
Program Synthesis

Krzysztof Krawiec

Laboratory of Intelligent Decision Support Systems
Institute of Computing Science, Poznan University of Technology, Poznań, Poland

March 11, 2016

1

http://www.cs.put.poznan.pl/kkrawiec/

Introduction

Introduction 2

Outline and objectives

Objective: Provide state-of-the-art perspective on program synthesis, with
emphasis on genetic programming.

Outline:
1 Program synthesis: problem definition, paradigms, challenges
2 Evolutionary Computation 101
3 Genetic Programming: fundamentals, program representations, search

operators, and more
4 Recent developments in GP: semantic and behavioral GP
5 In between: applications, case studies and success stories

Introduction 3

Detailed table of contents
1 Introduction
2 What is program synthesis about?
3 Evolutionary Computation 101
4 What is genetic programming?
5 Summary of our first glimpse at GP
6 Exemplary GP run using ECJ
7 A more detailed view on GP
8 Challenges for GP
9 Variants of GP
10 Applications of GP
11 Assessment of GP techniques
12 Semantic GP
13 Behavioral GP and search drivers
14 Birds-eye view on program synthesis
15 The role of types
16 Case studies
17 Software packages
18 Additional resources
19 Classes/exercises
20 Demos
21 Recent developments in program synthesis
22 Assignment

1. Reading in program synthesis
2. Reading related to general evolutionary computation

23 Bibliography
Introduction 4

Course organization

Too large field to be covered in a short course
A number of relatively short, focused sections
Questions and interactions welcome
Clickable hyperlinks in blue or red

if(more than 10% of people dozing off in the audience)
then goto Case study

Introduction 5

Course organization

Too large field to be covered in a short course
A number of relatively short, focused sections
Questions and interactions welcome
Clickable hyperlinks in blue or red

if(more than 10% of people dozing off in the audience)
then goto Case study

Introduction 6

Credits

Parts of the work presented here resulted from my cooperation with:
Alberto Moraglio, University of Exeter
Jerry Swan, University of Stirling
Una-May O’Reilly, MIT
Armando Solar-Lezama, MIT
Wojciech Jaśkowski, Poznan University of Technology
Bartosz Wieloch, Poznan University of Technology
Tomasz Pawlak, Poznan University of Technology
Paweł Liskowski, Poznan University of Technology
Iwo Błądek, Poznan University of Technology

Introduction 7

What is program synthesis about?

What is program synthesis about? 8

Program synthesis (PS) task (Programming task)

Given:
a programming language, i.e., implicitly a set of programs P
a correctness predicate Correct : P → B,

find a program p ∈ P such that:

Correct(p)

Note:
Follows [Manna & Waldinger, 1980], yet earlier attempts present in AI
In this purest form, program synthesis is a search problem
Not to be confused with (an older term of) automatic programming (e.g.,
translating higher-level source code into machine code)
Essential detail: how to define Correct

What is program synthesis about? 9

What is a program?

Several mutually nonexclusive interpretations:
Source code
Abstract syntax tree
Discrete, finite, executable structure

[Turner & Miller, Neutral Genetic Drift: An Investigation using Cartesian Genetic Programming, 2016]

What is program synthesis about? 10

What does it mean that a program is correct?

Programs are not any formal objects: they are functions I → O

We consider a program correct if it behaves as expected, i.e., produces the
desired output given input.

Possible definitions of Correct:
A program that passes all tests (a finite number thereof)
A program that is provably correct.

i.e., conforms certain formal specification.

A program mandated as correct by an oracle Correct.
User’s intent.

What is program synthesis about? 11

What does it mean that a program is correct?

Programs are not any formal objects: they are functions I → O

We consider a program correct if it behaves as expected, i.e., produces the
desired output given input.

Possible definitions of Correct:
A program that passes all tests (a finite number thereof)
A program that is provably correct.

i.e., conforms certain formal specification.

A program mandated as correct by an oracle Correct.
User’s intent.

What is program synthesis about? 12

Practictioner’s perspective

S. Gulvani (Microsoft Research), Dimensions in Program Synthesis
[Gulwani, 2010a]:

1 User intent: logical specifications, natural language, input-output examples
(tests), traces, programs

2 Search space: programs, grammars, logics
3 Search technique: brute-force search, version space algebra, machine

learning (probabilistic inference, genetic programming), logical reasoning
based techniques

What is program synthesis about? 13

Importance of user intent

If a user is not capable of producing formal specification, how should we elicit if
from him?

Or: “How to program when you cannot” – The motto of software
engineering according to E. Dijkstra :) [Dijkstra, 1988]

Non-orthodox ways of specifying user intent [Gulwani, 2010b]:
demonstrations,
natural language,
partial or inefficient programs [Gulwani, 2010b]

Alternative phrasings of the PS task:
Program synthesis is the task of discovering an executable program from
user intent expressed in the form of some constraints [Gulwani, 2010b].
Program synthesis is the automatic translation of a specification into a
program.

What is program synthesis about? 14

Ways to solve a programming task

State of the art: human programmer(s)
Slow, imperfect, unreliable, unsafe, ...
... yet getting better and more powerful (?)
More and more power delegated to computers, entailing growing
responsibility.

Dijkstra’s dream: human programmer, providing proofs of correctness
himself or using methods of formal verification

programs that are correct by construction [Dijkstra, nd]

Dijkstra’s nightmare: [automatic] program synthesis
Programming cannot be automated, and as such will be always
human-driven [Dijkstra, 1988]
Indeed: In the beginning, there is always human intent (user’s intent)
But: PS reached now further than Dijkstra probably dreamed (or rather
bad-dreamed)

What is program synthesis about? 15

Ways to solve a programming task

State of the art: human programmer(s)
Slow, imperfect, unreliable, unsafe, ...
... yet getting better and more powerful (?)
More and more power delegated to computers, entailing growing
responsibility.

Dijkstra’s dream: human programmer, providing proofs of correctness
himself or using methods of formal verification

programs that are correct by construction [Dijkstra, nd]

Dijkstra’s nightmare: [automatic] program synthesis
Programming cannot be automated, and as such will be always
human-driven [Dijkstra, 1988]
Indeed: In the beginning, there is always human intent (user’s intent)
But: PS reached now further than Dijkstra probably dreamed (or rather
bad-dreamed)

What is program synthesis about? 16

Ways to solve a programming task

State of the art: human programmer(s)
Slow, imperfect, unreliable, unsafe, ...
... yet getting better and more powerful (?)
More and more power delegated to computers, entailing growing
responsibility.

Dijkstra’s dream: human programmer, providing proofs of correctness
himself or using methods of formal verification

programs that are correct by construction [Dijkstra, nd]

Dijkstra’s nightmare: [automatic] program synthesis
Programming cannot be automated, and as such will be always
human-driven [Dijkstra, 1988]
Indeed: In the beginning, there is always human intent (user’s intent)
But: PS reached now further than Dijkstra probably dreamed (or rather
bad-dreamed)

What is program synthesis about? 17

Edsgar Wybe Dijkstra

Edsger Wybe Dijkstra, 1930–2002

www.cs.utexas.edu/∼EWD/What is program synthesis about? 18

http://www.cs.utexas.edu/~EWD/

On importance of correctness

Ariane-5 crash on June 4, 1996.
The culprit: conversion of 64-bit float

into a 16-bit int.

Other examples:
Bug in Intel Pentium processors
=⇒ $475 mln to replace
Bug in baggage handling system at
Denver airport =⇒ nine month
delay, $1.2 per day
Bug in radiation therapy device
=⇒ death of six patients

What is program synthesis about? 19

Related: Formal verification and model checking

Model checking = an automated technique that, given a finite-state model of a
system and a formal property, systematically checks whether this property holds
for (a given state in) that model [Baier & Katoen, 2008, p. 11]

Phases:
Modeling: building a model of a system of consideration, in some language

Typically some form of finite-state automaton

Running: application of model checker
When checking fails, it produces a counterexample

Analysis: analyze counterexample, refine the model, etc.

What is program synthesis about? 20

Specifying program correctness

Example of program specification [Manna & Waldinger, 1980]:

sqrt(n)⇐ find z such that integer(z) and z2 ≤ n ≤ (z+1)2

where integer(n) and 0≤ n

More generally:

f (a)⇐ find z such that R(a,z)
where P(a)

where:
a – program input
z – program output
P(a) – input condition (precondition, ’requires’)
R(a,z) – output condition (postcondition, ’ensures’)

What is program synthesis about? 21

Specifying program correctness

Example of program specification [Manna & Waldinger, 1980]:

sqrt(n)⇐ find z such that integer(z) and z2 ≤ n ≤ (z+1)2

where integer(n) and 0≤ n

More generally:

f (a)⇐ find z such that R(a,z)
where P(a)

where:
a – program input
z – program output
P(a) – input condition (precondition, ’requires’)
R(a,z) – output condition (postcondition, ’ensures’)

What is program synthesis about? 22

Specifying program correctness

Corresponding theorem to prove

∀a : P(a) =⇒ ∃z : R(a,z)

a – program input
z – program output
P(a) – input condition (precondition, ’requires’)
R(a,z) – output condition (postcondition, ’ensures’)

The proof must be constructive, i.e., must tell how to find z that satisfies the
output condition R(a,z).

What is program synthesis about? 23

Curry-Howard correspondence (isomorphism)

Haskell Curry (1900-1982), William Alvin Howard (1926-)
One-to-one correspondence between programs and logic, i.e., programs and
proofs, and types and propositions
In a nutshell:

Proofs in logic are programs in computer science.
Propositions in logic are types in computer science.

A program is a proof of the formula being the type of the program
The rules of logic are search operators in the space of proofs.
Prolog ‘embodies’ the CH correspondence.

What is program synthesis about? 24

Specifying correctness using examples (tests)

What is program synthesis about? 25

Recap: What is special about program synthesis?

We are talking about programs that generate programs.
Note: generate, not manipulate (like, e.g., compilers)
This is not metaprogramming – this term is already reserved for a more
technical purpose (e.g., Java program composes a shell script which is then
executed).

Programs are in a sense not self-contained. Their meaning is externalized,
i.e., dwells in the semantics of a given programming language.
Thus, what matters is program ‘behavior’, which can be captured by, e.g.,

some external formalism (like proof of correctness),
examples of input-output behavior.

What is program synthesis about? 26

Main directions in program synthesis

As outlined in [Manna & Waldinger, 1980]:
Exact1 approaches:

Deductive program synthesis
Inductive programming
Transformation of specification (rewriting systems)

Heuristic approaches (including genetic programming)

1Meaning: Either you get a correct program, or you don’t get anything.
What is program synthesis about? 27

Deductive program synthesis

Assumption: specification is complete
Program synthesis = theorem proving
Involves transformation rules, unification, resolution, and mathematical
induction (for recursion)

What is program synthesis about? 28

Inductive programming

Assumption: specification is incomplete
Primary representative: inductive logic programming (ILP)

Synthesis of programs in logic, primarily in Prolog
Nowadays considered part of machine learning, mainly preoccupied with
learning with relational data, knowledge discovery, data mining

What is program synthesis about? 29

Inductive logic programming: An example

Source: [Flach & Lavrac, 2000]

What is program synthesis about? 30

Inductive logic programming: An example

Exemplary hypothesis:

What is program synthesis about? 31

Anticipated benefits of program synthesis

Programs that are:
Provably correct, and thus

‘globally reusable’,
certifiable

Possibly also optimal with respect to non-functional requirements like
length, runtime, memory footprint, power consumption, etc.

Free of malicious insets
Cheap to produce

What is program synthesis about? 32

Challenges for formal approaches program synthesis

Size of the proof space
Limited effectiveness of theorem provers
Consequence: lack of scalability (depending on the paradigm, upper limit of
program length in the order of 20’s)

Limited premises for prioritizing the search
Which transformation rule should be applied at a given stage of
synthesis/proving process?

Requirement of formal specification may be problematic.
Programmers not always ready/willing to provide such2

end-users even less so (cf. end-user programming)
Describing the desired behaviors by means of examples can be more handy

May require domain-specific knowledge
Each domain ’has its own maths’ that encodes knowledge about that
domain;

“we can automate programming only when we can identify a
domain with such a well known body of knowledge, that existing
implementations are produced (or may be produced) in a routine
and obvious fashion” [Faitelson, 2010]

2This changing, albeit slowly: see, e.g., design by contract, a methodology of software
engineering.

What is program synthesis about? 33

Genetic programming

GP mitigates the challenges by:
Relying on heuristic search algorithms to search the vast space of
programs3,
Abandoning (usually) formal specification in favor of examples of correct
behavior (thus belongs to inductive programming),
Naturally embracing domain-specific languages,
Re-stating the program synthesis task as an optimization problem,

and thus: relaxing the concept of program correctness (!).
A partially incorrect program may be sometimes favored, for instance when
advantageous in terms of non-functional properties.

Founded on the metaheuristic of evolutionary algorithms.

3Heuristics are being used also in other approaches to program synthesis.
What is program synthesis about? 34

Evolutionary Computation 101

Evolutionary Computation 101 35

Evolutionary Computation (EC)

A branch of computational intelligence that deals with heuristic bio-inspired
global search algorithms with the following properties:

Operate on populations of candidate solutions
Candidate solutions are encoded as genotypes
Genotypes get decoded into phenotypes when evaluated by the fitness
function f being optimized.

