The conditions to qualify:
(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.
(B) The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal.
(C) The result is equal to or better than a result that was placed into a database or
archive of results maintained by an internationally recognized panel of scientific
experts.
(D) The result is publishable in its own right as a new scientific result — independent
of the fact that the result was mechanically created.
(E) The result is equal to or better than the most recent human-created solution to a
long-standing problem for which there has been a succession of increasingly better
human-created solutions.
(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.
(G) The result solves a problem of indisputable difficulty in its field.
(H) The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written computer
programs).
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Selected Gold Humies using GP

2004: Jason D. Lohn Gregory S. Hornby Derek S. Linden, NASA Ames
Research Center,
An Evolved Antenna for Deployment on NASA’s Space Technology 5
Mission

http://idesign.ucsc.edu/papers/hornby_ec11.pdf
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Selected Gold Humies using GP

2009: S. Forrest, C. Le Goues, ThanhVu Nguyen, W. Weimer
Automatically finding patches using genetic programming: A Genetic
Programming Approach to Automated Software Repair

Successfully fixes a ’New Year’s bug’ in Microsoft’s MP3 player Zune.
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Selected Gold Humies using GP

2008: Lee Spector, David M. Clark, Ian Lindsay, Bradford Barr, Jon Klein
Genetic Programming for Finite Algebras
2010: Natalio Krasnogor Paweł Widera Jonathan Garibaldi
Evolutionary design of the energy function for protein structure prediction
2011: Achiya Elyasaf Ami Hauptmann Moshe Sipper
GA-FreeCell: Evolving Solvers for the Game of FreeCell
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Application: Bug fixing

GenProg [Le Goues et al., 2012]:
Maintains a population candidate repairs as sequences of edits to software
source code.
Each candidate is applied to the original program to produce a new
program, which is evaluated using test suites.
Fitness = number of tests passed.
Termination = a candidate repair is found that retains all required
functionality and fixes the bug.
Does not require special code annotations or formal specifications, and
applies to unmodified legacy software.
Won IFIP TC2 Manfred Paul Award (2009), and Humies (twice)
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Application: Bug fixing

Economic aspects: https://www.youtube.com/watch?v=Z3itydu_rjo

For embedded devices: https://www.youtube.com/watch?v=95N0Yokm6Bk

Follow-ups/related:
reduction of the power consumption of software
assembly and binary repairs of embedded systems.
automated repair of exploits in binary code of a network router

exploits allowing unauthenticated users to change administrative options and
completely disable authentication across reboots
https://github.com/eschulte/netgear-repair
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Review

A recent award-winning work has demonstrated the ability of a GP system
to automatically find and correct bugs in commercially-released software
when provided with test data [Arcuri & Yao, 2008].
GP is one of leading methodologies that can be used to ‘automate’ science,
helping the researchers to find the hidden complex patterns in the observed
phenomena [Schmidt & Lipson, 2009].
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Other applications

Classification problems in machine learning and object recognition
[Krawiec, 2001, Krawiec & Bhanu, 2005, Krawiec, 2007,
Krawiec & Bhanu, 2007, Olague & Trujillo, 2011],
Learning game strategies [Jaskowski et al., 2008] .
See [Poli et al., 2008] for an extensive review of GP applications.
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Criteria for assessing the quality of GP-evolved solutions

Criteria for assessing GP algorithms:
success rate (percentage of evolutionary runs ended with success)
time-to-success (can be ∞)
error of the best-of-run individual

Criteria for assessing programs obtained with GP:
error rate (percentage of tests passed)
program size (number of instructions)
execution time
transparency (readability)
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GP Benchmarks

A community-wide initiative to set assessment standards in GP.

http://gpbenchmarks.org/

Symbolic Regression

Tower [Vladislavleva et al., 2009] ...

Boolean Functions

N-Multiplexer , N-Majority, N-Parity [Koza, 1992b]

Generalised Boolean Circuits [Harding et al., 2010, Yu, 2001]

Digital Adder [Walker et al., 2009]

Order [Durrett et al., 2011]

Digital Multiplier [Walker et al., 2009]

Majority [Durrett et al., 2011]

Classification

mRNA Motif Classification [Langdon et al., 2009]

DNA Motif Discovery [Langdon et al., 2010]

Intrusion Detection [Hansen et al., 2007]

Protein Classification [Langdon & Banzhaf, 2008]

Intertwined Spirals [Koza, 1992b]
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... and more ....

