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Course outline

Outline
1 Short introduction to evolutionary computation
2 Part I: Estimation of distribution algorithms
3 Part II: Coevolutionary algorithms
4 Part III: Genetic programming and its variants.

This all interlaced with:
1 Case studies
2 A little bit of theory
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Logistics and policy

Yes, the materials are (will be) available online, at:
http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Zajecia.ZOE

Laptops should only be used for taking notes.

If anyone uses a laptop or other electronic device for anything not related to class,
we will instate a no laptop/no technology policy.

Thinking allowed (even thinking aloud). Questions too.

Freshly made, forgive possible slips.
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What is evolutionary computation (EC)?

A branch of Computational Intelligence (CI) devoted to solving optimization,
learning, and design problems using bio-insipred methods, mostly those based on
neo-Darwinian evolution.

CI6=AI
CI emphasizes intelligence as an emergent phenomenon.
CI assumes minimal input of domain knowledge from system’s designer.
Three main branches: EC, Soft computing (Fuzzy Sets etc.), Neural Networks.

Offers unconstrained, black-box optimization.

Successfully applied in many contexts.
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A ‘formula’ for Evolutionary Computation

Real-World Applications
Genetic Algorithms
Genetic Programming
Evolutionary Multiobjective Optimization
Ant Colony Optimization
Artificial Life
Estimation of Distribution Algorithms
Genetic-Based Machine Learning
Generative and Developmental Systems
Evolutionary Strategies
...
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Cont’d

Some variants/applications of EC missing from the equation:

Evolutionary programming

Evolutionary neural networks

Differential evolution

Search-based software engineering

...
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Other bio-inspired algorithms

Swarm intelligence
Ant colony optimization
Particle swarm optimization
Bees algorithm
Cuckoo search

and in a lesser extent also:
Artificial life (also see digital organism)
Artificial immune systems
Cultural algorithms
Firefly algorithm
Harmony search
Learning classifier systems
Learnable Evolution Model
Parallel simulated annealing
Self-organization such as self-organizing maps, competitive learning
Self-Organizing Migrating Genetic Algorithm
Swarm-based computing
Teaching-learning-based optimization (TLBO)
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This course

This course covers three, not particularly related to each other, branches of EC:

Estimation of distribution algorithms (EDA)

Coevolutionary algorithms (CA)

Genetic programming (GP)
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Evolutionary Computation
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Evolutionary Algorithm

Heuristic bio-inspired global search algorithms

Operate on populations of candidate solutions

Candidate solutions are encoded as genotypes

Genotypes get decoded into phenotypes when evaluated by the fitness function f
being optimized.

Formulation:

p∗ = argmax
p∈S

f (p)

where

S is the considered space (search space) of candidate solutions (solutions for
short)

f is a (maximized) fitness function

p∗ is an optimal solution (an ideal) that maximizes f .
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Generic evolutionary algorithm

Evolutionary Algorithm

Population P of individuals

Evaluation

Selection

Mutation and recombination

Initialization of population P

Solution/individual  s

f(s)

Output: Best solution s+

Termination criteria

Fitness function f
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Important features of EC

Iterative, which implies that:
The problem is too difficult to be solved in a single iteration.
The search algorithm, while solving the problem, gradually acquires some knowledge
about it.

Population-based (parallel)
Stochastic (both initialization and execution)

Heuristic (not exact); in most cases not even approximative.

So far it looks as a stochastic, parallel local search. Is there anything new to this?

Importance of recombination (crossover): a recombination operator that makes
the solutions exchange certain elements (variable values, features)

EC performs global search
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Features of problems

Features of problems that can be tackled using EC

Black-box optimization
how f depends on the independent variables does not have to be known or meet
any criteria.

Variables do not have to be explicitly defined

Better a good solution today than a perfect tomorrow.
Fining an optimum cannot be guaranteed, but in practice a well-performing
suboptimal solution is often satisfactory.
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Estimation of Distribution Algorithms

Also known as:
Probabilistic Model-Building Genetic Algorithms, PMBGA (Pelikan 1997)
Iterated density estimation algorithms, IDEA (Bosman& Thierens, 2000)

A class of bio-inspired algorithms that use tools for modeling and sampling of
multidimensional probability distribution.
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Motivation

What is the purpose of population in EC?