Example: a candidate solution to a traveling salesperson problem is a
permutation of cities (genotype), while its phenotype is a specific path of
certain length.

Attempt to find an optimal solution (an ideal) p∗:
p∗ = argmax

p∈P
f (p)

(or conversely ‘argmin’), where P is the considered space (search space) of
candidate solutions (solutions for short).

Note: an optimization, not a search problem!

Evolutionary Computation 101 36

Generic evolutionary algorithm

Evolutionary Algorithm

Population P of individuals

Evaluation

Selection

Mutation and recombination

Initialization of population P

Solution/individual s

f(s)

Output: Best solution s+

Termination criteria

Fitness function f

Historically, one of meta-heuristics, along with tabu search, simulated annealing,
etc.

Evolutionary Computation 101 37

Features of EC

Generate-and-test approach
Iterative

coarse-grained: generational EA,
fine-grained: steady-state EA

Parallel global search
Not equivalent to parallel stochastic local search (SLS), particularly when
crossover present

Importance of crossover: a recombination operator that makes the
solutions exchange certain elements (variable values, features)

Without crossover, EC boils down parallel stochastic local search

Evolutionary Computation 101 38

Features of EC

‘Black-box’ optimization (f ′s dependency on the independent variables
does not have to be known or meet any criteria)
Capable of ‘discovering’ both the global and local structure of the search
space

See: big valley hypothesis: good solutions are similar

No guarantees of finding a solution whatsoever
Finding an optimum cannot be guaranteed, but in practice a well-performing
suboptimal solution is often satisfactory.

Variables do not have to be explicitly defined

Evolutionary Computation 101 39

Variants of evolutionary algorithms

Well rooted in EC:
Genetic algorithms (GA): discrete (binary) encoding
Evolutionary strategies (ES): real-valued encoding
Evolutionary programming (EP): not particularly popular nowadays, but
historically one of the first approaches to EC
Genetic Programming (GP)

Newer branches:
Estimation of distribution algorithms (EDA), generative and developmental
systems (GDS), differential evolution, learning classifier systems, ...
Not strictly EC: particle swarm optimization (PSO), ant colony
optimization (ACO),

Note:
EC = Evolutionary Computation, the name of the domain

Evolutionary Computation 101 40

Major events of EC

Genetic and Evolutionary Computation Conference (GECCO)
IEEE Congress on Evolutionary Computation (CEC)
EvoStar (Evo*)
Parallel Problem Solving from Nature (PPSN)

Some facts:
ACM SIGEVO group
IEEE Task Forces
Several dozens of thousands of publications (GP alone has almost 10,000)
EC considered one of the three major branches of Computational
Intelligence (Fuzzy Systems and Neural Nets being the other ones)

Evolutionary Computation 101 41

EAs are metaheuristics

Meta-heuristic = a generic algorithm template that can be adopted to a specific
problem class (meta-) and is able to generate solutions of good/acceptable
quality with limited computational resources (heuristic-)

Motivations:
hardness of most nontrivial search and optimization problems,
practical usefulness of good yet non-optimal solutions,

Example: a suboptimal solution (route) to a Traveling Salesperson Problem
(TSP) that is only 5% worse than the optimal one may be good enough,
given unpredictable factors that may interfere in the execution of that route.
Straining to achieve further (potentially miniscule) improvements may be
technically/economically unjustified.

Evolutionary Computation 101 42

Convergence to good solutions may take some time ...

Source: http://xkcd.com/720/

(Actually, some variants of EC maintain and manipulate infeasible solutions)

Evolutionary Computation 101 43

http://xkcd.com/720/

EAs is [getting] rigorous

A growing body of theoretical results: schemata theorems, runtime analysis,
first-hitting time proofs, performance bounds, fitness landscapes, ...
Of course, always conditioned on some assumptions (e.g., unimodality,
differentiability, ...)
Related milestones:

Schemata theorems: solutions’ components that occur in
higher-than-average fit individuals tend to dominate population.
No-free-lunch (NFL) theorems [Wolpert & Macready, 1997], sharpened NFL
theorems [Schumacher et al., 2001]
Elementary fitness landscapes [Whitley & Sutton, 2009]

Evolutionary Computation 101 44

Applications of EAs

Too numerous to cover (see, e.g., the Real-World-Application track of GECCO).
optimization of car chassis (BMW),
design of analog and digital circuits,
design of antennae (NASA),
feature selection in machine learning tasks,
optimization of wind turbine placement (General Electric),
designing spacecraft trajectories,
sensor networks,
and more.

EC’s strength: relative ease of adjusting to a specific problem: defining
domain-specific search operators and fitness function is typically sufficient.

Evolutionary Computation 101 45

What is genetic programming?

What is genetic programming? 46

Genetic programming

In a nutshell:
A variant of EA where the genotypes represent programs, i.e., entities
capable of reading in input data and producing some output data in
response to that input.
The candidate solutions in GP are being assembled from elementary
entities called instructions.
Most common program representation: expression trees.
Cardinality of search space large or infinite.

What is genetic programming? 47

Fitness function

EA solves optimization problems. Program synthesis is a search problem. How
to match them?

Fitness function f measures the similarity of the output produced by the
program to the desired output, given as a part of task statement.
The set of program inputs I , even if finite, is usually so large that running
each candidate solution on all possible inputs becomes intractable.
GP algorithms typically evaluate solutions on a sample I ′ ⊂ I , |I ′| � |I | of
possible inputs, and fitness is only an approximate estimate of solution
quality.
The task is given as a set of fitness cases, i.e., pairs (xi ,yi) ∈ I ×O, where
xi usually comprises one or more independent variables and yi is the output
variable.

What is genetic programming? 48

Fitness function: Example

City-block fitness function:

f (p) =−∑
i

||yi −p(xi)||, (1)

where
p(xi) is the output produced by program p for the input data xi ,
|| · || is a metric (a norm) in the output space O,
i iterates over all fitness cases.

What is genetic programming? 49

Genetic programming

Main evolution loop (‘vanilla GP’)

1: procedure GeneticProgramming(f ,I) . f - fitness function, I - instruction set
2: P ←{p← RandomProgram(I)} . Initialize population
3: repeat . Main loop over generations
4: for p ∈P do . Evaluation
5: p.f ← f (p) . p.f is a ‘field’ in program p that stores its fitness
6: end for
7: P ′← /0 . Next population
8: repeat . Breeding loop
9: p1←TournamentSelection(P) . First parent
10: p2←TournamentSelection(P) . Second parent
11: (o1,o2)← Crossover(p1,p2)
12: o1←Mutation(o1,I)
13: o2←Mutation(o2,I)
14: P ′←P ′ ∪{o1,o2}
15: until |P ′|= |P|
16: P ←P ′

17: until StoppingCondition(P)
18: return argmaxp∈P p.f
19: end procedure

What is genetic programming? 50

Search operators: Mutation

Mutation: replace a randomly selected subexpression with a new randomly
generated subexpression.

1: function Mutation(p,I)
2: repeat
3: s← Random node in p
4: s ′← RandomProgram(I)
5: p′← Replace the subtree rooted in s with s ′

6: until Depth(p′)< dmax . dmax is the tree depth limit
7: return p′

8: end function

Source: [Poli et al., 2008]
What is genetic programming? 51

Search operators: Crossover

Crossover: exchange of randomly selected subexpressions (subtree swapping
crossover).

1: function Crossover(p1,p2)
2: repeat
3: s1← Random node in p1
4: s2← Random node in p2
5: (p′1,p

′
2)← Swap subtrees rooted in s1 and s2

6: until Depth(p′1)< dmax ∧Depth(p′2)< dmax . dmax is the tree depth limit
7: return (p′1,p

′
2)

8: end function

Source: [Poli et al., 2008]
What is genetic programming? 52

Q & A

Q: What is the most likely outcome of application of mutation/crossover to a
viable program?

Hint:
But, however many ways there may be of being alive, it is certain that
there are vastly more ways of being dead, or rather not alive. (The
Blind Watchmaker [Dawkins, 1996])

A: Most applications of genetic operators are harmful4

Yet, GP works. Why?

Mutation is random; natural selection is the very opposite of random
(The Blind Watchmaker [Dawkins, 1996])

4Turns out: In GP, quite many of them can be neutral (neutral mutations).
What is genetic programming? 53

Q & A

Q: What is the most likely outcome of application of mutation/crossover to a
viable program?

Hint:
But, however many ways there may be of being alive, it is certain that
there are vastly more ways of being dead, or rather not alive. (The
Blind Watchmaker [Dawkins, 1996])

A: Most applications of genetic operators are harmful4

Yet, GP works. Why?

Mutation is random; natural selection is the very opposite of random
(The Blind Watchmaker [Dawkins, 1996])

4Turns out: In GP, quite many of them can be neutral (neutral mutations).
What is genetic programming? 54

Q & A

Q: What is the most likely outcome of application of mutation/crossover to a
viable program?

Hint:
But, however many ways there may be of being alive, it is certain that
there are vastly more ways of being dead, or rather not alive. (The
Blind Watchmaker [Dawkins, 1996])

A: Most applications of genetic operators are harmful4

Yet, GP works. Why?

Mutation is random; natural selection is the very opposite of random
(The Blind Watchmaker [Dawkins, 1996])

4Turns out: In GP, quite many of them can be neutral (neutral mutations).
What is genetic programming? 55

Exemplary run: Setup

A mini-run of GP applied to a symbolic regression problem (from:
[Poli et al., 2008])

Objective: Find a program whose output matches x2+x+1 over the range
[−1,1].

Such tasks can be considered as a form of regression.
As solutions are built by manipulating code (symbolic instructions), this is
referred to as symbolic regression.

Fitness: sum of absolute errors (City-block distance) for
x ∈ −1.0,−0.9, ...0.9,1.0:

xi -1.0 -0.9 . . . 0 . . . 0.9 1.0
yi 1 0.91 . . . 1 . . . 2.71 3

What is genetic programming? 56

Exemplary run: Setup

Instruction set:
Nonterminal (function) set: +, -, % (protected division), and x ; all
operating on floats
Terminal set: x , and constants chosen randomly between -5 and +5

Initial population: ramped half-and-half (depth 1 to 2; 50% of terminals are
constants)
Parameters:

population size 4,
50% subtree crossover,
25% reproduction,
25% subtree mutation, no tree size limits

Termination: when an individual with fitness better than 0.1 found
Selection: fitness proportionate (roulette wheel) non elitist

What is genetic programming? 57

Initial population (population 0)

What is genetic programming? 58

Fitness assignment for population 0

Fitness values: f(a)=7.7, f(b)=11.0, f(c)=17.98, f(d)=28.7

What is genetic programming? 59

Breeding

Assume:
a gets reproduced
c gets mutated (at locus 2)
a and d get crossed-over
a and b get crossed-over

Note:
All parents used; this in general does not have to be the case.

What is genetic programming? 60

Population 1

Population 0:

Population 1:

Individual d in population 1 has fitness 0.

What is genetic programming? 61

Summary of our first glimpse at GP

Summary of our first glimpse at GP 62

Specific features of GP

The solutions evolving under the selection pressure of the fitness function
are themselves functions (programs).
GP operates on symbolic structures of varying length.

There are no variables for the algorithm to operate on (at least in the
common sense).

The program can be tested only on a limited number of fitness cases
(tests).

Summary of our first glimpse at GP 63

Q: Is GP a ML technique?

A: Yes and no.
In contrast to most EC methods that are typically placed in optimization
framework, GP is by nature an inductive learning approach that fits into
the domain of machine learning [Mitchell, 1997].
As opposed to typical ML approaches, GP is very generic

Arbitrary programming language, arbitrary input and output representation

The syntax and semantic of the programming language of consideration
serve as means to provide the algorithm with prior knowledge

common sense knowledge, background knowledge, domain knowledge

Summary of our first glimpse at GP 64

In a broader context

A rather non-human approach to programming

(...) Artificial Intelligence as mimicking the human mind prefers to
view itself as at the front line, whereas my explanation relegates it to
the rearguard. (The effort of using machines to mimic the human
mind has always struck me as rather silly: I’d rather use them to
mimic something better.) [Dijkstra, 1988]

This pertains to certain differences between AI and CI:
AI is (partially) engaged in research aiming at reproducing humans (in
particular in research areas closer to cognitive science),
CI focuses on intelligence as an emergent property (hence the prevailing
presence of learning).

Claim (mine):
GP embodies the ultimate goal of AI: to build a system capable of
self-programming (adaptation, learning).

Summary of our first glimpse at GP 65

Why should GP be considered a viable approach of AI/CI?

GP combines two powerful concepts marked in underline in the above definition:

1 Representing candidate solutions as programs,
which in general can conduct any Turing-complete computation (e.g.,
classification, regression, clustering, reasoning, problem solving, etc.), and
thus enable capturing solutions to any type of problems (whether the task
is, e.g., learning, optimization, problem solving, game playing, etc.).

2 Searching the space of candidate solutions using the ‘mechanics’
borrowed from biological evolution,
which is unquestionably a very powerful computing paradigm, given that it
resulted in life on Earth and development of intelligent beings.

Summary of our first glimpse at GP 66

Why should GP be considered a viable approach to program
synthesis?

Argument ‘from practice’:
Human programmers do not rely (usually) on formal apparatus when
programming.
Neither they perform exhaustive search in the space of programs.
Yet, they can program really5 well.