Predictive Modelling

Mackey-Glass Chaotic Time Series [Langdon & Banzhaf, 2005]

Financial Trading [Dempsey et al., 2006]

Sunspot Prediction [Koza, 1992b]

GeneChip Probe Performance [Langdon & Harrison, 2008]

Prime Number Prediction [Walker & Miller, 2007]

Drug Bioavailability [Silva & Vanneschi, 2010]

Protein Structure Classification [Widera et al., 2010]

Time Series Forecasting [Wagner et al., 2007]

Path-finding and Planning

Physical Travelling Salesman [Lucas, 2012b]

Artificial Ant [Koza, 1992b]

Lawnmower [Koza, 1994]

Tartarus Problem [Cuccu & Gomez, 2011]

Maximum Overhang [Paterson et al., 2008]

Circuit Design [McConaghy, 2011]

Control Systems

Chaotic Dynamic Systems Control [Lones et al., 2010]

Pole Balancing [Nicolau et al., 2010]

Truck Control [Koza, 1992a]Assessment of GP techniques 120



... and more ....

Game-Playing

TORCS Car Racing [torcs, 2012]

Ms PacMan [Galván-López et al., 2010]

Othello [Lucas, 2012a]

Chessboard Evaluation [Sipper, 2011]

Backgammon [Sipper, 2011]

Mario [Togelius et al., 2009]

NP-Complete Puzzles [Kendall et al., 2008]

Robocode [Sipper, 2011]

Rush Hour [Sipper, 2011]

Checkers [Sipper, 2011]

Freecell [Sipper, 2011]

Dynamic Optimisation

Dynamic Symbolic Regression [O’Neill et al., 2008]

Dynamic Scheduling [Jakobović & Budin, 2006]

Traditional Programming

Sorting [Kinnear, Jr., 1993a]
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The fitness bottleneck problem

Fitness bottleneck problem:
The complex effects(1) of program execution on multiple examples(2) are
combined into one scalar value (fitness).

Consequences:
Loss of information.
Compensation of performance on particular tests (examples).
Search algorithm cannot reverse-engineer the compressed information.

Why do we stick to this design? There are no principal reasons to maintain
the bottleneck.

(2) motivates semantic GP
(1) motivates behavioral evaluation
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Program semantics in GP

Program semantics = the vector of outputs produced by a program for the
training examples (a.k.a. sampling semantics).

Program p:
xi p(xi )
-0.5 0.5
1.0 2.0
1.5 4.5
2.0 8.0

semantics(p)=[0.5, 2.0, 4.5, 8.0]

Can been used for:
designing initialization operators,
diversity maintenance,
designing search operators.
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Key observation for semantics GP

The fitness functions used in GP are usually metrics, like:
Hamming distance: |{p(xi ) 6= yi}|
Manhattan distance: ∑i |p(xi )−yi |
Euclidean distance: ∑i |p(xi )−yi |2

Given n fitness cases, such a fitness function measures, in the n-dimensional
semantic space, the distance of program semantics from the point that defines
the desired output of program (yi s above, a.k.a. target, t in the next slides).

Thus, the semantic space is a metric space, and fitness landscape forms a
unimodal cone.
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Geometric implications of program semantics

Semantic space (t - the target, i.e., vector of desired outputs):

t

p1

p2

o

(Euclidean metric)

t
p1

p2

o

(City-block metric)

The (often difficult) program synthesis task becomes trivial in semantic
space (unimodal and convex fitness landscape).
Search operators with attractive guarantees can be designed.
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Geometric crossover

A geometric offspring o:

||o,p1||+ ||o,p2||= ||p1,p2|| (2)

Crossover operator that produces geometric offspring is geometric crossover
(a.k.a. topological crossover).
Produce offspring that inherit some aspects of behavior from the parents.

Offspring’s semantics is ‘in between’ the parents in the semantic space.

The segment connecting the parents embraces all semantics (and, indirectly,
programs) that are (semantically) as similar as possible to both parents.
The big question: can we design efficient search operators that are
geometric?
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Exact geometric operators: The idea

For some domains, exactly geometric effect can be attained by purely syntactic
manipulations [Moraglio et al., 2012].

A general method to derive exact semantic geometric crossovers and
mutations for different problem domains that search directly the semantic
space

T1 × T2
GXSD−→ T3yO

yO

yO

O1 × O2
GXD−→ O3

(3)

Top: semantic geometric crossover GXSD on genotypes (e.g., trees),
Bottom: Geometric crossover (GXD) operating on the phenotypes (i.e.,
output vectors) induced by the genotype-phenotype mapping O.
It holds that for any T1,T2 and T3= GXSD(T1,T2) then
O(T3) = GXD(O(T1),O(T2)).
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For boolean problems

Definition

Given two parent functions T1,T2 : {0,1}n→{0,1}, the recombination SGXB
returns the offspring boolean function T3= (T1∧TR)∨ (TR ∧T2) where TR
is a randomly generated boolean function.