Serves as a ‘memory’ of the algorithm.

Defines the current state of the search process.

Captures certain aspects of the knowledge about the problem, gathered by the
search algorithm during the search process.

In particular, which combinations of solution components (e.g., variables) are
profitable.

Desired properties of population contents:

Should be diversified (more or less, depending on the stage of the search process).

Should make generation of new, novel solutions easy.
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Estimation of Distribution Algorithms

In EC, population is a sample, which is used for sampling (to produce new
samples):

entire new populations (generational EC),
single individuals (steady-state EC).

Can we capture the properties of a sample in a more elegant way?

The answer: probability distribution.
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Estimation of Distribution Algorithms

Key idea: EDAs replace population with a probability distribution (PD).

PD is used to sample (draw) new individuals.

The information gathered during search is used to build (or update) the PD.

PD changes as the search proceeds.

Notes:

EDA replaces typical genetic operators (crossover, mutation) wit building
(learning) and sampling a probabilistic model.

Technically, EDAs not always replace the population, but augment it.

Part I: Estimation of Distribution Algorithms– 20



EDA pseudocode

Taken from [12]

EDA(f , S)
t← 0
generate initial population P0
do

evaluate solutions in P0 using f
select a sample of good solutions St from Pt
build a probabilistic model Mt for St
sample Mt to generate new candidate solutions Ot
incorporate Ot into Pt
t← t +1

while(StoppingCondition(Pt))

Note:

In fact, this template is not generic enough to implement all variants of EDA (for
instance Mt is only transitory here).

PD is intended to model only the good solutions.

It is assumed that the search bias is now embodied by the drawing and updating
method.
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The zoo of EDAs

The representation of PD determines (to some extent) the way it can be updated and
used for generation of new solutions.

Variants of EDA:

For independent variables
Univariate Marginal Distribution Algorithm (UMDA)
Population Based Incremental Learning (PBIL)
Compact Genetic Algorithm (CGA, Goldberg)

For bivariate (pairwise) dependencies
Mutual Information-Maximizing Input Clustering (MIMIC, De Bonet et. al. 1997)

For multivariate (arbitrary) dependencies
Bayesian Optimization Algorithm (BOA, Pelikan)
Hierarchical Bayesian Optimization Algorithm (HBOA, Pelikan)
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EDAs for independent variables
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Univariate Marginal Distribution Algorithm (UMDA)

The simplest form of EDA:

For n-bit binary strings (n binary variables):
PD model: vector of probabilities p = (p1,p2, . . . ,pn), where pi is the probability of
‘1’ for ith variable.

Sampling the model: generate 1 for ith variable with probability pi
(independently).

Learning the model =⇒

(Of course, trivially extensible to multi-valued variables).
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UMDA: Learning the model

Compute frequency of 1s for particular positions

pi =
|{x ∈ St : xi = 1}|

|St |

Problem:

For finite-sized population it may happen that {x ∈ St : xi = 1}= /0, which implies
pi = 0 and no chance of ever having 1 on ith position.

Solution: Laplace correction (‘smoothing’ of the estimate):

pi =
|{x ∈ St : xi = 1}|+1
|St |+ |D(xi )|

where D(xi ) is the domain of variable xi (here: D(xi ) = {0,1}, so D(xi ) = 2).
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UMDA on OneMax

A classical, easy-to-solve optimization benchmark.

The objective: generate a solution composed of all ones:

f (x) =
n

∑
i=1

xi

A single global optimum: 1111. . .1

Fully decomposable problem: how a given variable xi contribute to solution’s
fitness is purely independent of what happens to the other variables.

UMDA: Very good performance:

Expected convergence in O(n logn) steps

Ideal scaling
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PBIL: Taking history into account

Observation:

UMDA builds PD from scratch in every generation.

The knowledge about the previous generations is present only implicitly.

Why not accumulate that knowledge over multiple generations?

Population Based Incremental Learning (PBIL)

p(t)i = (1−α)p(t−1)i + α
|{x ∈ St : xi = 1}|

|St |
where α ∈ (0,1).
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UMDA on a deceptive problem

Trap-5 problem:

Variables partitioned into disjoint subsets of size 5.

x1 x5 x6 x10 x11 x15 . . .