Other arguments:
numerous ‘success stories’ concerning stochastic techniques in other
domains, e.g.,

machine learning (bagging, random forests),
computer vision (random features)

Stochastic nature of a method does not preclude practical usefulness.

5
Summary of our first glimpse at GP 67

What is GP? – Question revisited

Genetic programming is a branch of computer science studying
heuristic algorithms based on neo-Darwinian principles for synthesizing
programs, i.e., discrete symbolic compositional structures that process
data.

Consequences of the above definition:
Heuristic nature of search.
Symbolic program representation.
Unconstrained data types.
Unconstrained semantics.
Input sensitivity and inductive character.

Summary of our first glimpse at GP 68

Risks involved?

Source: http://xkcd.com/534/

Summary of our first glimpse at GP 69

http://xkcd.com/534/

Origins of GP

Early work by:
John R. Koza [Koza, 1989, Koza, 1992b]
Similar ideas in early works of Schmidhuber [Schmidhuber, 1987]

http://www.genetic-programming.com/johnkoza.html

Summary of our first glimpse at GP 70

http://www.genetic-programming.com/johnkoza.html

Exemplary GP run using ECJ

Exemplary GP run using ECJ 71

Exemplary run of ECJ (EC in Java [Luke, 2010])

The task: synthesize a program that, given x ∈ [−1,1], returns an output equal
to y = x5−2x3+ x (symbolic regression)

Assumptions:
available instructions: +, −, ∗, /, sin, cos, exp, log
no constants
no conditional statements nor loops

the program space is the space of arithmetic functions.

set of 20 tests drawn randomly from x ∈ [−1,1]

Exemplary GP run using ECJ 72

Exemplary run: Launch

Standard output:
java ec.Evolve -file ./ec/app/regression/quinticerc.params
...
Threads: breed/1 eval/1
Seed: 1427743400
Job: 0
Setting up
Processing GP Types
Processing GP Node Constraints
Processing GP Function Sets
Processing GP Tree Constraints
{-0.13063322286594392,0.016487577414659428},
{0.6533404396941143,0.1402200189629743},
{-0.03750634856569701,0.0014027712093654706},
...
{0.6602806044824949,0.13869498395598084},
Initializing Generation 0
Subpop 0 best fitness of generation: Fitness: Standardized=1.1303205 Adjusted=0.46941292 Hits=10
Generation 1
Subpop 0 best fitness of generation: Fitness: Standardized=0.6804932 Adjusted=0.59506345 Hits=7
...

Exemplary GP run using ECJ 73

Exemplary run: The result

The log file produced by the run (out.stat):
Generation: 0
Best Individual:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=1.1303205 Adjusted=0.46941292 Hits=10
Tree 0:
(* (sin (* x x)) (cos (+ x x)))
Generation: 1
Best Individual:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=0.6804932 Adjusted=0.59506345 Hits=7
Tree 0:
(* (rlog (+ (- x x) (cos x))) (rlog (- (cos (cos (* x x))) (- x x))))
....

Exemplary GP run using ECJ 74

Exemplary run

The log file produced by the run:
Best Individual of Run:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=0.08413165 Adjusted=0.92239726 Hits=17
Tree 0:
(* (* (* (- (* (* (* (* x (sin x)) (rlog

x)) (+ (+ (sin x) x) (- x x))) (exp (* x
(% (* (- (* (* (* (* x x) (rlog x)) (+ (+

(sin x) x) (- x x))) (exp (* x (sin x))))
(sin x)) (rlog x)) (exp (rlog x)))))) (sin

x)) (rlog x)) x) (cos (cos (* (* (- (* (*
(exp (rlog x)) (+ x (* (* (exp (rlog x))
(rlog x)) x))) (exp (* (* (* (- (exp (rlog
x)) x) (rlog x)) x) (sin (* x x))))) (sin
x)) (* x (% (* (- (* (* (* (* x x) (rlog
x)) (+ (+ x (+ (+ (sin x) x) (- x x))) (-
x x))) (exp (* x (sin x)))) (sin x)) (rlog
x)) (exp (rlog x))))) x))))

Exemplary GP run using ECJ 75

FUEL: FUnctional Evolutionary aLgorithms

Compact framework for implementing metaheuristic algorithms
written in Scala

~2000 LoC
Convenient on-the-fly manipulation of components
Single- and multiobjective evolutionary search
...
https://github.com/kkrawiec/fuel

Launching an EA run:

Exemplary GP run using ECJ 76

https://github.com/kkrawiec/fuel

A more detailed view on GP

A more detailed view on GP 77

There is much beyond the ‘vanilla GP’

Design choices to be made, involving:
population initialization, generating random programs (and subprograms),
search operators,

many possibilities here, given that no ‘natural’ similarity metrics for program
spaces exist,

program representations (trees prevail in GP, but other representations are
used as well)

... and the design choices characteristic for the more general domain of
Evolutionary computation:

generative vs. steady-state evolution,
selection operators (fitness-proportional, tournament, ...)
extensions: island models, estimation-of-distribution algorithms,
multiobjective EAs, ...

A more detailed view on GP 78

Where to get the candidate solutions from?

Every stochastic search method needs some underlying sampling
algorithm(s)
The distribution of randomly generated solutions is important, as it implies
certain bias of the algorithm.
Problems:

We don’t know the ‘ideal’ distribution of GP programs.
Even if we knew it, it may be difficult to design an algorithm that obeys it.

The simplest initialization methods take care only of the syntax of
generated programs.

The parameter: the maximum depth of produced trees.

A more detailed view on GP 79

Initialization: Full method

Specify the maximum tree height hmax.
The full method for initializing trees:

Choose nonterminal nodes at random until hmax is reached
Then choose only from terminals.

A more detailed view on GP 80

Initialization: Grow method

Specify the maximum tree height hmax.
The grow method for initializing trees:

Choose nonterminal or terminal nodes at random until hmax is reached
Then choose only from terminals.

A more detailed view on GP 81

Initialization: Comments

hmax is typically small (e.g., 5), because programs tend to grow with
evolution anyway,
If types are used, the choice of instructions has to be appropriately
constrained

Typically, every instruction declares the set of accepted types for every
input, and the type of output
The presence of types may make meeting size constraints difficult.

In an extreme case, generation of a syntactically correct program may be
impossible!

More sophisticated techniques exist, e.g., uniform sampling, see review in,
e.g., [Poli et al., 2008].

An extension: seeding the population with candidate solutions that are
believed to be good (domain knowledge required).

A more detailed view on GP 82

Alternative crossover operators

Even though the conventional GP crossover operators care only about program
syntax, there are quite many of them. Examples:

homologous crossover (detailed in next slides),
uniform crossover (detailed in next slides),
size-fair crossover,
context-preserving crossover,
headless chicken crossover (!),
and more.

Why should crossover be considered important, particularly in GP?
Programs are by nature modular.
For instance, in purely functional programming, a piece of code
‘transplanted’ to a different location preserves its semantics (referential
transparency, a.k.a. closure in GP).
A GP run can be successful by the virtue of gradual accumulation of useful
modules.
Rich literature on modularity in evolution.

A more detailed view on GP 83

Homologous crossover for GP

Earliest example: one-point crossover [Langdon & Poli, 2002]: identify a
common region in the parents and swap the corresponding trees.
The common region is the ‘intersection’ of parent trees.

A more detailed view on GP 84

Uniform crossover for GP

Works similarly to uniform crossover in GAs
The offspring is build by iterating over nodes in the common region and
flipping a coin to decide from which parent should an instruction be copied
[Poli & Langdon, 1998]

A more detailed view on GP 85

How to employ multiple operators for ‘breeding’?

How should the particular operators coexist in an evolutionary process? In other
words:

How should they be superimposed?
What should be the ‘piping’ of particular breeding pipelines?
A topic surprisingly underexplored in GP.

An example: Which is better:
pop.subpop.0.species.pipe = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.num-sources = 1
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline

or
pop.subpop.0.species.pipe.num-sources = 2
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.0.species.pipe.source.0.prob = 0.9
pop.subpop.0.species.pipe.source.1 = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.source.1.prob = 0.1

A more detailed view on GP 86

Challenges for GP

Challenges for GP 87

Bloat

The evolving expressions tend to grow indefinitely in size.
For tree-based representations, this growth is typically exponential[-ish]
Evaluation becomes slow, algorithm stalls, memory overrun likely.
One of the most intensely studied topics in GP: > 250 papers.

Bloat example: Average number of
nodes per generation in a typical run of
GP solving the Sextic problem x6−2x4+
x2 (GP: dotted line)

Challenges for GP 88

Countermeasures for bloat

Constraining tree height: discard the offspring that violates the upper limit
on tree height

Surprisingly, theory shows that this can speed up bloat!

Favoring small programs:
Lexicographic parsimony pressure: given two equally fit individuals, prefer
(select) the one represented by a smaller tree.

Bloat-aware operators: size-fair crossover.

Challenges for GP 89

Highly non-uniform distribution of program ‘behaviors’

Convergence of binary Boolean random linear functions (composed of AND,
NAND, OR, NOR, 8 bits)

Source: [Langdon, 2002]
Challenges for GP 90

High cost of evaluation

Running a program on multiple
inputs can be expensive.
Particularly for some types of data,
e.g., images

Solutions:
Caching of outcomes of
subprograms
Parallel execution of programs on
particular fitness cases
Bloat prevention methods

Right: Example from [Krawiec, 2004].
Synthesis of image analysis algorithms,
where evaluation by definition incurs
high computational cost.

Challenges for GP 91

Variants of GP

Variants of GP 92

Strongly typed GP (STGP)

A way to incorporate prior knowledge and impose a structure on programs
[Montana, 1993]
Provide a set of types
For each instruction, define the types of its arguments and outcomes
Make the operators type-aware:

Mutation: substitute a random tree of a proper type
Crossover: swap trees of compatible6 types

6‘Compatible’ = belonging to the same ‘set type’
Variants of GP 93

Strongly typed GP: Example

Consider the problem of simple classifiers represented as decision trees:

Classifier syntax:
Classifier ::= Class_id
Classifier ::= if_then_else(Condition,
Classifier, Classifier)
Condition ::= Input_Variable =
Constant_Value

Implementaion of this type system in ECJ:

Types:
gp.type.a.size = 3
gp.type.a.0.name = class
gp.type.a.1.name = var
gp.type.a.2.name = const
gp.type.s.size = 0
Type constraints for programs:
gp.tc.size = 1
gp.tc.0 = ec.gp.GPTreeConstraints
gp.tc.0.name = tc0
gp.tc.0.fset = f0
gp.tc.0.returns = class

Type constraints for instructions:
(’templates’ of type constraints)
gp.nc.size = 4
gp.nc.0 = ec.gp.GPNodeConstraints
gp.nc.0.name = ncSimpleClassifier
gp.nc.0.returns = class
gp.nc.0.size = 0
gp.nc.1 = ec.gp.GPNodeConstraints
gp.nc.1.name = ncCompoundClassifier
gp.nc.1.returns = class
gp.nc.1.size = 4
gp.nc.1.child.0 = var
gp.nc.1.child.1 = const
gp.nc.1.child.2 = class
gp.nc.1.child.3 = class
gp.nc.2 = ec.gp.GPNodeConstraints
gp.nc.2.name = ncVariable
gp.nc.2.returns = var
gp.nc.2.size = 0
gp.nc.3 = ec.gp.GPNodeConstraints
gp.nc.3.name = ncConstant
gp.nc.3.returns = const
gp.nc.3.size = 0

Variants of GP 94

Linear Genetic Programming

Motivation: Tree-like structures are not natural for contemporary hardware
architectures
Program representation: a sequence of instructions
Passing data between instructions: via registers
Often directly portable to machine code, fast execution.
Natural correspondence to standard (GA-like) crossover operator.
Applications: direct evolution of machine code [Nordin & Banzhaf, 1995].

Variants of GP 95

Linear GP

Example from [Krawiec, 2004]: the process of program interpretation:

and the corresponding data flow, including the initial and final register contents:

Initial register
contents

Final register
contents

x1

x2 O1 O2

x3

O3 O4 g2

g3

g1r1

r2

r3

r1

r2

r3

Variants of GP 96

Cartesian GP

Developed from work on the evolution of digital circuits
[Miller & Thomson, 1998, Miller & Thomson, 2000].

Program representation: a graph of instructions
However, encoded as a sequence of integers.

Passing data between instructions: direct
Applications: evolution of digital and analog circuits.