Theorem
SGXB is a semantic geometric crossover for the space of boolean functions with
fitness function based on Hamming distance, for any training set and any
boolean problem.

Semantic GP 129



Example

Left: Semantic Crossover scheme for Boolean Functions;
Centre: Example of parents (T1 and T2) and random mask (TR);
Right: Offspring (T3) obtained by substituting T1, T2 and TR in the
crossover scheme and simplifying.
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For real-valued programs

Definition
Given two parent functions T1,T2 : Rn→ R, the recombinations SGXE and
SGXM return the real function T3= (T1 ·TR)+((1−TR) ·T2) where TR is a
random real constant in [0,1] (SGXE), or a random real function with codomain
[0,1] (SGMX).

Theorem
SGXE and SGXM are semantic geometric crossovers for the space of real
functions with fitness function based on Euclidean and Manhattan distances,
respectively, for any training set and any real problem.
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Experimental results: Boolean problems

GP: conventional GP, SSHC: semantic stochastic hill climber, SGP: semantic geometric GP
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Experimental results: real-valued programs

GP: conventional GP, SSHC: semantic stochastic hill climber, SGP: semantic geometric GP
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Conclusions:

Semantic of a GP program is a means for getting better insight into its
properties.
‘Semantic setting’ implies certain properties of the fitness landscape
(convexity, unimodality).
Search operators (approximate or exact) can be designed that exploit such
properties.
Semantic GP an be seen as ‘multiobjectivization’ of a problem.
The challenge: offspring size.

New results:
Runtime analysis for GSGP,
Bounds on fitness improvement/deterioration in GSGP (in review)

Work in progress:
Exploitation of semantic properties for problem decomposition (module
detection).
Other semantic properties worth considering, e.g., equidistance.
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Behavioral GP and search drivers
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Behavioral GP

Takes semantic GP even further
The rationale: The final outcomes of program execution reveal only
fraction of the actual program’s activity.
More detailed information can be obtained by tracing the entire program
execution.
This allows detecting and reuse of potentially useful program components.
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Example: Calculating the median

Two stages required:
Sort the array
Locate the central element.

Most nontrivial tasks require such
stage-wise problem decomposition.
The sorted list is a desired
intermediate computation state.
Human programmers can define
such states a priori.
Can we determine such states in
advance?
Can we help evolution in detecting
and promoting the desired
intermediate computation states?

Input: list

Central(list)

Output: 
median(list)

Sort(list) 
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Standard GP
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Standard GP
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Program error
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Pattern-guided GP

Training set

f

e

...
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Program
input

Desired
output

Program error

x y

Actual
program
output

p(x)

s1(x) s2(x)

ML classifier
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Classifier error
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Program execution

Program
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Black: Conventional GP
Green: PANGEA [Krawiec & Swan, 2013]
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Example (nominal domain, tree-based GP)
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Behavioral GP [Krawiec & O’Reilly, 2014]

Archive of 
subprograms Objective1:

program
error

Population

Selection

Mutation

Fitness 
evaluation

Crossover

Archive-
based 

mutation Objective2
Objective2

Objective2

Key ingredients:
Multiobjective evaluation and selection
Archiving of promising subprograms,
Mutation operator supplied by subprograms from the archive.
Immense improvements of performance [Krawiec & O’Reilly, 2014].
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Birds-eye view on program synthesis

“Dimensions in program synthesis”[Gulwani, 2010b], an overview of:
applications,
problems,
solution spaces, and
approaches

to program synthesis (as a whole, not only GP).

In particular, identifies new application areas of potential interest also for GP.
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Applications: Discovery of new algorithms

In particular:
Bitvector algorithms

These algorithms

(...) typically describe some plausible yet unusual operation on
integers or bit strings that could easily be programmed using either a
longish fixed sequence of machine instructions or a loop, but the same
thing can be done much more cleverly using just four or three or two
carefully chosen instructions whose interactions are not at all obvious
until explained or fathomed” Hackers Delight[Warren, 2002]

Others:

mutual exclusion algorithms, i.e., algorithms that guarantee mutually
exclusive access to critical sections

Birds-eye view on program synthesis 145



Applications: Synthesis of program inverses

Problem formulation: given a program p : I → O that implements an injection,
synthesize a program p

′
: O→ I .