For each group x′, its contribution to fitness is defined as:

fcontr (x′) =

{
5 if 1(x′) = 5
4−1(x′) otherwise

where 1(x′) is the number of ones in x′.

Properties:

The global optimum is still 1111. . .1, but there is a negative slope towards it.

Non-decomposable problems: contribution of a single variable depends on how
the other variables in a group behave.
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Trap-5

Fitness contribution fcontr (x′) as a function of the number of ones 1(x′)
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Trap-5

x′ fcontr (x′)
1 1 1 1 1 5
0 1 1 1 1 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 0
0 0 1 1 1 1

. . .
0 0 0 1 1 2

. . .

E(fcontr (0∗∗∗∗)) = 2

E(fcontr (1∗∗∗∗)) = 1.375

The algorithm is ‘tempted’ to generate zeroes.
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UMDA on Trap-5

Poor performance.

Marginal distributions, each associated with a single variable, cannot capture the
interdependencies between variables.

Remedies?

Use PD model that is not marginal and thus can capture the interdependencies.

E.g., for Trap-5: store probabilities for each combination of bits: p(00000),
p(00001), p(00010), ...

Leads to very good performance again.

However: intractable for large number and/or multivalued of variables.

General conclusion: more sophisticated PD models needed to model the ‘context’
for each variable.
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Skeptic’s comment

Wait a minute: good performance could be probably equally well attained by designing
an appropriate crossover operator, which would keep the groups of variables together.

Answer:

Indeed, designing.
This stance assumes that the researcher knows in advance what is the optimal
grouping of variables (what are the interactions between them).
For Trap-5, this is true.
For real-world problem, it is rarely the case.

EDAs have the chance of autonomously discovering such groups (building blocks).
In a sense, and EDA learns a search operator while doing the search.

This the key rationale for EDAs.
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EDAs for pairwise dependencies
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EDAs for pairwise dependencies

Model pairwise dependencies.

COMIT (Baluja & Davies 1997):
Uses a tree to model to capture the distribution
The tree is built so as to maximize the mutual information (minimize
Kullback-Leiblerdivergence)
Algorithm: Prim’s algorithm for maximum spanning trees.

Similar:
BMDA (Pelikan, Mühlenbein, 1998)
MIMIC (DeBonet, 1996)

We skip these due to limited time.
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EDAs for arbitrary dependencies
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EDAs for arbitrary dependencies

Problem: Modeling a multivariate distribution for a large number of dimensions
(variables) is challenging.

Curse of dimensionality: for n variables, one needs O(∏
n
i=1D(xi )) examples

(individuals) for the sample to be representative.

The most appealing solution for today: Bayesian Optimization Algorithm (BOA)

Pelikan, Goldberg, & Cantú-Paz (1998)

The idea: employ Bayesian Network (BN) to model the PD.

Part I: Estimation of Distribution Algorithms– 36



Bayesian Network

A graphical model of conditional dependencies (or: ‘conditional independence
assertions’), which implicitly defines full joint distribution.

Two components:

Structure: directed acyclic graph
Nodes correspond to variables.
Edges correspond to direct conditional dependencies.

Parameters
Set of conditional probability tables (CPTs), one per node. Specifies conditional
probability that a variable takes on a value given the value of node’s predecessors.

p(X ) =
n

∏
i=1

p(Xi |Πi )

where:

X = (X1, . . . ,Xn) is the vector of all variables of the problem.

Πi is the set of parents of node Xi in the network
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Exemplary BN

(Taken from AIMA by Russel & Norvig).

Part I: Estimation of Distribution Algorithms– 38



What do we gain using BNs?

BNs enable specifying full PD using multiple conditional PDs.

Usually, each variable depends only on some of the other variables.

Assume each variable has at most k parents.

The complete network requires then O(n2k) parameters. The number of
parameters grows linearly with n.