Variants of GP 97

Cartesian GP

Variants of GP 98

Cartesian GP

Variants of GP 99

Stack-based GP

PushGP [Spector et al., 2004]
Program representation: a nested list of instructions
Syntax: program ::= instruction | literal | (program*)
Passing data between instructions: via typed stacks
Simple cycle of program execution:

Pop an instruction from the EXEC stack and execute it.
The instruction will usually pop some data from a data stack and push the
results on the stack of the appropriate type.
Upon termination, the top element of a stack forms program outcome

Includes certain features that make it Turing-complete (e.g., YANK
instruction).
Natural possibility of implementing autoconstructive programs
[Spector, 2010]

Variants of GP 100

Push: Example 1

Program:

(2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR)

Initial stack states:

BOOLEAN STACK: ()
CODE STACK: (2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR)
FLOAT STACK: ()
INTEGER STACK: ()

Stack states after program execution:

BOOLEAN STACK: (TRUE)
CODE STACK: ((2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR))
FLOAT STACK: (9.3)
INTEGER STACK: (6)

Variants of GP 101

Push: Example 2

Fitness case 1 Fitness case 2 Fitness case 3
Step EXEC INT BOOL INT BOOL INT BOOL
0 (* + <) (1 3 4 5) () (2 2 4 2) () (1 2 3 8) ()
1 (+ <) (3 4 5) () (4 4 2) () (2 3 8) ()
2 (<) (7 5) () (8 2) () (5 8) ()
3 () () (F) () (F) () (T)

More details: http://hampshire.edu/lspector/push3-description.html

Variants of GP 102

http://hampshire.edu/lspector/push3-description.html

Grammatical Evolution (GE)

Grammatical Evolution: The grammar of the programming language of
consideration is given as input to the algorithm. [Ryan et al., 1998]
Individuals encode the choice of productions in the derivation tree (which
of available alternative production should be chosen, modulo the number of
productions available at given step of derivation).

Variants of GP 103

Other variants of GP

Multiobjective GP. The extra objectives can:
Come with the problem
Result from GP’s specifics: e.g., use program size as the second (minimized)
objective
Be associated with different tests (e.g., feature tests [Ross & Zhu, 2004])

Probabilistic GP (a variant of EDA, Estimation of Distribution Algorithms):
The algorithm maintains a probability distribution P instead of a population
Individuals are generated from P ‘on demand’
The results of individuals’ evaluation are used to update P

Variants of GP 104

Simple EDA-like GP: PIPE

Probabilistic Incremental Program Evolution [Salustowicz & Schmidhuber, 1997]

Variants of GP 105

Developmental GP

Programs generate solutions [Koza et al., 1999].
Or modify a ’baseline’ solution.

Intricate mapping between program and the final (evaluated) artifact.

http:
// www. genetic-programming. com/ gpcircuitanimation. gif

http:
// www. genetic-programming. com/ gplayoutanimation. gif

Variants of GP 106

http://www.genetic-programming.com/gpcircuitanimation.gif
http://www.genetic-programming.com/gpcircuitanimation.gif
http://www.genetic-programming.com/gplayoutanimation.gif
http://www.genetic-programming.com/gplayoutanimation.gif

Applications of GP

Applications of GP 107

Humies

GP produced a number of solutions that are human-competitive, i.e., a GP
algorithm automatically solved a problem for which a patent exists
[Koza et al., 2003b].

(...) Entries were solicited for cash awards for human-competitive results that
were produced by any form of genetic and evolutionary computation and that
were published

http://www.genetic-programming.org/combined.php
Applications of GP 108

http://www.genetic-programming.org/combined.php

Humies

The conditions to qualify:
(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.
(B) The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal.
(C) The result is equal to or better than a result that was placed into a database or
archive of results maintained by an internationally recognized panel of scientific
experts.
(D) The result is publishable in its own right as a new scientific result — independent
of the fact that the result was mechanically created.
(E) The result is equal to or better than the most recent human-created solution to a
long-standing problem for which there has been a succession of increasingly better
human-created solutions.
(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.
(G) The result solves a problem of indisputable difficulty in its field.
(H) The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written computer
programs).

Applications of GP 109

Selected Gold Humies using GP

2004: Jason D. Lohn Gregory S. Hornby Derek S. Linden, NASA Ames
Research Center,
An Evolved Antenna for Deployment on NASA’s Space Technology 5
Mission

http://idesign.ucsc.edu/papers/hornby_ec11.pdf

Applications of GP 110

http://idesign.ucsc.edu/papers/hornby_ec11.pdf

Selected Gold Humies using GP

2009: S. Forrest, C. Le Goues, ThanhVu Nguyen, W. Weimer
Automatically finding patches using genetic programming: A Genetic
Programming Approach to Automated Software Repair

Successfully fixes a ’New Year’s bug’ in Microsoft’s MP3 player Zune.

Applications of GP 111

Selected Gold Humies using GP

2008: Lee Spector, David M. Clark, Ian Lindsay, Bradford Barr, Jon Klein
Genetic Programming for Finite Algebras
2010: Natalio Krasnogor Paweł Widera Jonathan Garibaldi
Evolutionary design of the energy function for protein structure prediction
2011: Achiya Elyasaf Ami Hauptmann Moshe Sipper
GA-FreeCell: Evolving Solvers for the Game of FreeCell

Applications of GP 112

Application: Bug fixing

GenProg [Le Goues et al., 2012]:
Maintains a population candidate repairs as sequences of edits to software
source code.
Each candidate is applied to the original program to produce a new
program, which is evaluated using test suites.
Fitness = number of tests passed.
Termination = a candidate repair is found that retains all required
functionality and fixes the bug.
Does not require special code annotations or formal specifications, and
applies to unmodified legacy software.
Won IFIP TC2 Manfred Paul Award (2009), and Humies (twice)

Applications of GP 113

Application: Bug fixing

Economic aspects: https://www.youtube.com/watch?v=Z3itydu_rjo

For embedded devices: https://www.youtube.com/watch?v=95N0Yokm6Bk

Follow-ups/related:
reduction of the power consumption of software
assembly and binary repairs of embedded systems.
automated repair of exploits in binary code of a network router

exploits allowing unauthenticated users to change administrative options and
completely disable authentication across reboots
https://github.com/eschulte/netgear-repair

Applications of GP 114

https://www.youtube.com/watch?v=Z3itydu_rjo
https://www.youtube.com/watch?v=95N0Yokm6Bk
https://github.com/eschulte/netgear-repair

Review

A recent award-winning work has demonstrated the ability of a GP system
to automatically find and correct bugs in commercially-released software
when provided with test data [Arcuri & Yao, 2008].
GP is one of leading methodologies that can be used to ‘automate’ science,
helping the researchers to find the hidden complex patterns in the observed
phenomena [Schmidt & Lipson, 2009].

Applications of GP 115

Other applications

Classification problems in machine learning and object recognition
[Krawiec, 2001, Krawiec & Bhanu, 2005, Krawiec, 2007,
Krawiec & Bhanu, 2007, Olague & Trujillo, 2011],
Learning game strategies [Jaskowski et al., 2008] .
See [Poli et al., 2008] for an extensive review of GP applications.

Applications of GP 116

Assessment of GP techniques

Assessment of GP techniques 117

Criteria for assessing the quality of GP-evolved solutions

Criteria for assessing GP algorithms:
success rate (percentage of evolutionary runs ended with success)
time-to-success (can be ∞)
error of the best-of-run individual

Criteria for assessing programs obtained with GP:
error rate (percentage of tests passed)
program size (number of instructions)
execution time
transparency (readability)

Assessment of GP techniques 118

GP Benchmarks

A community-wide initiative to set assessment standards in GP.

http://gpbenchmarks.org/

Symbolic Regression

Tower [Vladislavleva et al., 2009] ...

Boolean Functions

N-Multiplexer , N-Majority, N-Parity [Koza, 1992b]

Generalised Boolean Circuits [Harding et al., 2010, Yu, 2001]

Digital Adder [Walker et al., 2009]

Order [Durrett et al., 2011]

Digital Multiplier [Walker et al., 2009]

Majority [Durrett et al., 2011]

Classification

mRNA Motif Classification [Langdon et al., 2009]

DNA Motif Discovery [Langdon et al., 2010]

Intrusion Detection [Hansen et al., 2007]

Protein Classification [Langdon & Banzhaf, 2008]

Intertwined Spirals [Koza, 1992b]

Assessment of GP techniques 119

http://gpbenchmarks.org/

... and more

Predictive Modelling

Mackey-Glass Chaotic Time Series [Langdon & Banzhaf, 2005]

Financial Trading [Dempsey et al., 2006]

Sunspot Prediction [Koza, 1992b]

GeneChip Probe Performance [Langdon & Harrison, 2008]

Prime Number Prediction [Walker & Miller, 2007]

Drug Bioavailability [Silva & Vanneschi, 2010]

Protein Structure Classification [Widera et al., 2010]

Time Series Forecasting [Wagner et al., 2007]

Path-finding and Planning

Physical Travelling Salesman [Lucas, 2012b]

Artificial Ant [Koza, 1992b]

Lawnmower [Koza, 1994]

Tartarus Problem [Cuccu & Gomez, 2011]

Maximum Overhang [Paterson et al., 2008]

Circuit Design [McConaghy, 2011]

Control Systems

Chaotic Dynamic Systems Control [Lones et al., 2010]

Pole Balancing [Nicolau et al., 2010]

Truck Control [Koza, 1992a]Assessment of GP techniques 120

... and more

Game-Playing

TORCS Car Racing [torcs, 2012]

Ms PacMan [Galván-López et al., 2010]

Othello [Lucas, 2012a]

Chessboard Evaluation [Sipper, 2011]

Backgammon [Sipper, 2011]

Mario [Togelius et al., 2009]

NP-Complete Puzzles [Kendall et al., 2008]

Robocode [Sipper, 2011]

Rush Hour [Sipper, 2011]

Checkers [Sipper, 2011]

Freecell [Sipper, 2011]

Dynamic Optimisation

Dynamic Symbolic Regression [O’Neill et al., 2008]

Dynamic Scheduling [Jakobović & Budin, 2006]

Traditional Programming

Sorting [Kinnear, Jr., 1993a]

Assessment of GP techniques 121

Semantic GP

Semantic GP 122

The fitness bottleneck problem

Fitness bottleneck problem:
The complex effects(1) of program execution on multiple examples(2) are
combined into one scalar value (fitness).

Consequences:
Loss of information.
Compensation of performance on particular tests (examples).
Search algorithm cannot reverse-engineer the compressed information.

Why do we stick to this design? There are no principal reasons to maintain
the bottleneck.

(2) motivates semantic GP
(1) motivates behavioral evaluation

Semantic GP 123

Program semantics in GP

Program semantics = the vector of outputs produced by a program for the
training examples (a.k.a. sampling semantics).

Program p:
xi p(xi)
-0.5 0.5
1.0 2.0
1.5 4.5
2.0 8.0

semantics(p)=[0.5, 2.0, 4.5, 8.0]

Can been used for:
designing initialization operators,
diversity maintenance,
designing search operators.

Semantic GP 124

Key observation for semantics GP

The fitness functions used in GP are usually metrics, like:
Hamming distance: |{p(xi) 6= yi}|
Manhattan distance: ∑i |p(xi)−yi |
Euclidean distance: ∑i |p(xi)−yi |2

Given n fitness cases, such a fitness function measures, in the n-dimensional
semantic space, the distance of program semantics from the point that defines
the desired output of program (yi s above, a.k.a. target, t in the next slides).

Thus, the semantic space is a metric space, and fitness landscape forms a
unimodal cone.

Semantic GP 125

Geometric implications of program semantics

Semantic space (t - the target, i.e., vector of desired outputs):

t

p1

p2

o

(Euclidean metric)

t
p1

p2

o

(City-block metric)

The (often difficult) program synthesis task becomes trivial in semantic
space (unimodal and convex fitness landscape).
Search operators with attractive guarantees can be designed.

Semantic GP 126

Geometric crossover

A geometric offspring o:

||o,p1||+ ||o,p2||= ||p1,p2|| (2)

Crossover operator that produces geometric offspring is geometric crossover
(a.k.a. topological crossover).
Produce offspring that inherit some aspects of behavior from the parents.

Offspring’s semantics is ‘in between’ the parents in the semantic space.

The segment connecting the parents embraces all semantics (and, indirectly,
programs) that are (semantically) as similar as possible to both parents.
The big question: can we design efficient search operators that are
geometric?

Semantic GP 127

Exact geometric operators: The idea

For some domains, exactly geometric effect can be attained by purely syntactic
manipulations [Moraglio et al., 2012].

A general method to derive exact semantic geometric crossovers and
mutations for different problem domains that search directly the semantic
space

T1 × T2
GXSD−→ T3yO

yO

yO

O1 × O2
GXD−→ O3

(3)

Top: semantic geometric crossover GXSD on genotypes (e.g., trees),
Bottom: Geometric crossover (GXD) operating on the phenotypes (i.e.,
output vectors) induced by the genotype-phenotype mapping O.
It holds that for any T1,T2 and T3= GXSD(T1,T2) then
O(T3) = GXD(O(T1),O(T2)).

Semantic GP 128

For boolean problems

Definition

Given two parent functions T1,T2 : {0,1}n→{0,1}, the recombination SGXB
returns the offspring boolean function T3= (T1∧TR)∨ (TR ∧T2) where TR
is a randomly generated boolean function.

Theorem
SGXB is a semantic geometric crossover for the space of boolean functions with
fitness function based on Hamming distance, for any training set and any
boolean problem.

Semantic GP 129

Example

Left: Semantic Crossover scheme for Boolean Functions;
Centre: Example of parents (T1 and T2) and random mask (TR);
Right: Offspring (T3) obtained by substituting T1, T2 and TR in the
crossover scheme and simplifying.

Semantic GP 130

For real-valued programs

Definition
Given two parent functions T1,T2 : Rn→ R, the recombinations SGXE and
SGXM return the real function T3= (T1 ·TR)+((1−TR) ·T2) where TR is a
random real constant in [0,1] (SGXE), or a random real function with codomain
[0,1] (SGMX).