Common design pattern in software engineering:
compression/decompression,
encryption/decryption,
serialization/deserialization,
insert/delete operations on data structures,
transactional memory rollback,

What is possible here?
The approach by [Srivastava et al., 2010] can synthesize inverses for
compressors (e.g., LZ77), packers (e.g., UUEncode), and arithmetic
transformers (e.g., image rotations).
Length of inverse programs: 5 .. 20 lines of code, synthesized within a
minute.
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Applications: Program understanding

Examples:
explaining a complicated program written in a low-level language in terms
of a high-level language
malware deobfuscation
maintenance of poorly documented software.
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Applications: End user programming

Many end-users need some form of ’programmatic automation’ of certain tasks,
like commodity traders, graphic designers, chemists, human resource managers,
finance pros, ...

These users typically lack the technical skills to program from scratch.

General Purpose Programming Assistance
Synthesis can be used to find tricky/mundane implementation details after
human insight has been expressed in the form of a partial program [65]
Automated Debugging

See also: Flash fill [Gulwani et al., 2012]
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Alternative take on the Curry-Howard correspondence

Motivation: types reveal the underlying semantics [Zoltan and Swan, 2014]
Other formulation: to prove a theorem, a type must be constructed, and
and a value of that type has to be found.
An interesting related observation: For many types, there are no values.

Example: given two unknown types a and b, there is in general no function
a→ b (function type a→ b).
Only when some assumptions about a and b are made, such a function can
be constructed (and thus the associated type a→ b does exist).
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Types reveal a lot about functions

Wadler, 1989:
Write down the definition of a polymorphic function on a piece of
paper. Tell me its type, but be careful not to let me see the function’s
definition. I will tell you a theorem that the function satisfies
[Wadler, 1989].

Example:

f : List[T ]→ N

implies that f has to be a function of list length.

See: Theorems for free [Wadler, 1989]
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Types reveal a lot about functions

Wadler, 1989:
Write down the definition of a polymorphic function on a piece of
paper. Tell me its type, but be careful not to let me see the function’s
definition. I will tell you a theorem that the function satisfies
[Wadler, 1989].

Example:

f : List[T ]→ N

implies that f has to be a function of list length.

See: Theorems for free [Wadler, 1989]
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Types reveal a lot about functions

Wadler, 1989:
Write down the definition of a polymorphic function on a piece of
paper. Tell me its type, but be careful not to let me see the function’s
definition. I will tell you a theorem that the function satisfies
[Wadler, 1989].

Example:

f : List[T ]→ N

implies that f has to be a function of list length.

See: Theorems for free [Wadler, 1989]
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Another example

f : List[T ]→List[T ]

From this follows, that for all types T and T ′ and every total function
a : T → T ′,

a∗ ◦ fT = fT ′ ◦a∗

where a∗ is a ’map a′, and fT is an instance of f for type T .

In other words, it is irrelevant whether we
first apply a to every element of the list and then apply fT to the resulting
list,
or the reverse: first apply fT to the list and then apply a to every element
of the resulting list.

Examples:
f = reverse, a= asciiCode

f = tail , a= inc
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Related results (selected)

The Coq proof assistant
Computer-checked proof of the four-color theorem

Formal verification of some commercial software (Coq)
Certified programs

For more, see: [Wadler, 2014]

The role of types 155



Case studies

Case studies 156



Case study 1: Evolution of temperature models

Based on:
Karolina Stanisławska, Krzysztof Krawiec, Zbigniew W. Kundzewicz: Modeling
Global Temperature Changes using Genetic Programming – A Case Study
(2012)

Joint work with:
Institute of Computing Science, Poznan University of Technology, Poznan,
Poland
Institute for Agricultural and Forest Environment, Polish Academy of
Sciences, Poznan, Poland and Potsdam Institute for Climate Impact
Research, Potsdam, Germany

Link to slides
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Case study 2: Evolution of features for object detection in
aerial imagery

Based on:
Krzysztof Krawiec, Bartosz Kukawka and Tomasz Maciejewski, Evolving
cascades of voting feature detectors for vehicle detection in satellite imagery. In
IEEE Congress on Evolutionary Computation (CEC 2010). Barcelona, IEEE
Press, pages 2392-2399.

Link to slides
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Case study 3: Evolution of detectors of anatomical
structures

Based on:
Krzysztof Krawiec, Genetic Programming with Alternative Search Drivers for
Detection of Retinal Blood Vessels. In EvoApps’15, Copenhagen, Denmark,
2015 (to appear).

Link to slides
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Case study 4: Evolution of algebraic terms

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

tA(x, y, z) =

(
x if x 6= y

z if x = y
m(x, x, y) = m(y, x, x) = y

a) b) c)

Ternary domain: inputs and outputs from {0,1,2}.
Only one binary instruction, defining the underlying algebra (a).
The discriminator term task(s): synthesize an expression that accepts three
inputs x ,y ,z and is semantically equivalent to the one shown in (b).