... whereas the full joint distribution requires O(2n) parameters (a single number
for each combination of variables).
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Learning BNs

Two stages:
1 Learning the structure
2 Learning the parameters

In EDAs (in BOA), once the structure is learned, learning the parameters is easy,
because there is no missing data: for each variable we have at least one ‘good’ value
(remember that the model is built from good solutions only).

Given a structure, learning of parameters consists in counting the relative
frequencies for particular variables.

Part I: Estimation of Distribution Algorithms– 40



Learning BN structure

Learning BN from data (from sample) is difficult in general: finding the optimal
structure is NP-complete for most ‘network quality metrics’.

Requires two elements:

Search algorithm: searches the space of all possible network structures.
Greedy algorithms perform quite well.
Start from an empty network, and execute moves until no further improvement is
possible:

Edge addition
Edge removal
Edge reversal

Warning: cycles have to be avoided!

Scoring metric: should depend on the likelihood of the structure (plus sometimes
a penalty term for too complex models). Examples:

Bayesian-Dirichlet metric
Minimum Description Length (MDL)
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Are we losing something?

The BN induced from the population is not optimal, so it does not model perfectly the
interdependencies between variables.

However:

The conditional probabilities are calculated from a limited sample anyway, so they
are not exact, only estimated (we do not have access to accurate conditional
probabilities).

The knowledge acquired in BN is subsequently exploited by a stochastic
algorithm, which is not guaranteed to operate optimally.

So it’s OK :) We are (probably) not loosing much.
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Sampling BNs

The simplest method: probabilistic logic sampling.
1 Compute the ancestral ordering of nodes (each node is preceded by its parents).
2 Generate the variable values according to the ancestral ordering (for every

subsequent node, its parents already have the values assigned).

Note: It is sufficient to execute Step 1 only once for multiple solutions to be generated.
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BOA’s performance

Scales very well

A variant: Hierarchical BOA
Builds a hierarchical, multi-level BN.
Can effectively solve problems in which variables are hierarchically grouped (claimed
to be frequent in real world).
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Summary of methods
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Why are EDAs good (or should be good)?

Formalization (population sizing,

‘Competence’ (Competent GAs, Competent EDAs).

Scalability (?) and possibility to discover regularities in problems.
‘Datamining’ of internal problem structure.

Possibility of incorporating various methods from machine learning (ML).
E.g., ready-to-use implementations of BNs in WEKA and R.

Combines learning (directed search) with evolution (fitness-based, less direct
stochastic search)
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Building BNs from data in WEKA

(WEKA enables also generation of data from randomly built BNs)

Part I: Estimation of Distribution Algorithms– 47



Applications

Finding ground states of Ising spin glases (cf. certain neural net models, e.g.,
Hopfield networks),

Maximum satisfiability (MAXSAT): find the assignment of values to Boolean
variables such that satisfies the maximum number of conjuncts (clauses) in the
conjunctive normal form (CNF)

attains performance comparable to WalkSat (in terms of the number of evaluations)
on instances of hundreds of variables and thousands of conjuncts.
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Things not considered in this course

Theoretical developments (nice convergence proofs and recommendation for
population sizing)

EDAs for continuous problems (must discretize, or use PDFs)

EDAs for other domains (not variable-based), e.g.: permutations or programs
(GP)

Multiobjective EDAs
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Resources

Main source of information: http://medal-lab.org/

Some papers and software available from there.

For BNs, lots of good tutorials available online (including AIMA).
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Recommended reading

1 M. Pelikan. Hierarchical Bayesian Optimization Algorithms. Springer Verlag, 2005

2 M. Pelikan, K. Sastry, and E. Cantú-Paz, editors. Scalable Optimization via Probabilistic
Modeling, volume 33 of Studies in Computational Intelligence. Springer, 2006

3 S. Luke. Essentials of Metaheuristics. lulu.com, first edition, 2009. Available at
http://cs.gmu.edu/∼sean/books/metaheuristics/
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Part II: Coevolutionary algorithms
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Coevolutionary algorithms

A form of evolutionary algorithm where evaluation of individuals is influenced
(determined) by other evolving individuals [5, p. 2].

(while in standard evolutionary algorithms, individuals interact only with the
environment embodied by the fitness function f )

The particular form of influence depends on the variant of coevolution.