Theorem
SGXE and SGXM are semantic geometric crossovers for the space of real
functions with fitness function based on Euclidean and Manhattan distances,
respectively, for any training set and any real problem.

Semantic GP 131

Experimental results: Boolean problems

GP: conventional GP, SSHC: semantic stochastic hill climber, SGP: semantic geometric GP
Semantic GP 132

Experimental results: real-valued programs

GP: conventional GP, SSHC: semantic stochastic hill climber, SGP: semantic geometric GP

Semantic GP 133

Conclusions:

Semantic of a GP program is a means for getting better insight into its
properties.
‘Semantic setting’ implies certain properties of the fitness landscape
(convexity, unimodality).
Search operators (approximate or exact) can be designed that exploit such
properties.
Semantic GP an be seen as ‘multiobjectivization’ of a problem.
The challenge: offspring size.

New results:
Runtime analysis for GSGP,
Bounds on fitness improvement/deterioration in GSGP (in review)

Work in progress:
Exploitation of semantic properties for problem decomposition (module
detection).
Other semantic properties worth considering, e.g., equidistance.

Semantic GP 134

Behavioral GP and search drivers

Behavioral GP and search drivers 135

Behavioral GP

Takes semantic GP even further
The rationale: The final outcomes of program execution reveal only
fraction of the actual program’s activity.
More detailed information can be obtained by tracing the entire program
execution.
This allows detecting and reuse of potentially useful program components.

Behavioral GP and search drivers 136

Example: Calculating the median

Two stages required:
Sort the array
Locate the central element.

Most nontrivial tasks require such
stage-wise problem decomposition.
The sorted list is a desired
intermediate computation state.
Human programmers can define
such states a priori.
Can we determine such states in
advance?
Can we help evolution in detecting
and promoting the desired
intermediate computation states?

Input: list

Central(list)

Output:
median(list)

Sort(list)

Behavioral GP and search drivers 137

Standard GP

-

-

-

-

-

Execute program p on each
input xi independently

Program
input

Desired
output

x3

x1

x2

x4

x5

y1

y2

y3

y4

y5

Program
output

p(x1)

p(x2)

p(x3)

p(x4)

p(x5)

Fitness
STANDARD GP:

p

p

p

p

p

Behavioral GP and search drivers 138

Standard GP

f

-

Program
input

Desired
output

Program error

y

Actual
program
output

p(x)Program executionx

Behavioral GP and search drivers 139

Pattern-guided GP

Training set

f

e

...

-

Program
input

Desired
output

Program error

x y

Actual
program
output

p(x)

s1(x) s2(x)

ML classifier
c

Classifier error

Classifier complexity
(size)

Program execution

Program
trace

Black: Conventional GP
Green: PANGEA [Krawiec & Swan, 2013]

Behavioral GP and search drivers 140

Example (nominal domain, tree-based GP)

x1

2
1
3
0

2
1
3
0

x1

*

4
1
9
0

x2

3
0
1
1

2
1
3
0

x1

+

5
1
4
1

-

-1
0
5
-1

2
1
3
0

3
0
1
1

3
2
4
2

x2 yx1

2
1
3
0

3
0
1
1

4
1
9
0

5
1
4
1

x1 x2 yx3 x4

Problem

GP Individual

ML dataset

3
2
4
2 y = 2 x1

x4

= 1 6= 1

y = 4y = 3

= 2 6= 2

Decision tree

Evaluation:

10
0 examples

5 nodes

Program error
Classifier error
Classifier complexity

Behavioral GP and search drivers 141

Behavioral GP [Krawiec & O’Reilly, 2014]

Archive of
subprograms Objective1:

program
error

Population

Selection

Mutation

Fitness
evaluation

Crossover

Archive-
based

mutation Objective2
Objective2

Objective2

Key ingredients:
Multiobjective evaluation and selection
Archiving of promising subprograms,
Mutation operator supplied by subprograms from the archive.
Immense improvements of performance [Krawiec & O’Reilly, 2014].

Behavioral GP and search drivers 142

Birds-eye view on program synthesis

Birds-eye view on program synthesis 143

Birds-eye view on program synthesis

“Dimensions in program synthesis”[Gulwani, 2010b], an overview of:
applications,
problems,
solution spaces, and
approaches

to program synthesis (as a whole, not only GP).

In particular, identifies new application areas of potential interest also for GP.

Birds-eye view on program synthesis 144

Applications: Discovery of new algorithms

In particular:
Bitvector algorithms

These algorithms

(...) typically describe some plausible yet unusual operation on
integers or bit strings that could easily be programmed using either a
longish fixed sequence of machine instructions or a loop, but the same
thing can be done much more cleverly using just four or three or two
carefully chosen instructions whose interactions are not at all obvious
until explained or fathomed” Hackers Delight[Warren, 2002]

Others:

mutual exclusion algorithms, i.e., algorithms that guarantee mutually
exclusive access to critical sections

Birds-eye view on program synthesis 145

Applications: Synthesis of program inverses

Problem formulation: given a program p : I → O that implements an injection,
synthesize a program p

′
: O→ I .

Common design pattern in software engineering:
compression/decompression,
encryption/decryption,
serialization/deserialization,
insert/delete operations on data structures,
transactional memory rollback,

What is possible here?
The approach by [Srivastava et al., 2010] can synthesize inverses for
compressors (e.g., LZ77), packers (e.g., UUEncode), and arithmetic
transformers (e.g., image rotations).
Length of inverse programs: 5 .. 20 lines of code, synthesized within a
minute.

Birds-eye view on program synthesis 146

Applications: Program understanding

Examples:
explaining a complicated program written in a low-level language in terms
of a high-level language
malware deobfuscation
maintenance of poorly documented software.

Birds-eye view on program synthesis 147

Applications: End user programming

Many end-users need some form of ’programmatic automation’ of certain tasks,
like commodity traders, graphic designers, chemists, human resource managers,
finance pros, ...

These users typically lack the technical skills to program from scratch.

General Purpose Programming Assistance
Synthesis can be used to find tricky/mundane implementation details after
human insight has been expressed in the form of a partial program [65]
Automated Debugging

See also: Flash fill [Gulwani et al., 2012]

Birds-eye view on program synthesis 148

The role of types

The role of types 149

Alternative take on the Curry-Howard correspondence

Motivation: types reveal the underlying semantics [Zoltan and Swan, 2014]
Other formulation: to prove a theorem, a type must be constructed, and
and a value of that type has to be found.
An interesting related observation: For many types, there are no values.

Example: given two unknown types a and b, there is in general no function
a→ b (function type a→ b).
Only when some assumptions about a and b are made, such a function can
be constructed (and thus the associated type a→ b does exist).

The role of types 150

Types reveal a lot about functions

Wadler, 1989:
Write down the definition of a polymorphic function on a piece of
paper. Tell me its type, but be careful not to let me see the function’s
definition. I will tell you a theorem that the function satisfies
[Wadler, 1989].

Example:

f : List[T]→ N

implies that f has to be a function of list length.

See: Theorems for free [Wadler, 1989]

The role of types 151

Types reveal a lot about functions

Wadler, 1989:
Write down the definition of a polymorphic function on a piece of
paper. Tell me its type, but be careful not to let me see the function’s
definition. I will tell you a theorem that the function satisfies
[Wadler, 1989].

Example:

f : List[T]→ N

implies that f has to be a function of list length.

See: Theorems for free [Wadler, 1989]

The role of types 152

Types reveal a lot about functions

Wadler, 1989:
Write down the definition of a polymorphic function on a piece of
paper. Tell me its type, but be careful not to let me see the function’s
definition. I will tell you a theorem that the function satisfies
[Wadler, 1989].

Example:

f : List[T]→ N

implies that f has to be a function of list length.

See: Theorems for free [Wadler, 1989]

The role of types 153

Another example

f : List[T]→List[T]

From this follows, that for all types T and T ′ and every total function
a : T → T ′,

a∗ ◦ fT = fT ′ ◦a∗

where a∗ is a ’map a′, and fT is an instance of f for type T .

In other words, it is irrelevant whether we
first apply a to every element of the list and then apply fT to the resulting
list,
or the reverse: first apply fT to the list and then apply a to every element
of the resulting list.

Examples:
f = reverse, a= asciiCode

f = tail , a= inc

The role of types 154

Related results (selected)

The Coq proof assistant
Computer-checked proof of the four-color theorem

Formal verification of some commercial software (Coq)
Certified programs

For more, see: [Wadler, 2014]

The role of types 155

Case studies

Case studies 156

Case study 1: Evolution of temperature models

Based on:
Karolina Stanisławska, Krzysztof Krawiec, Zbigniew W. Kundzewicz: Modeling
Global Temperature Changes using Genetic Programming – A Case Study
(2012)

Joint work with:
Institute of Computing Science, Poznan University of Technology, Poznan,
Poland
Institute for Agricultural and Forest Environment, Polish Academy of
Sciences, Poznan, Poland and Potsdam Institute for Climate Impact
Research, Potsdam, Germany

Link to slides

Case studies 157

http://www.cs.put.poznan.pl/kkrawiec/wiki/uploads/Site/2011KAEiOGPres.pdf

Case study 2: Evolution of features for object detection in
aerial imagery

Based on:
Krzysztof Krawiec, Bartosz Kukawka and Tomasz Maciejewski, Evolving
cascades of voting feature detectors for vehicle detection in satellite imagery. In
IEEE Congress on Evolutionary Computation (CEC 2010). Barcelona, IEEE
Press, pages 2392-2399.

Link to slides

Case studies 158

http://www.cs.put.poznan.pl/kkrawiec/wiki/uploads/Site/2010CECPres.pdf

Case study 3: Evolution of detectors of anatomical
structures

Based on:
Krzysztof Krawiec, Genetic Programming with Alternative Search Drivers for
Detection of Retinal Blood Vessels. In EvoApps’15, Copenhagen, Denmark,
2015 (to appear).

Link to slides

Case studies 159

http://www.cs.put.poznan.pl/kkrawiec/wiki/uploads/Site/2015EvoAppsPres.pdf

Case study 4: Evolution of algebraic terms

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

tA(x, y, z) =

(
x if x 6= y

z if x = y
m(x, x, y) = m(y, x, x) = y

a) b) c)

Ternary domain: inputs and outputs from {0,1,2}.
Only one binary instruction, defining the underlying algebra (a).
The discriminator term task(s): synthesize an expression that accepts three
inputs x ,y ,z and is semantically equivalent to the one shown in (b).

33 = 27 fitness cases (tests).

The Malcev term tasks(s): evolve a ternary term that satisfies (c)
Specifies program output only for some combinations of inputs: the desired
value for m(x ,y ,z), where x ,y , and z are all distinct, is not determined.
Only 15 fitness cases (tests)

[Spector et al., 2008] evolved the smallest terms to date, previously
unknown to mathematicians.

Case studies 160

Case study 5: Evolution of job acceptance conditions

Overall idea:
Take an exact search algorithm (e.g., branch-and-bound, B&B)
The actual efficiency of B&B depends on how it prioritizes the search, i.e.,
which search directions/nodes are visited first.
Use GP to evolve a heuristic function that captures the properties of the
specific problem instance and prefers the states that are likely to end up in
Successfully applied in job shop scheduling [Nguyen et al., 2015]

Case studies 161

Software packages

Software packages 162

Software packages

Evolutionary Computation in Java (George Mason University, DC)
Generic software framework for EA, well-prepared to work with GP
cs.gmu.edu/~eclab/projects/ecj/

EpochX (University of Kent, UK), also in Java
http://www.epochx.org/

DisciplusTM (RML Technologies)
http://www.rmltech.com/

FlexGP (CSAIL, MIT), Java
http://flexgp.github.io/gp-learners/

FUEL + ScaPS (PUT), Scala
https://github.com/kkrawiec/fuel

Software packages 163

cs.gmu.edu/~eclab/projects/ecj/
http://www.epochx.org/
http://www.rmltech.com/
http://flexgp.github.io/gp-learners/
https://github.com/kkrawiec/fuel

ECJ

ECJ, Evolutionary Computation in Java,
http://cs.gmu.edu/~eclab/projects/ecj/

Probably the most popular freely available framework for EC, with a strong
support for GP
Licensed under Academic Free License, version 3.0
As of Jan 2015: version 22.
Many other libraries integrate with ECJ.