33 = 27 fitness cases (tests).

The Malcev term tasks(s): evolve a ternary term that satisfies (c)
Specifies program output only for some combinations of inputs: the desired
value for m(x ,y ,z), where x ,y , and z are all distinct, is not determined.
Only 15 fitness cases (tests)

[Spector et al., 2008] evolved the smallest terms to date, previously
unknown to mathematicians.
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Case study 5: Evolution of job acceptance conditions

Overall idea:
Take an exact search algorithm (e.g., branch-and-bound, B&B)
The actual efficiency of B&B depends on how it prioritizes the search, i.e.,
which search directions/nodes are visited first.
Use GP to evolve a heuristic function that captures the properties of the
specific problem instance and prefers the states that are likely to end up in
Successfully applied in job shop scheduling [Nguyen et al., 2015]
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Software packages

Evolutionary Computation in Java (George Mason University, DC)
Generic software framework for EA, well-prepared to work with GP
cs.gmu.edu/~eclab/projects/ecj/

EpochX (University of Kent, UK), also in Java
http://www.epochx.org/

DisciplusTM (RML Technologies)
http://www.rmltech.com/

FlexGP (CSAIL, MIT), Java
http://flexgp.github.io/gp-learners/

FUEL + ScaPS (PUT), Scala
https://github.com/kkrawiec/fuel
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ECJ

ECJ, Evolutionary Computation in Java,
http://cs.gmu.edu/~eclab/projects/ecj/

Probably the most popular freely available framework for EC, with a strong
support for GP
Licensed under Academic Free License, version 3.0
As of Jan 2015: version 22.
Many other libraries integrate with ECJ.
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Selected ECJ features

GUI with charting
Platform-independent
checkpointing and logging
Hierarchical parameter files
Multithreading
Mersenne Twister Random Number
Generators (compare to: http://
www.alife.co.uk/nonrandom/)
Abstractions for implementing a
variety of EC forms.
Prepared to work in a distributed
environment (including so-called
island model)

GP Tree Representations
Set-based Strongly-Typed Genetic
Programming
Ephemeral Random Constants
Automatically-Defined Functions
and Automatically Defined Macros
Multiple tree forests
Six tree-creation algorithms
Extensive set of GP breeding
operators
Grammatical Encoding
Eight pre-done GP application
problem domains (ant, regression,
multiplexer, lawnmower, parity,
two-box, edge, serengeti)
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EpochX

EpochX (University of Kent, UK), also in Java
http://www.epochx.org/

Ready-to-run examples:
http://www.epochx.org/quickstart-guide.php

Examples, including the Artificial Ant benchmark:
http://www.epochx.org/guide-models.php

Has been used to evolve programs with loops [Castle & Johnson, 2012]
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GP in R

A package in R (The R Project for Statistical Computing) that facilitates
symbolic regression and more.
Relies on the ‘natural reflection’ in R (R is an interpreted language)

http://cran.r-project.org/web/packages/gpr/index.html
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GP in Mathematica

Exemplary implementation of GP framework in Mathematica
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GP in Scala

A compact framework for
evolutionary computation in Scala
Composed of two libraries: Scevo
and Scaps
Component assembly via mixins
Interoperable with
Links:

ScEvo
ScaPS
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Recommended reading

Koza, J. R. Genetic Programming: On the Programming of Computers by
Means of Natural Selection MIT Press, 1992
A Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4)
http://www.gp-field-guide.org.uk/
Langdon, W. B. Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Kluwer, 1998
Langdon, W. B. & Poli, R. Foundations of Genetic Programming
Springer-Verlag, 2002
Riolo, R. L.; Soule, T. & Worzel, B. (ed.) Genetic Programming Theory
and Practice V Springer, 2007
Riolo, R.; McConaghy, T. & Vladislavleva, E. (ed.) Genetic Programming
Theory and Practice VIII Springer, 2010
See: http://www.cs.bham.ac.uk/~wbl/biblio/
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Recommended reading

A Field Guide to Genetic Programming
http://www.gp-field-guide.org.uk/ [Poli et al., 2008]

(This presentation uses some figures from the Field Guide)
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GP Bibliography and GP homepage

The online GP bilbiography www.cs.bham.ac.uk/~wbl/biblio/

The genetic programming ‘home page’
http://www.genetic-programming.com/
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Prerequisites