Essential feature of coevolution: inter-individual interactions.
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Evolution vs. coevolution
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Consequences

The outcome of evaluation depends on who is the other participant of interaction.

The individuals one interacts with form a context.
That context changes with time (from generation to generation).
Moreover, it can ‘respond’ to individual’s changes, because:

The outcome of my interaction with individual x influences it fitness.
Depending on that fitness, x can spawn an offspring in the next generation or not.
This in turn influences chances of survival for my offspring.

Performing well or badly in a specific context does not mean being objectively
good or bad.
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Inspiration

Nature knows only coevolution!
There is no ‘overlord’ that assigns fitness to each individual.
In biology, fitness is a quantity that can be measured, but not imposed.
E.g.: Absolute fitness of a genotype is the ratio between the number of individuals
with that genotype after selection to those before selection [Wikipedia]

The natural coevolution takes place at different levels:
intra-species, resulting from competition between individuals,
inter-species, resulting from competition between species, demes, etc.
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Objective vs. subjective fitness

To implement section pressure, we still need some fitness function.

Evolutionary algorithm uses objective fitness f : S→ R
Coevolutionary algorithms (typically) use subjective fitness fs , which is derived
from the outcomes of interactions between individuals.

Exemplary definition of subjective fitness:

fs(s) = ∑
s ′∈P

g(s,s ′)

where g : S×S→ R - an interaction function; more precisely:

f (t)s (s) = ∑
s ′∈P(t)

g(s,s ′)

Notes:

Typically, fs 6= f

The codomain of f and fs does not have to be real-valued, any totally ordered set
would do.
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Isn’t this odd?
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Variants of coevolutionary algorithms

Various genres of coevolutionary algorithms differ mostly in the way the individuals
interact with each other.

Single-population vs. multi-population
Single-population: individuals kept in a single set, and interact with each other
according to some scheme (e.g., round robing, k random opponents, single
elimination tournament). All individuals play the same ‘roles’.
Multi-population: individuals split into two or more subsets. Interactions typically
take place only between individuals from different populations. Individuals from
different population may play different roles.

Competitive vs. cooperative
Competitive: Individuals try to ‘win’ as many interactions as possible.
Cooperative: Individuals are assumed to cooperate to solve the posed task (typically
used with multiple populations).
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Single-population competitive coevolution

Individuals compete against each other.

In the evaluation phase, tournaments (contests) are being organized, in which
pairs or groups of individuals from populations compete in interactions.

The interaction function g typically implements a zero-sum game: the winner
scores x while the loser −x
A class of such problems is sometimes referred to as adversarial problems [16, p.
2].
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Case study 1: Competitive coevolution

Typical application of single-population competitive coevolution: learning game
strategies.

Each individual implements a strategy.
Interaction consists in playing a game.
The result of the game (qualitative or quantitative) becomes the outcome of
interaction.
Individual’s fitness is the average outcome of all games played.
Successfully applied to games like checkers, Othello, ...

Example (Case study 1):
Single-population fitnessless coevolution.
Key idea:

Standard approach: 1) play games, 2) calculate fitness, 3) use that fitness for
selection.
Idea: combine 1) with 3), skipping 2). There is no explicit evaluation phase.
Individuals play games and this determines whether they get selected or not.

Based on: W. Jaśkowski, K. Krawiec, and B. Wieloch. Evolving strategy for a
probabilistic game of imperfect information using genetic programming. Genetic
Programming and Evolvable Machines, 9(4):281–294, 2008
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Two-population competitive coevolution

Individuals partitioned into disjoint collections, called subpopulations Pi (species
or demes in evolutionary theory). For brevity, we call them populations.
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Two-population competitive coevolution

One of motivations: asymmetry of interactions (interaction participants play
different roles).

Example: white players and black players in checkers.

Populations called also [1]:
‘predators’ and ‘preys’,
‘parasites’ and ‘hosts’,
‘problem generators’ and ‘problem solvers’,
‘teachers’ and ‘learners’,
‘candidates’ and ‘tests’ .
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An example: Density classification task (DCT)

Density classification task: synthesize a state transition rule for a binary,
one-dimensional cellular automaton (CA) of size n, such that it ‘classifies’ the initial
state of the automaton depending on whether there are more 0’s or 1’s in it.