Software packages 164

http://cs.gmu.edu/~eclab/projects/ecj/

Selected ECJ features

GUI with charting
Platform-independent
checkpointing and logging
Hierarchical parameter files
Multithreading
Mersenne Twister Random Number
Generators (compare to: http://
www.alife.co.uk/nonrandom/)
Abstractions for implementing a
variety of EC forms.
Prepared to work in a distributed
environment (including so-called
island model)

GP Tree Representations
Set-based Strongly-Typed Genetic
Programming
Ephemeral Random Constants
Automatically-Defined Functions
and Automatically Defined Macros
Multiple tree forests
Six tree-creation algorithms
Extensive set of GP breeding
operators
Grammatical Encoding
Eight pre-done GP application
problem domains (ant, regression,
multiplexer, lawnmower, parity,
two-box, edge, serengeti)

Software packages 165

http://www.alife.co.uk/nonrandom/
http://www.alife.co.uk/nonrandom/

EpochX

EpochX (University of Kent, UK), also in Java
http://www.epochx.org/

Ready-to-run examples:
http://www.epochx.org/quickstart-guide.php

Examples, including the Artificial Ant benchmark:
http://www.epochx.org/guide-models.php

Has been used to evolve programs with loops [Castle & Johnson, 2012]

Software packages 166

http://www.epochx.org/
http://www.epochx.org/quickstart-guide.php
http://www.epochx.org/guide-models.php

GP in R

A package in R (The R Project for Statistical Computing) that facilitates
symbolic regression and more.
Relies on the ‘natural reflection’ in R (R is an interpreted language)

http://cran.r-project.org/web/packages/gpr/index.html

Software packages 167

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.r-project.org%2F&ei=aUm-VJzEEsmt7gar54CgDQ&usg=AFQjCNFq9BSTD_8y4svhPlIv_58OxEpd5A&sig2=5XFpWRstga_0cf6FumBAkA&bvm=bv.83829542,d.ZWU
http://www.r-project.org/
http://cran.r-project.org/web/packages/gpr/index.html

GP in Mathematica

Exemplary implementation of GP framework in Mathematica

Software packages 168

http://www.wolfram.com/mathematica/

GP in Scala

A compact framework for
evolutionary computation in Scala
Composed of two libraries: Scevo
and Scaps
Component assembly via mixins
Interoperable with
Links:

ScEvo
ScaPS

Software packages 169

http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Site.Scevo
http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Site.Scaps

Additional resources

Additional resources 170

Recommended reading

Koza, J. R. Genetic Programming: On the Programming of Computers by
Means of Natural Selection MIT Press, 1992
A Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4)
http://www.gp-field-guide.org.uk/
Langdon, W. B. Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Kluwer, 1998
Langdon, W. B. & Poli, R. Foundations of Genetic Programming
Springer-Verlag, 2002
Riolo, R. L.; Soule, T. & Worzel, B. (ed.) Genetic Programming Theory
and Practice V Springer, 2007
Riolo, R.; McConaghy, T. & Vladislavleva, E. (ed.) Genetic Programming
Theory and Practice VIII Springer, 2010
See: http://www.cs.bham.ac.uk/~wbl/biblio/

Additional resources 171

http://www.cs.bham.ac.uk/~wbl/biblio/

Recommended reading

A Field Guide to Genetic Programming
http://www.gp-field-guide.org.uk/ [Poli et al., 2008]

(This presentation uses some figures from the Field Guide)
Additional resources 172

http://www.gp-field-guide.org.uk/

GP Bibliography and GP homepage

The online GP bilbiography www.cs.bham.ac.uk/~wbl/biblio/

The genetic programming ‘home page’
http://www.genetic-programming.com/

Additional resources 173

www.cs.bham.ac.uk/~wbl/biblio/
http://www.genetic-programming.com/

Classes/exercises

Classes/exercises 174

Prerequisites

Java VM (JRE), ECJ, command line

Instructions:
Download ecj.zip from cs.gmu.edu/~eclab/projects/ecj/

Unzip it
Open terminal
Applications are available in the directory/package: ecj/ec/app/
Warning: Some functionalities (e.g., GUI with charting) may require
additional libraries. See documentation.

Classes/exercises 175

cs.gmu.edu/~eclab/projects/ecj/

Exercise 1: Mona Lisa (non-GP)

The task:
Could you paint a replica of the Mona Lisa using only 50 semi
transparent polygons? (source link)

Note: Contrary to page content, this is not GP, just EA: solutions are vectors of
coordinates and colors of polygons (inspect the *param file)

Configuration file:

ec/app/mona/mona.params

Launching:

java -cp ../../../jar/ecj.22.jar ec.Evolve -file mona.params

Classes/exercises 176

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Exercise 2: Synthesis of Boolean functions

Synthesis of Boolean functions
Running on the multiplexer problem:

java -cp ../../../jar/ecj.22.jar ec.Evolve -file 6.params

Have a look at out.stat
See the impact of initial population: seed.0 = <integer>
Other problems: parity

Classes/exercises 177

Exercise 3: Symbolic regression

Symbolic regression

java -cp ../../../jar/ecj.22.jar ec.Evolve -file noerc.params

See the effect of:
increasing population size,
increasing the number of generations,
using multiple threads for evaluation (parameter ‘evalthreads’)

Classes/exercises 178

Exercise 4: Evolving agent’s controller

Artificial ant: An agent (ant) operates in a discrete environment, collecting
food pellets.
See exemplary board

java -cp ../../../jar/ecj.22.jar ec.Evolve -file progn4.params

Note:
delayed rewards,
agent can be assessed only via taking part in entire episodes,
relations to reinforcement learning.

Classes/exercises 179

http://www.gustafsonresearch.com/thesis_html/node23.html

Demos

Demos 180

Ant Wars

A two-person, zero-sum, partially
observable, turn-based game used
as a bencchmark in GP.
Our GP-evolved player, BriliAnt,
won the AntWars contest
[Jaskowski et al., 2008].
BriliAnt exhibits a surprisingly rich
repertoire of evolved behaviors:
efficient diagonal board
exploration, counting. Can even
commit suicide when that pays off!
Play with briliant online at
http://www.cs.put.poznan.pl/
kkrawiec/antwars/

Demos 181

http://www.cs.put.poznan.pl/kkrawiec/antwars/
http://www.cs.put.poznan.pl/kkrawiec/antwars/

PicBreeder

Interactive evolution of
GP-generated patterns
Involves CPPN, Compositional
Pattern Producing Network, a kind
of GP program that capable of
generating complex patterns in
arbitrarily dimensional spaces.
CPPN used also in NeuroEvolution
of Augmented Topologies (NEAT),
an algorithm evolution of neural
networks with indirect encoding.
See http://picbreeder.org/
and http://endlessforms.com/

Demos 182

http://picbreeder.org/
http://endlessforms.com/

Recent developments in program synthesis

Recent developments in program synthesis 183

Recent developments in program synthesis

Growing importance of domain-specific languages
Moving to higher-level concepts shrinks the search space and improves
scalability

Programming by example
Flash fill in MS Excel [Harris & Gulwani, 2011] (users SAT solvers to solve
synthesis tasks)
https://www.youtube.com/watch?v=qHkgJFJR5cM
https://www.youtube.com/watch?v=_mkh5LrkcRI

End user programming
New ways of specifying user’s intent
Interactive programming

Programming using natural language
Test-driven development
Feedback generation

Recent developments in program synthesis 184

https://www.youtube.com/watch?v=qHkgJFJR5cM
https://www.youtube.com/watch?v=_mkh5LrkcRI

Synthesizing fully-fledged programs

Recursive sorting algorithms of n logn complexity using object-oriented GP
[Kinnear, Jr., 1993b, Ryan & Nicolau, 2003, Ciesielski & Li, 2004,
Spector et al., 2005, Agapitos & Lucas, 2006]
Solutions to: list reversal, cartesian product, intersecting two lists, string
comparison, sorting a list, locating a substring, binary multiplication,
simplifying a polynomial, transposing a matrix, permutation generation,
path finding, binary addition, and more [Olsson, 1998]
Loops: John Koza’s patent: [Koza et al., 2003a]
Synthesizing loop invariants [Cardamone et al., 2011]
Recursive programs (factorial, fibonaccci, etc.)

Recent developments in program synthesis 185

Topics not covered in this course

Schemata theorem for GP
Exact formula for the expected number of individuals sampling a schema a
the next generation [Poli, 2001]
Plus later work for other types of crossover.

Theory on bloat
Theory on semantic GP

Recent developments in program synthesis 186

Assignment

Assignment 187

Assignment: Instructions

I. Read one of the papers from the following list, focusing on the following
issues:

What is the question addressed in the paper?
What data or evidence was collected by the author(s) to address the
question?
What did the data or evidence show?

II. Prepare a report (in English (preferably) or Polish) containing:
1 Your first and last name
2 Authors and the title of the paper
3 A few sentences about the strong (most interesting, intriguing) elements of

the proposed approach
4 A few sentences about the weak points
5 Your individual thoughts/observations concerning the paper.
6 How could this be employed to solve some problems in your research area.

Email the report (plain text, no attachments!) to krawiec at cs.put.poznan.pl
with “[SD]” tag in the email subject by April 30th.

Assignment 188

Assignment: Instructions

There are two groups of papers to pick from:
1 Papers concerning program synthesis, in particular GP
2 Papers related to GP

You may choose a paper from either of these groups.

Assignment 189

Assignment
1. Reading in program synthesis

Assignment 190

Paper #1: Theorems for free!

Wadler, P. (1989). Theorems for free!
In Proceedings of the Fourth International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’89 (pp. 347–359).
New York, NY, USA: ACM

Abstract: From the type of a polymorphic function we can derive a theorem that it satisfies. Every
function of the same type satisfies the same theorem. This provides a free source of useful theorems,
courtesy of Reynolds’ abstraction theorem for the polymorphic lambda calculus.

http://www.mpi-sws.org/~dreyer/tor/papers/wadler.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9875

Assignment 191

http://www.mpi-sws.org/~dreyer/tor/papers/wadler.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9875

Paper #2: Using GP for scientific discovery

Schmidt, M. & Lipson, H. (2009). Distilling free-form natural laws from
experimental data.
Science, 324(5923), 81–85

Abstract: For centuries, scientists have attempted to identify and document analytical laws that
underlie physical phenomena in nature. Despite the prevalence of computing power, the process of
finding natural laws and their corresponding equations has resisted automation. A key challenge to
finding analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated
as laws found for simpler systems were used to bootstrap explanations for more complex systems,
gradually uncovering the “alphabet” used to describe those systems.

http://www.sciencemag.org/content/324/5923/81.short
(plus accompanying material)

Assignment 192

http://www.sciencemag.org/content/324/5923/81.short

Paper #3: GP for fixing software bugs

Weimer, W., Forrest, S., Le Goues, C., & Nguyen, T. (2010). Automatic
program repair with evolutionary computation.
Communications of the ACM, 53(5), 109–116

Abstract: There are many methods for detecting and mitigating software errors but few generic
methods for automatically repairing errors once they are discovered. This paper highlights recent work
combining program analysis methods with evolutionary computation to automatically repair bugs in
off-the-shelf legacy C programs. The method takes as input the buggy C source code, a failed test case
that demonstrates the bug, and a small number of other test cases that encode the required
functionality of the program. The repair procedure does not rely on formal specifications, making it
applicable to a wide range of extant software for which formal specifications rarely exist.

http://dl.acm.org/ft_gateway.cfm?id=1735249&type=html

Assignment 193

http://dl.acm.org/ft_gateway.cfm?id=1735249&type=html

Paper #4: Behavioral GP

Krawiec, K. & O’Reilly, U.-M. (2014). Behavioral programming: a broader and more detailed take on
semantic GP.
In C. Igel, D. V. Arnold, C. Gagne, E. Popovici, A. Auger, J. Bacardit, D. Brockhoff, S. Cagnoni, K.
Deb, B. Doerr, J. Foster, T. Glasmachers, E. Hart, M. I. Heywood, H. Iba, C. Jacob, T. Jansen, Y. Jin,
M. Kessentini, J. D. Knowles, W. B. Langdon, P. Larranaga, S. Luke, G. Luque, J. A. W. McCall,
M. A. Montes de Oca, A. Motsinger-Reif, Y. S. Ong, M. Palmer, K. E. Parsopoulos, G. Raidl, S. Risi,
G. Ruhe, T. Schaul, T. Schmickl, B. Sendhoff, K. O. Stanley, T. Stuetzle, D. Thierens, J. Togelius, C.
Witt, & C. Zarges (Eds.), GECCO ’14: Proceedings of the 2014 conference on Genetic and evolutionary
computation (pp. 935–942). Vancouver, BC, Canada: ACM

Abstract:In evolutionary computation, the fitness of a candidate solution conveys sparse feedback. Yet
in many cases, candidate solutions can potentially yield more information. In genetic programming
(GP), one can easily examine program behavior on particular fitness cases or at intermediate execution
states. However, how to exploit it to effectively guide the search remains unclear. In this study we
apply machine learning algorithms to features describing the intermediate behavior of the executed
program. We then drive the standard evolutionary search with additional objectives reflecting this
intermediate behavior. The machine learning functions independent of task-specific knowledge and
discovers potentially useful components of solutions (subprograms), which we preserve in an archive
and use as building blocks when composing new candidate solutions. In an experimental assessment on
a suite of benchmarks, the proposed approach proves more capable of finding optimal and/or
well-performing solutions than control methods.

http://dl.acm.org/citation.cfm?id=2598288

Assignment 194

http://dl.acm.org/citation.cfm?id=2598288

Paper #5: Autoconstructive GP

Spector, L. (2001). Autoconstructive evolution: Push, pushGP, and pushpop.
In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S.
Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001) (pp.
137–146). San Francisco, California, USA: Morgan Kaufmann

Abstract: This paper is a preliminary report on autoconstructive evolution, a framework for evolutionary
computation in which the machinery of reproduction and diversification (and thereby the machinery of
evolution) evolves within the individuals of an evolving population of problem solvers. Autoconstructive
evolution is illustrated with Pushpop, an evolving population of programs expressed in the Push
programming language. The Push programming language can also be used in a more traditional genetic
programming framework and may have unique benefits when so employed; the PushGP system, which
uses traditional genetic programming techniques to evolve Push programs, is also described.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.9569