Java VM (JRE), ECJ, command line

Instructions:
Download ecj.zip from cs.gmu.edu/~eclab/projects/ecj/

Unzip it
Open terminal
Applications are available in the directory/package: ecj/ec/app/
Warning: Some functionalities (e.g., GUI with charting) may require
additional libraries. See documentation.
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Exercise 1: Mona Lisa (non-GP)

The task:
Could you paint a replica of the Mona Lisa using only 50 semi
transparent polygons? (source link)

Note: Contrary to page content, this is not GP, just EA: solutions are vectors of
coordinates and colors of polygons (inspect the *param file)

Configuration file:

ec/app/mona/mona.params

Launching:

java -cp ../../../jar/ecj.22.jar ec.Evolve -file mona.params
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Exercise 2: Synthesis of Boolean functions

Synthesis of Boolean functions
Running on the multiplexer problem:

java -cp ../../../jar/ecj.22.jar ec.Evolve -file 6.params

Have a look at out.stat
See the impact of initial population: seed.0 = <integer>
Other problems: parity
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Exercise 3: Symbolic regression

Symbolic regression

java -cp ../../../jar/ecj.22.jar ec.Evolve -file noerc.params

See the effect of:
increasing population size,
increasing the number of generations,
using multiple threads for evaluation (parameter ‘evalthreads’)
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Exercise 4: Evolving agent’s controller

Artificial ant: An agent (ant) operates in a discrete environment, collecting
food pellets.
See exemplary board

java -cp ../../../jar/ecj.22.jar ec.Evolve -file progn4.params

Note:
delayed rewards,
agent can be assessed only via taking part in entire episodes,
relations to reinforcement learning.
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Ant Wars

A two-person, zero-sum, partially
observable, turn-based game used
as a bencchmark in GP.
Our GP-evolved player, BriliAnt,
won the AntWars contest
[Jaskowski et al., 2008].
BriliAnt exhibits a surprisingly rich
repertoire of evolved behaviors:
efficient diagonal board
exploration, counting. Can even
commit suicide when that pays off!
Play with briliant online at
http://www.cs.put.poznan.pl/
kkrawiec/antwars/

Demos 181

http://www.cs.put.poznan.pl/kkrawiec/antwars/
http://www.cs.put.poznan.pl/kkrawiec/antwars/


PicBreeder

Interactive evolution of
GP-generated patterns
Involves CPPN, Compositional
Pattern Producing Network, a kind
of GP program that capable of
generating complex patterns in
arbitrarily dimensional spaces.
CPPN used also in NeuroEvolution
of Augmented Topologies (NEAT),
an algorithm evolution of neural
networks with indirect encoding.
See http://picbreeder.org/
and http://endlessforms.com/
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Recent developments in program synthesis

Growing importance of domain-specific languages
Moving to higher-level concepts shrinks the search space and improves
scalability

Programming by example
Flash fill in MS Excel [Harris & Gulwani, 2011] (users SAT solvers to solve
synthesis tasks)
https://www.youtube.com/watch?v=qHkgJFJR5cM
https://www.youtube.com/watch?v=_mkh5LrkcRI

End user programming
New ways of specifying user’s intent
Interactive programming

Programming using natural language
Test-driven development
Feedback generation
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Synthesizing fully-fledged programs

Recursive sorting algorithms of n logn complexity using object-oriented GP
[Kinnear, Jr., 1993b, Ryan & Nicolau, 2003, Ciesielski & Li, 2004,
Spector et al., 2005, Agapitos & Lucas, 2006]
Solutions to: list reversal, cartesian product, intersecting two lists, string
comparison, sorting a list, locating a substring, binary multiplication,
simplifying a polynomial, transposing a matrix, permutation generation,
path finding, binary addition, and more [Olsson, 1998]
Loops: John Koza’s patent: [Koza et al., 2003a]
Synthesizing loop invariants [Cardamone et al., 2011]
Recursive programs (factorial, fibonaccci, etc.)
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Topics not covered in this course

Schemata theorem for GP
Exact formula for the expected number of individuals sampling a schema a
the next generation [Poli, 2001]
Plus later work for other types of crossover.

Theory on bloat
Theory on semantic GP
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Assignment: Instructions

I. Read one of the papers from the following list, focusing on the following
issues:

What is the question addressed in the paper?
What data or evidence was collected by the author(s) to address the
question?
What did the data or evidence show?

II. Prepare a report (in English (preferably) or Polish) containing:
1 Your first and last name
2 Authors and the title of the paper
3 A few sentences about the strong (most interesting, intriguing) elements of

the proposed approach
4 A few sentences about the weak points
5 Your individual thoughts/observations concerning the paper.
6 How could this be employed to solve some problems in your research area.