If the initial state contains more 0’s, the rule should transform the state into ‘all
0’s’.

And vice versa for 1’s.

1 0 0 1 1 0 1 1 0 0
↓ ↓

1 0 1 1 1 0 0 1 0 0
↓ ↓
. . . . . .

1 1 1 1 1 0 0 0 0 0
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Rules for automata

Rules have fixed, limited radius r
2r +1� n: rules cannot ‘see’ the entire state

E.g., for r = 1:

1 0 0 1 1 . . . 0 1 1 0 0
↓ ↓

1 0 1 0 0 . . . 1 0 1 1 1

Rules are represented as lookup tables
22r+1 entries.
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Digression 1: 1D automata

Even simple rules can produce patterns of exquisite complexity.
Some of these rules are proven to perform Turing-complete computation.

Wolphram’s book “A New Kind of Science”
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Digression 2: 2D automata

John Convay’s Game of Life
http://en.wikipedia.org/wiki/Conway’s_Game_of_Life
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Complexity of DCT

Exact evaluation of a rule requires applying it to all 2n possible states.

The most popular setting is n = 149, and the upper limit of the number of rule
application 320.

Posed as test-based problems:
Candidate solutions = transition rules
Tests = initial states of the automaton.

The best rule for n = 149, t = 320, r = 3, found using coevolutionary algorithm:
success rate 86.3% [6]; see also [2]

Key insight: coevolutionary algorithm can reduce the number of interactions
required to find a solution.

See
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Coevolutionary pathologies

Does it always work so well?

No. Lack of external, objective evaluation makes it difficult to predict where the
evolution will head to.

Coevolutionary pathology – a situation in which solutions change with time (seem to
‘do’ something), but with no or little objective progress.

Selected types of pathologies (explained in next slides):

Red Queen effect

Disengagement

Focusing (overfocusing)

Other: Collusion, Forgetting
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Red Queen effect

Assume the is a cycle in the game graph. Example: Rock, Paper, Scissors game:

R � S , S � P, P � R

Consider the following scenario of evolution:

Generation (tour) 1 2 3 4 5 6 7
Individual 1 R R P P S S R . . .
Individual 2 S R R P P S S . . .

Both individuals do their best to beat the opponent, but overall there is no
long-term progress.

Lewis Carroll, Through the Looking-Glass:
It takes all the running you can do, to keep in the same place.

Relative improvements (i.e., with respect to each other) do not translate into
absolute (objective) improvement of fitness.

Also known as cycling.

Examples from nature: The arms race of parasites and host, immune system.
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Cycling

Example: Tic-tac-toe (TTT)

Consider TTT strategies represented in a straightforward way: as an ordering of
locations to be taken by a player.

If a numbered location is already taken, the player places a piece on the location
marked by ‘*’.

A� B, B � C , C � A

Note:

These are simple examples, in real-world this becomes more subtle (and ‘noisy’).

Certain variants of coevolution (e.g., fitnessless coevolution) cease to behave like
evolution for intransitive interactions.
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Disengagement

Applies mostly (if not exclusively) to two-population coevolution.

Example: Checkers

Population P1: White players

Population P2: Black players

Assume P1 is filled with master-level players, while P2 contains only novices.
All interactions between players from P1 and P2 end with the former ones winning.
All masters seem to be equally good; all novices seem to be equally bad (even if
they are in fact different!).

There is no way to tell apart better masters from good masters; similarly for
novices. Evolution stalls.

A.k.a. loss of gradient.

The above may happen during evolution, or may apply to initial state of evolution
(how should I draw individuals for my initial population?)
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Focusing

Checkers example cont’d.

Assume individuals in P1 converge so that they all start the game with moving
the leftmost piece on the board (but possibly later play differently).

The opponents from P2 will ‘get used’ to it. Never having an opportunity to face
an opponent that behaves differently, they will specialize in beating white players
that start with the leftmost piece.

When faced with new (‘external’) players (e.g., human), players from P2 will be
likely to lose.

A.k.a. over-specialization.

May be seen as an analog to overfitting in machine learning.
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Lessons learned from coevolutionary pathologies

Problems arise when:

Population(s) converge (focusing).