Assignment 195

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.9569

Paper #6: Geometric semantic GP

Moraglio, A., Krawiec, K., & Johnson, C. G. (2012). Geometric semantic
genetic programming.
In C. A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, & M. Pavone
(Eds.), Parallel Problem Solving from Nature, PPSN XII (part 1), volume 7491
of Lecture Notes in Computer Science (pp. 21–31). Taormina, Italy: Springer

Abstract: Traditional Genetic Programming (GP) searches the space of functions/programs by using
search operators that manipulate their syntactic representation, regardless of their actual
semantics/behaviour. Recently, semantically aware search operators have been shown to outperform
purely syntactic operators. In this work, using a formal geometric view on search operators and
representations, we bring the semantic approach to its extreme consequences and introduce a novel
form of GP — Geometric Semantic GP (GSGP) — that searches directly the space of the underlying
semantics of the programs. This perspective provides new insights on the relation between program
syntax and semantics, search operators and fitness landscape, and allows for principled formal design of
semantic search operators for different classes of problems. We derive specific forms of GSGP for a
number of classic GP domains and experimentally demonstrate their superiority to conventional
operators.

http://dl.acm.org/citation.cfm?id=2415038

Assignment 196

http://dl.acm.org/citation.cfm?id=2415038

Paper #7: Deductive approach to program synthesis

Manna, Z. & Waldinger, R. (1980). A deductive approach to program synthesis.
ACM Trans. Program. Lang. Syst., 2(1), 90–121

https://pdfs.semanticscholar.org/ceb3/
163c56465fda5fef591d0ff0a6c7f434a04d.pdf

Assignment 197

https://pdfs.semanticscholar.org/ceb3/163c56465fda5fef591d0ff0a6c7f434a04d.pdf
https://pdfs.semanticscholar.org/ceb3/163c56465fda5fef591d0ff0a6c7f434a04d.pdf

Assignment
2. Reading related to general evolutionary computation

Assignment 198

Paper #8: NEAT = GP + Neural Networks

Stanley, K. O. (2007). Compositional pattern producing networks: A novel
abstraction of development.
Genetic Programming and Evolvable Machines, 8(2), 131–162.
Special issue on developmental systems

Abstract: Natural DNA can encode complexity on an enormous scale. Researchers are attempting to
achieve the same representational efficiency in computers by implementing developmental encodings,
i.e. encodings that map the genotype to the phenotype through a process of growth from a small
starting point to a mature form. A major challenge in in this effort is to find the right level of
abstraction of biological development to capture its essential properties without introducing
unnecessary inefficiencies. In this paper, a novel abstraction of natural development, called
Compositional Pattern Producing Networks (CPPNs), is proposed. Unlike currently accepted
abstractions such as iterative rewrite systems and cellular growth simulations, CPPNs map to the
phenotype without local interaction, that is, each individual component of the phenotype is determined
independently of every other component. Results produced with CPPNs through interactive evolution
of two-dimensional images show that such an encoding can nevertheless produce structural motifs often
attributed to more conventional developmental abstractions, suggesting that local interaction may not
be essential to the desirable properties of natural encoding in the way that is usually assumed.

http://link.springer.com/article/10.1007%2Fs10710-007-9028-8

Assignment 199

http://link.springer.com/article/10.1007%2Fs10710-007-9028-8

Paper #9: EC for modeling modularity in biological
networks

Kashtan, N. & Alon, U. (2005). Spontaneous evolution of modularity and
network motifs.
Proceedings of the National Academy of Sciences, 102(39), 13773–13778

Abstract: Biological networks have an inherent simplicity: they are modular with a design that can be
separated into units that perform almost independently. Furthermore, they show reuse of recurring
patterns termed network motifs. Little is known about the evolutionary origin of these properties.
Current models of biological evolution typically produce networks that are highly nonmodular and lack
understandable motifs. Here, we suggest a possible explanation for the origin of modularity and network
motifs in biology. We use standard evolutionary algorithms to evolve networks. A key feature in this
study is evolution under an environment (evolutionary goal) that changes in a modular fashion. That is,
we repeatedly switch between several goals, each made of a different combination of subgoals. We find
that such modularly varying goals lead to the spontaneous evolution of modular network structure and
network motifs. The resulting networks rapidly evolve to satisfy each of the different goals. Such
switching between related goals may represent biological evolution in a changing environment that
requires different combinations of a set of basic biological functions. The present study may shed light
on the evolutionary forces that promote structural simplicity in biological networks and offers ways to
improve the evolutionary design of engineered systems.

http://www.pnas.org/content/102/39/13773.abstract

Assignment 200

http://www.pnas.org/content/102/39/13773.abstract

Bibliography

Bibliography 201

Agapitos, A. & Lucas, S. M. (2006).
Evolving efficient recursive sorting algorithms.
In G. G. Yen, L. Wang, P. Bonissone, & S. M. Lucas (Eds.), Proceedings of the 2006 IEEE
Congress on Evolutionary Computation (pp. 9227–9234). Vancouver: IEEE Press.

Arcuri, A. & Yao, X. (2008).
A novel co-evolutionary approach to automatic software bug fixing.
In J. Wang (Ed.), 2008 IEEE World Congress on Computational Intelligence (pp. 162–168). Hong
Kong: IEEE Computational Intelligence Society IEEE Press.

Baier, C. & Katoen, J.-P. (2008).
Principles of Model Checking (Representation and Mind Series).
The MIT Press.

Cardamone, L., Mocci, A., & Ghezzi, C. (2011).
Dynamic synthesis of program invariants using genetic programming.
In A. E. Smith (Ed.), Proceedings of the 2011 IEEE Congress on Evolutionary Computation (pp.
617–624). New Orleans, USA: IEEE Computational Intelligence Society IEEE Press.

Castle, T. & Johnson, C. G. (2012).
Evolving high-level imperative program trees with strongly formed genetic programming.
In A. Moraglio, S. Silva, K. Krawiec, P. Machado, & C. Cotta (Eds.), Proceedings of the 15th
European Conference on Genetic Programming, EuroGP 2012, volume 7244 of LNCS (pp. 1–12).
Malaga, Spain: Springer Verlag.

Ciesielski, V. & Li, X. (2004).
Experiments with explicit for-loops in genetic programming.
In Proceedings of the 2004 IEEE Congress on Evolutionary Computation (pp. 494–501). Portland,
Oregon: IEEE Press.

Bibliography 202

Cuccu, G. & Gomez, F. (2011).
When novelty is not enough.
In Proc. EvoApplications.

Dawkins, R. (1996).
The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design.
Norton.

Dempsey, I., O’Neill, M., & Brabazon, A. (2006).
Adaptive Trading With Grammatical Evolution.
In Proc. CEC.

Dijkstra, E. W. (1988).
On the cruelty of really teaching computing science.
circulated privately.

Dijkstra, E. W. (n.d.).
On the reliability of programs.
circulated privately.

Durrett, G., Neumann, F., & O’Reilly, U.-M. (2011).
Computational Complexity Analysis of Simple Genetic Programming On Two Problems Modeling
Isolated Program Semantics.
In Proc. FOGA.

Faitelson, D. (2010).
Program Synthesis from Domain Specific Object Models.
VDM Publishing.

Flach, P. A. & Lavrac, N. (2000).
The role of feature construction in inductive rule learning.

Bibliography 203

Galván-López, E., Swafford, J., O’Neill, M., & Brabazon, A. (2010).
Evolving a Ms. PacMan Controller Using Grammatical Evolution.
In Applications of Evolutionary Computation. Springer.

Gulwani, S. (2010a).
Dimensions in program synthesis.
In R. Bloem & N. Sharygina (Eds.), Proceedings of 10th International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23 (pp.1̃).:
IEEE.

Gulwani, S. (2010b).
Dimensions in program synthesis.
In Proceedings of the 12th international ACM SIGPLAN symposium on Principles and practice of
declarative programming (pp. 13–24). Hagenberg, Austria: ACM.
Invited talk.

Gulwani, S., Harris, W. R., & Singh, R. (2012).
Spreadsheet data manipulation using examples.
Communications of the ACM, 55(8), 97–105.

Hansen, J. V., Lowry, P. B., Meservy, R. D., & McDonald, D. M. (2007).
Genetic Programming for Prevention of Cyberterrorism through Dynamic and Evolving Intrusion
Detection.
Decision Support Systems, 43, 1362–1374.

Harding, S., Miller, J. F., & Banzhaf, W. (2010).
Developments in Cartesian Genetic Programming: self-modifying CGP.
GPEM, 11, 397–439.

Bibliography 204

Harris, W. R. & Gulwani, S. (2011).
Spreadsheet table transformations from examples.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11 (pp. 317–328). New York, NY, USA: ACM.

Jakobović, D. & Budin, L. (2006).
Dynamic Scheduling with Genetic Programming.
In Proc. EuroGP.

Jaskowski, W., Krawiec, K., & Wieloch, B. (2008).
Winning ant wars: Evolving a human-competitive game strategy using fitnessless selection.
In M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia Alcazar, I. De Falco, A. Della Cioppa, &
E. Tarantino (Eds.), Proceedings of the 11th European Conference on Genetic Programming,
EuroGP 2008, volume 4971 of Lecture Notes in Computer Science (pp. 13–24). Naples: Springer.

Kashtan, N. & Alon, U. (2005).
Spontaneous evolution of modularity and network motifs.
Proceedings of the National Academy of Sciences, 102(39), 13773–13778.

Kendall, G., Parkes, A., & Spoerer, K. (2008).
A Survey of NP-Complete Puzzles.
International Computer Games Association Journal, 31(1), 13–34.

Kinnear, Jr., K. E. (1993a).
Evolving a Sort: Lessons in Genetic Programming.
In Proc. of the International Conference on Neural Networks.

Kinnear, Jr., K. E. (1993b).
Generality and difficulty in genetic programming: Evolving a sort.
In S. Forrest (Ed.), Proceedings of the 5th International Conference on Genetic Algorithms,
ICGA-93 (pp. 287–294). University of Illinois at Urbana-Champaign: Morgan Kaufmann.

Bibliography 205

Koza, J. (1992a).
A Genetic Approach to the Truck Backer Upper Problem and the Inter-twined Spiral Problem.
In Proc. International Joint Conference on Neural Networks.

Koza, J. R. (1989).
Hierarchical genetic algorithms operating on populations of computer programs.
In N. S. Sridharan (Ed.), Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence IJCAI-89, volume 1 (pp. 768–774). Detroit, MI, USA: Morgan Kaufmann.

Koza, J. R. (1992b).
Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press.

Koza, J. R. (1994).
Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press.

Koza, J. R., Andre, D., Bennett III, F. H., & Keane, M. (1999).
Genetic Programming III: Darwinian Invention and Problem Solving.
Morgan Kaufman.

Koza, J. R., Bennett III, F. H., Andre, D., & Keane, M. A. (2003a).
Genetic programming problem solver with automatically defined stores loops and recursions.
United States Patent 6532453.

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., & Lanza, G. (2003b).
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers.

Krawiec, K. (2001).
Evolutionary computation framework for learning from visual examples.
Image Processing and Communications, 7(3-4), 85–96.

Bibliography 206

Krawiec, K. (2004).
Evolutionary Feature Programming: Cooperative learning for knowledge discovery and computer
vision.
Number 385 in . Poznan University of Technology, Poznan, Poland: Wydawnictwo Politechniki
Poznanskiej.

Krawiec, K. (2007).
Generative learning of visual concepts using multiobjective genetic programming.
Pattern Recognition Letters, 28(16), 2385–2400.

Krawiec, K. & Bhanu, B. (2005).
Visual learning by coevolutionary feature synthesis.
IEEE Transactions on System, Man, and Cybernetics – Part B, 35(3), 409–425.

Krawiec, K. & Bhanu, B. (2007).
Visual learning by evolutionary and coevolutionary feature synthesis.
IEEE Transactions on Evolutionary Computation, 11(5), 635–650.

Krawiec, K. & O’Reilly, U.-M. (2014).
Behavioral programming: a broader and more detailed take on semantic GP.
In C. Igel, D. V. Arnold, C. Gagne, E. Popovici, A. Auger, J. Bacardit, D. Brockhoff, S. Cagnoni,
K. Deb, B. Doerr, J. Foster, T. Glasmachers, E. Hart, M. I. Heywood, H. Iba, C. Jacob, T.
Jansen, Y. Jin, M. Kessentini, J. D. Knowles, W. B. Langdon, P. Larranaga, S. Luke, G. Luque,
J. A. W. McCall, M. A. Montes de Oca, A. Motsinger-Reif, Y. S. Ong, M. Palmer, K. E.
Parsopoulos, G. Raidl, S. Risi, G. Ruhe, T. Schaul, T. Schmickl, B. Sendhoff, K. O. Stanley, T.
Stuetzle, D. Thierens, J. Togelius, C. Witt, & C. Zarges (Eds.), GECCO ’14: Proceedings of the
2014 conference on Genetic and evolutionary computation (pp. 935–942). Vancouver, BC,
Canada: ACM.