Email the report (plain text, no attachments!) to krawiec at cs.put.poznan.pl
with “[SD]” tag in the email subject by April 30th.
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Assignment: Instructions

There are two groups of papers to pick from:
1 Papers concerning program synthesis, in particular GP
2 Papers related to GP

You may choose a paper from either of these groups.
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Assignment
1. Reading in program synthesis
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Paper #1: Theorems for free!

Wadler, P. (1989). Theorems for free!
In Proceedings of the Fourth International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’89 (pp. 347–359).
New York, NY, USA: ACM

Abstract: From the type of a polymorphic function we can derive a theorem that it satisfies. Every
function of the same type satisfies the same theorem. This provides a free source of useful theorems,
courtesy of Reynolds’ abstraction theorem for the polymorphic lambda calculus.

http://www.mpi-sws.org/~dreyer/tor/papers/wadler.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9875
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Paper #2: Using GP for scientific discovery

Schmidt, M. & Lipson, H. (2009). Distilling free-form natural laws from
experimental data.
Science, 324(5923), 81–85

Abstract: For centuries, scientists have attempted to identify and document analytical laws that
underlie physical phenomena in nature. Despite the prevalence of computing power, the process of
finding natural laws and their corresponding equations has resisted automation. A key challenge to
finding analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated
as laws found for simpler systems were used to bootstrap explanations for more complex systems,
gradually uncovering the “alphabet” used to describe those systems.

http://www.sciencemag.org/content/324/5923/81.short
(plus accompanying material)
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Paper #3: GP for fixing software bugs

Weimer, W., Forrest, S., Le Goues, C., & Nguyen, T. (2010). Automatic
program repair with evolutionary computation.
Communications of the ACM, 53(5), 109–116

Abstract: There are many methods for detecting and mitigating software errors but few generic
methods for automatically repairing errors once they are discovered. This paper highlights recent work
combining program analysis methods with evolutionary computation to automatically repair bugs in
off-the-shelf legacy C programs. The method takes as input the buggy C source code, a failed test case
that demonstrates the bug, and a small number of other test cases that encode the required
functionality of the program. The repair procedure does not rely on formal specifications, making it
applicable to a wide range of extant software for which formal specifications rarely exist.

http://dl.acm.org/ft_gateway.cfm?id=1735249&type=html
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Paper #4: Behavioral GP

Krawiec, K. & O’Reilly, U.-M. (2014). Behavioral programming: a broader and more detailed take on
semantic GP.
In C. Igel, D. V. Arnold, C. Gagne, E. Popovici, A. Auger, J. Bacardit, D. Brockhoff, S. Cagnoni, K.
Deb, B. Doerr, J. Foster, T. Glasmachers, E. Hart, M. I. Heywood, H. Iba, C. Jacob, T. Jansen, Y. Jin,
M. Kessentini, J. D. Knowles, W. B. Langdon, P. Larranaga, S. Luke, G. Luque, J. A. W. McCall,
M. A. Montes de Oca, A. Motsinger-Reif, Y. S. Ong, M. Palmer, K. E. Parsopoulos, G. Raidl, S. Risi,
G. Ruhe, T. Schaul, T. Schmickl, B. Sendhoff, K. O. Stanley, T. Stuetzle, D. Thierens, J. Togelius, C.
Witt, & C. Zarges (Eds.), GECCO ’14: Proceedings of the 2014 conference on Genetic and evolutionary
computation (pp. 935–942). Vancouver, BC, Canada: ACM

Abstract:In evolutionary computation, the fitness of a candidate solution conveys sparse feedback. Yet
in many cases, candidate solutions can potentially yield more information. In genetic programming
(GP), one can easily examine program behavior on particular fitness cases or at intermediate execution
states. However, how to exploit it to effectively guide the search remains unclear. In this study we
apply machine learning algorithms to features describing the intermediate behavior of the executed
program. We then drive the standard evolutionary search with additional objectives reflecting this
intermediate behavior. The machine learning functions independent of task-specific knowledge and
discovers potentially useful components of solutions (subprograms), which we preserve in an archive
and use as building blocks when composing new candidate solutions. In an experimental assessment on
a suite of benchmarks, the proposed approach proves more capable of finding optimal and/or
well-performing solutions than control methods.

http://dl.acm.org/citation.cfm?id=2598288
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Paper #5: Autoconstructive GP

Spector, L. (2001). Autoconstructive evolution: Push, pushGP, and pushpop.
In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S.
Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001) (pp.
137–146). San Francisco, California, USA: Morgan Kaufmann