Population(s) diverge (disengagement).

Population(s) forget that they’ve ‘already been there’.

The diagnosis:

Pure coevolution has rather bad memory.
Why does it work in Nature? Nature does not care about objective progress.
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The problem

The current population is expected to:

be diversified enough to enable further search and progress,

represent (store?) the best solution found so far,

It can be difficult to do both at the same time.

The idea: split these functionalities, delegating (2) to an archive.
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Archives

An archive is a ‘memory’ of a coevolutionary search.

Maintains ‘good’ solutions found so far in the search process.

Can be used to confront the evolved solutions with.

[Sometimes] represents the final outcome of the search process.

Types of archives:

Hall-of-fame

Dominance tournament

Nash memory

Pareto archives
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Hall-of-fame (HoF)

Initially an empty set

Maintenance: Extended by the (subjectively) best-of-generation in each generation
(grows indefinitely)

Exploitation: Draw k members from HoF and let the individuals in the population
interact (play) with them

As a result, every individual plays with its peers and with some ‘older masters’.

The outcomes of interactions with the HoF members [partially] influence fitness.

Rationale: A good individual should perform well against its peers in population as well
as the HoF members.

This provides a form of historic progress [9].
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Pareto archives (Pareto coevolution)

First note some downsides of HoF:

HoF is ‘passive’, never changes on its own.

May contain many weak individuals (from the initial generations of the run),
which may be not worth to interact with.

Note: The purpose of individuals in archive is not to perform good, but to tell apart
good and bad candidate solutions (provide gradient for them).

The idea: Let the members of archive evolve too, but using a different objective.
This takes [again] to [a variant of] two-population coevolution:

Population of candidate solutions (candidates),
Population of tests (archive)

Example: Say we want evolve a white player’s strategy for checkers.
Candidates: white players.
Tests: black players.
Candidates get rewards for performing against tests, e.g., the number of wins
against tests.
Tests get awards for distinctions, e.g., how many pairs of candidates they
differentiate.
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Test-based problems

Problems in which:

Interaction function can be defined.

Exact evaluation of solutions involves many (possibly infinitely many) interactions.

Domain Candidate Test

Algorithm design Sorting network Unsorted list

Classification Classifier Data point (or subset thereof)

Function regression Function Input (datapoint)

Strategy learning First player Second player

Optimization Search algorithm Problem instance
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Solution concepts: What do we optimize?

Given that the interaction function g is the only driving force of the search
process, where does this process head to?

Can we identify somehow the goal of the search process?
What is the solution?

The answer: solution concept: a subset of the search space that contains the
solutions to be sought.

Among many solution concepts, some are more useful/natural (see next slide).

Various coevolutionary algorithms are designed with specific solution concepts in
mind.
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Selected solution concepts

Simultaneous maximization of all outcomes
A solution belongs to this solution concept if it maximally beats all other solutions:

{s ∈ S : ∀t ∈ S ,t 6= s : g(s,t) = gmax}

Quite naive. Will be often empty.

Maximization of expected utility
A solution belongs to this solution concept if it offers a maximal outcome of
interaction against a randomly drawn opponent (context):

argmax
s∈S

E(g(s,t))

where t is randomly drawn from S (argmax may return a set).

Other well-defined solution concepts:

Pareto-optimal set

Best worse case

(See textbooks on game theory for more on that)
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Cooperative coevolution

Individuals from particular populations encode disjoint parts of the solution.
Requires a modular representation of the problem
Offers some means to decompose a complex problem.

Typically, populations Pi , i = 1 . . .np , are delegated to work on the i th fragment of
the whole solution.

Referred also to as symbiotic [16, p.8] or parasitic [3] coevolution[3, 18, 14, 15]
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Cooperative coevolution: The idea
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Cooperative coevolution: The algorithm
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Assignment

I. Read one of the papers from the following list, focusing on the following issues:

What is the question addressed in the paper?

What data or evidence was collected by the author(s) to address the question?

What did the data or evidence show?