Bibliography 207

Krawiec, K. & Swan, J. (2013).
Pattern-guided genetic programming.
In C. Blum, E. Alba, A. Auger, J. Bacardit, J. Bongard, J. Branke, N. Bredeche, D. Brockhoff, F.
Chicano, A. Dorin, R. Doursat, A. Ekart, T. Friedrich, M. Giacobini, M. Harman, H. Iba, C. Igel,
T. Jansen, T. Kovacs, T. Kowaliw, M. Lopez-Ibanez, J. A. Lozano, G. Luque, J. McCall, A.
Moraglio, A. Motsinger-Reif, F. Neumann, G. Ochoa, G. Olague, Y.-S. Ong, M. E. Palmer, G. L.
Pappa, K. E. Parsopoulos, T. Schmickl, S. L. Smith, C. Solnon, T. Stuetzle, E.-G. Talbi, D.
Tauritz, & L. Vanneschi (Eds.), GECCO ’13: Proceeding of the fifteenth annual conference on
Genetic and evolutionary computation conference (pp. 949–956). Amsterdam, The Netherlands:
ACM.

Langdon, W. & Banzhaf, W. (2008).
Repeated Patterns in Genetic Programming.
Natural Computing, 7, 589–613.

Langdon, W. B. (2002).
Random search is parsimonious.
In E. Cantú-Paz (Ed.), Late Breaking Papers at the Genetic and Evolutionary Computation
Conference (GECCO-2002) (pp. 308–315). New York, NY: AAAI.

Langdon, W. B. & Banzhaf, W. (2005).
Repeated Sequences in Linear Genetic Programming Genomes.
Complex Systems, 15(4), 285–306.

Langdon, W. B. & Harrison, A. P. (2008).
Evolving Regular Expressions for GeneChip Probe Performance Prediction.
In Proc. PPSN (pp. 1061–1070).

Langdon, W. B. & Poli, R. (2002).
Foundations of Genetic Programming.
Springer-Verlag.

Bibliography 208

Langdon, W. B., Rowsell, J., & Harrison, A. P. (2009).
Creating Regular Expressions as mRNA Motifs with GP to Predict Human Exon Splitting.
In Proc. GECCO.

Langdon, W. B., Sanchez Graillet, O., & Harrison, A. P. (2010).
Automated DNA Motif Discovery.
arXiv.org.

Le Goues, C., Dewey-Vogt, M., Forrest, S., & Weimer, W. (2012).
A systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each.
In M. Glinz (Ed.), 34th International Conference on Software Engineering (ICSE 2012) (pp.
3–13). Zurich.

Lones, M., Tyrrell, A., Stepney, S., & Caves, L. (2010).
Controlling Complex Dynamics with Artificial Biochemical Networks.
In Proc. EuroGP (pp. 159–170).

Lucas, S. (2012a).
Othello Competition.
http:/\protect\kern-.1667em\relax/algoval.essex.ac.uk:8080/othello/html/Othello.html.

[Online; accessed 27-Jan-2012].

Lucas, S. (2012b).
The Physical Travelling Salesperson Problem.
http:/\protect\kern-.1667em\relax/algoval.essex.ac.uk/ptsp/ptsp.html.
[Online: accessed 27–Jan-2012].

Luke, S. (2010).
The ECJ Owner’s Manual – A User Manual for the ECJ Evolutionary Computation Library,
zeroth edition, online version 0.2 edition.

Bibliography 209

http:/\protect \kern -.1667em\relax /algoval.essex.ac.uk:8080/othello/html/Othello.html
http:/\protect \kern -.1667em\relax /algoval.essex.ac.uk/ptsp/ptsp.html

Manna, Z. & Waldinger, R. (1980).
A deductive approach to program synthesis.
ACM Trans. Program. Lang. Syst., 2(1), 90–121.

McConaghy, T. (2011).
FFX: Fast, Scalable, Deterministic Symbolic Regression Technology.
In Proc. GPTP.

Miller, J. F. & Thomson, P. (1998).
Evolving digital electronic circuits for real-valued function generation using a genetic algorithm.
In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, & R. Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third
Annual Conference (pp. 863–868). University of Wisconsin, Madison, Wisconsin, USA: Morgan
Kaufmann.

Miller, J. F. & Thomson, P. (2000).
Cartesian genetic programming.
In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, & T. C. Fogarty (Eds.), Genetic
Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS (pp. 121–132). Edinburgh:
Springer-Verlag.

Mitchell, T. M. (1997).
Machine Learning.
McGraw-Hill.

Montana, D. J. (1993).
Strongly Typed Genetic Programming.
BBN Technical Report #7866, Bolt Beranek and Newman, Inc., 10 Moulton Street, Cambridge,
MA 02138, USA.

Bibliography 210

Moraglio, A., Krawiec, K., & Johnson, C. G. (2012).
Geometric semantic genetic programming.
In C. A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, & M. Pavone (Eds.), Parallel
Problem Solving from Nature, PPSN XII (part 1), volume 7491 of Lecture Notes in Computer
Science (pp. 21–31). Taormina, Italy: Springer.

Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2015).
Automatic programming via iterated local search for dynamic job shop scheduling.
IEEE Transactions on Cybernetics, 45(1), 1–14.

Nicolau, M., Schoenauer, M., & Banzhaf, W. (2010).
Evolving Genes to Balance a Pole.
In Proc. EuroGP.

Nordin, P. & Banzhaf, W. (1995).
Genetic programming controlling a miniature robot.
In E. V. Siegel & J. R. Koza (Eds.), Working Notes for the AAAI Symposium on Genetic
Programming (pp. 61–67). MIT, Cambridge, MA, USA: AAAI.

Olague, G. & Trujillo, L. (2011).
Evolutionary-computer-assisted design of image operators that detect interest points using
genetic programming.
Image and Vision Computing, 29(7), 484–498.

Olsson, R. (1998).
Population management for automatic design of algorithms through evolution.
In Proceedings of the 1998 IEEE World Congress on Computational Intelligence (pp. 592–597).
Anchorage, Alaska, USA: IEEE Press.

Bibliography 211

O’Neill, M., Brabazon, A., & Hemberg, E. (2008).
Subtree Deactivation Control with Grammatical Genetic Programming in Dynamic Environments.
In Proc. CEC.

Paterson, M., Peres, Y., Thorup, M., Winkler, P., & Zwick, U. (2008).
Maximum Overhang.
In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms.

Poli, R. (2001).
Exact schema theory for genetic programming and variable-length genetic algorithms with
one-point crossover.
Genetic Programming and Evolvable Machines, 2(2), 123–163.

Poli, R. & Langdon, W. B. (1998).
On the search properties of different crossover operators in genetic programming.
In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, & R. Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third
Annual Conference (pp. 293–301). University of Wisconsin, Madison, Wisconsin, USA: Morgan
Kaufmann.

Poli, R., Langdon, W. B., & McPhee, N. F. (2008).
A field guide to genetic programming.
Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk.
(With contributions by J. R. Koza).

Ross, B. J. & Zhu, H. (2004).
Procedural texture evolution using multiobjective optimization.
New Generation Computing, 22(3), 271–293.

Bibliography 212

Ryan, C., Collins, J. J., & O’Neill, M. (1998).
Grammatical evolution: Evolving programs for an arbitrary language.
In W. Banzhaf, R. Poli, M. Schoenauer, & T. C. Fogarty (Eds.), Proceedings of the First
European Workshop on Genetic Programming, volume 1391 of LNCS (pp. 83–96). Paris:
Springer-Verlag.

Ryan, C. & Nicolau, M. (2003).
Doing genetic algorithms the genetic programming way.
In R. L. Riolo & B. Worzel (Eds.), Genetic Programming Theory and Practice chapter 12, (pp.
189–204). Kluwer.

Salustowicz, R. P. & Schmidhuber, J. (1997).
Probabilistic incremental program evolution.
Evolutionary Computation, 5(2), 123–141.

Schmidhuber, J. (1987).
Evolutionary principles in self-referential learning. on learning now to learn: The
meta-meta-meta...-hook.
Diploma thesis, Technische Universitat Munchen, Germany.

Schmidt, M. & Lipson, H. (2009).
Distilling free-form natural laws from experimental data.
Science, 324(5923), 81–85.

Schumacher, C., Vose, M. D., & Whitley, L. D. (2001).
The no free lunch and problem description length.
In L. Spector & E. D. Goodman (Eds.), GECCO 2001: Proc. of the Genetic and Evolutionary
Computation Conf. (pp. 565–570). San Francisco: Morgan Kaufmann.

Bibliography 213

Silva, S. & Vanneschi, L. (2010).
State-of-the-Art Genetic Programming for Predicting Human Oral Bioavailability of Drugs.
In Proc. 4th International Workshop on Practical Applications of Computational Biology and
Bioinformatics.

Sipper, M. (2011).
Let the Games Evolve!
In Proc. GPTP.

Spector, L. (2001).
Autoconstructive evolution: Push, pushGP, and pushpop.
In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001) (pp. 137–146). San Francisco, California, USA: Morgan
Kaufmann.

Spector, L. (2010).
Towards practical autoconstructive evolution: Self-evolution of problem-solving genetic
programming systems.
In R. Riolo, T. McConaghy, & E. Vladislavleva (Eds.), Genetic Programming Theory and Practice
VIII, volume 8 of Genetic and Evolutionary Computation chapter 2, (pp. 17–33). Ann Arbor,
USA: Springer.

Spector, L., Clark, D. M., Lindsay, I., Barr, B., & Klein, J. (2008).
Genetic programming for finite algebras.
In M. Keijzer, G. Antoniol, C. B. Congdon, K. Deb, B. Doerr, N. Hansen, J. H. Holmes, G. S.
Hornby, D. Howard, J. Kennedy, S. Kumar, F. G. Lobo, J. F. Miller, J. Moore, F. Neumann, M.
Pelikan, J. Pollack, K. Sastry, K. Stanley, A. Stoica, E.-G. Talbi, & I. Wegener (Eds.), GECCO
’08: Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp.
1291–1298). Atlanta, GA, USA: ACM.

Bibliography 214

Spector, L., Klein, J., & Keijzer, M. (2005).
The push3 execution stack and the evolution of control.
In H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W. Bonabeau, E.
Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis,
M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson, & E. Zitzler (Eds.), GECCO 2005:
Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 2 (pp.
1689–1696). Washington DC, USA: ACM Press.

Spector, L., Perry, C., & Klein, J. (2004).
Push 2.0 Programming Language Description.
Technical report, School of Cognitive Science, Hampshire College.

Srivastava, S., Gulwani, S., Chaudhuri, S., & Foster, J. (2010).
Program Inversion Revisited.
Technical Report MSR-TR-2010-34, Microsoft Research.

Stanley, K. O. (2007).
Compositional pattern producing networks: A novel abstraction of development.
Genetic Programming and Evolvable Machines, 8(2), 131–162.
Special issue on developmental systems.

Togelius, J., Karakovskiy, S., Koutnik, J., & Schmidhuber, J. (2009).
Super Mario Evolution.
In Proc. IEEE Computational Intelligence and Games.

torcs (2012).
TORCS: The Open Car Racing Simulator.
http://torcs.sourceforge.net/.

Bibliography 215

Vladislavleva, E., Smits, G., & Den Hertog, D. (2009).
Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via
Pareto Genetic Programming.
IEEE Trans EC, 13(2), 333–349.

Wadler, P. (1989).
Theorems for free!
In Proceedings of the Fourth International Conference on Functional Programming Languages
and Computer Architecture, FPCA ’89 (pp. 347–359). New York, NY, USA: ACM.

Wadler, P. (2014).
Propositions as types.

Wagner, N., Michalewicz, Z., Khouja, M., & McGregor, R. (2007).
Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program Model.
IEEE Trans EC.

Walker, J. & Miller, J. (2007).
Predicting Prime Numbers Using Cartesian Genetic Programming.
In Proc. EuroGP.

Walker, J. A., Völk, K., Smith, S. L., & Miller, J. F. (2009).
Parallel Evolution using Multi-chromosome Cartesian Genetic Programming.
GPEM, 10, 417–445.

Warren, H. S. (2002).
Hacker’s Delight.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Bibliography 216

Weimer, W., Forrest, S., Le Goues, C., & Nguyen, T. (2010).
Automatic program repair with evolutionary computation.
Communications of the ACM, 53(5), 109–116.

Whitley, L. D. & Sutton, A. M. (2009).
Elementary landscape analysis.
In GECCO ‘09: Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference (pp. 3227–3236). New York, NY, USA: ACM.

Widera, P., Garibaldi, J., & Krasnogor, N. (2010).
GP challenge: Evolving energy function for protein structure prediction.
GPEM, 11, 61–88.

Wolpert, D. H. & Macready, W. G. (1997).
No free lunch theorems for optimization.
IEEE Trans. on Evolutionary Computation, 1(1), 67–82.

Yu, T. (2001).
Hierarchical Processing for Evolving Recursive and Modular Programs Using Higher-Order
Functions and Lambda Abstraction.
GPEM, 2, 345–380.

Bibliography 217

	Introduction
	What is program synthesis about?
	Evolutionary Computation 101
	What is genetic programming?
	Summary of our first glimpse at GP
	Exemplary GP run using ECJ
	A more detailed view on GP
	Challenges for GP
	Variants of GP
	Applications of GP
	Assessment of GP techniques
	Semantic GP
	Behavioral GP and search drivers
	Birds-eye view on program synthesis
	The role of types
	Case studies
	Software packages
	Additional resources
	Classes/exercises
	Demos
	Recent developments in program synthesis
	Assignment
	1. Reading in program synthesis
	2. Reading related to general evolutionary computation

	Bibliography