Abstract: This paper is a preliminary report on autoconstructive evolution, a framework for evolutionary
computation in which the machinery of reproduction and diversification (and thereby the machinery of
evolution) evolves within the individuals of an evolving population of problem solvers. Autoconstructive
evolution is illustrated with Pushpop, an evolving population of programs expressed in the Push
programming language. The Push programming language can also be used in a more traditional genetic
programming framework and may have unique benefits when so employed; the PushGP system, which
uses traditional genetic programming techniques to evolve Push programs, is also described.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.9569
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Paper #6: Geometric semantic GP

Moraglio, A., Krawiec, K., & Johnson, C. G. (2012). Geometric semantic
genetic programming.
In C. A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, & M. Pavone
(Eds.), Parallel Problem Solving from Nature, PPSN XII (part 1), volume 7491
of Lecture Notes in Computer Science (pp. 21–31). Taormina, Italy: Springer

Abstract: Traditional Genetic Programming (GP) searches the space of functions/programs by using
search operators that manipulate their syntactic representation, regardless of their actual
semantics/behaviour. Recently, semantically aware search operators have been shown to outperform
purely syntactic operators. In this work, using a formal geometric view on search operators and
representations, we bring the semantic approach to its extreme consequences and introduce a novel
form of GP — Geometric Semantic GP (GSGP) — that searches directly the space of the underlying
semantics of the programs. This perspective provides new insights on the relation between program
syntax and semantics, search operators and fitness landscape, and allows for principled formal design of
semantic search operators for different classes of problems. We derive specific forms of GSGP for a
number of classic GP domains and experimentally demonstrate their superiority to conventional
operators.

http://dl.acm.org/citation.cfm?id=2415038
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Paper #7: Deductive approach to program synthesis

Manna, Z. & Waldinger, R. (1980). A deductive approach to program synthesis.
ACM Trans. Program. Lang. Syst., 2(1), 90–121

https://pdfs.semanticscholar.org/ceb3/
163c56465fda5fef591d0ff0a6c7f434a04d.pdf
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Paper #8: NEAT = GP + Neural Networks

Stanley, K. O. (2007). Compositional pattern producing networks: A novel
abstraction of development.
Genetic Programming and Evolvable Machines, 8(2), 131–162.
Special issue on developmental systems

Abstract: Natural DNA can encode complexity on an enormous scale. Researchers are attempting to
achieve the same representational efficiency in computers by implementing developmental encodings,
i.e. encodings that map the genotype to the phenotype through a process of growth from a small
starting point to a mature form. A major challenge in in this effort is to find the right level of
abstraction of biological development to capture its essential properties without introducing
unnecessary inefficiencies. In this paper, a novel abstraction of natural development, called
Compositional Pattern Producing Networks (CPPNs), is proposed. Unlike currently accepted
abstractions such as iterative rewrite systems and cellular growth simulations, CPPNs map to the
phenotype without local interaction, that is, each individual component of the phenotype is determined
independently of every other component. Results produced with CPPNs through interactive evolution
of two-dimensional images show that such an encoding can nevertheless produce structural motifs often
attributed to more conventional developmental abstractions, suggesting that local interaction may not
be essential to the desirable properties of natural encoding in the way that is usually assumed.

http://link.springer.com/article/10.1007%2Fs10710-007-9028-8
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Paper #9: EC for modeling modularity in biological
networks

Kashtan, N. & Alon, U. (2005). Spontaneous evolution of modularity and
network motifs.
Proceedings of the National Academy of Sciences, 102(39), 13773–13778

Abstract: Biological networks have an inherent simplicity: they are modular with a design that can be
separated into units that perform almost independently. Furthermore, they show reuse of recurring
patterns termed network motifs. Little is known about the evolutionary origin of these properties.
Current models of biological evolution typically produce networks that are highly nonmodular and lack
understandable motifs. Here, we suggest a possible explanation for the origin of modularity and network
motifs in biology. We use standard evolutionary algorithms to evolve networks. A key feature in this
study is evolution under an environment (evolutionary goal) that changes in a modular fashion. That is,
we repeatedly switch between several goals, each made of a different combination of subgoals. We find
that such modularly varying goals lead to the spontaneous evolution of modular network structure and
network motifs. The resulting networks rapidly evolve to satisfy each of the different goals. Such
switching between related goals may represent biological evolution in a changing environment that
requires different combinations of a set of basic biological functions. The present study may shed light
on the evolutionary forces that promote structural simplicity in biological networks and offers ways to
improve the evolutionary design of engineered systems.

http://www.pnas.org/content/102/39/13773.abstract
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