II. Prepare a report (in English (preferably) or Polish) containing:
1 Your first and last name
2 Authors and the title of the paper
3 A few sentences about the strong (most interesting, intriguing) elements of the

proposed approach
4 A few sentences about the weak points
5 Your individual thoughts/observations concerning the paper.
6 How could this be employed to solve some problems in your research area.

Email the report (plain text, no attachments!) to krawiec@cs.put.poznan.pl with
“[SD]” tag in the email subject by June 15th.
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Paper #1: EDA

M. Pelikan. Analysis of estimation of distribution algorithms and genetic algorithms on
NK landscapes. CoRR, abs/0801.3111, 2008
Abstract: This study analyzes performance of several genetic and evolutionary
algorithms on randomly generated NK fitness landscapes with various values of n and
k. A large number of NK problem instances are first generated for each n and k, and
the global optimum of each instance is obtained using the branch-and-bound
algorithm. Next, the hierarchical Bayesian optimization algorithm (hBOA), the
univariate marginal distribution algorithm (UMDA), and the simple genetic algorithm
(GA) with uniform and two-point crossover operators are applied to all generated
instances. Performance of all algorithms is then analyzed and compared, and the
results are discussed.
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.9741

Assignment– 88

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.9741


Paper #2: Competitive coevolution (two-population)

S. Ficici and J. Pollack. Pareto optimality in coevolutionary learning. volume 2159,
pages 316–325. Springer-Verlag, London, UK, 2001
Abstract: We develop a novel coevolutionary algorithm based upon the concept of
Pareto optimality. The Pareto criterion is core to conventional multi-objective
optimization (MOO) algorithms. We can think of agents in a coevolutionary system as
performing MOO, as well: An agent interacts with many other agents, each of which
can be regarded as an objective for optimization. We adapt the Pareto concept to
allow agents to follow gradient and create gradient for others to follow, such that
co-evolutionary learning succeeds. We demonstrate our Pareto coevolution
methodology with the majority function, a density classification task for cellular
automata.
http://dl.acm.org/citation.cfm?id=757431
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Paper #3: Cooperative coevolution

M. Potter and K. D. Jong. Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000
Abstract: To successfully apply evolutionary algorithms to the solution of increasingly
complex problems, we must develop effective techniques for evolving solutions in the
form of interacting coadapted subcomponents. One of the major difficulties comes in
finding computational extensions to our current evolutionary paradigms that will
enable such subcomponents to “emerge” rather than being hand designed. In this
paper we describe an architecture for evolving such subcomponents as a collection of
cooperating species. Given a simple string-matching task, we show that evolutionary
pressure to increase the overall fitness of the ecosystem can provide the needed
stimulus for the emergence of an appropriate number of interdependent
subcomponents that cover multiple niches, evolve to an appropriate level of generality,
and adapt as the number and roles of their fellow subcomponents change over time.
We then explore these issues within the context of a more complicated domain through
a case study involving the evolution of artificial neural networks.
portal.acm.org/citation.cfm?id=1108890
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Paper #4: GP

M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.
Science, 324(5923):81–85, 3 Apr. 2009
Abstract: For centuries, scientists have attempted to identify and document analytical
laws that underlie physical phenomena in nature. Despite the prevalence of computing
power, the process of finding natural laws and their corresponding equations has
resisted automation. A key challenge to finding analytic relations automatically is
defining algorithmically what makes a correlation in observed data important and
insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured
from various physical systems, ranging from simple harmonic oscillators to chaotic
double-pendula. Without any prior knowledge about physics, kinematics, or geometry,
the algorithm discovered Hamiltonians, Lagrangians, and other laws of geometric and
momentum conservation. The discovery rate accelerated as laws found for simpler
systems were used to bootstrap explanations for more complex systems, gradually
uncovering the “alphabet” used to describe those systems.
www.sciencemag.org/content/324/5923/81.short
(plus accompanying material)
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Paper #5: Applied GP

W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen. Automatic program repair with
evolutionary computation. Communications of the ACM, 53(5):109–116, June 2010
Abstract: There are many methods for detecting and mitigating software errors but
few generic methods for automatically repairing errors once they are discovered. This
paper highlights recent work combining program analysis methods with evolutionary
computation to automatically repair bugs in off-the-shelf legacy C programs. The
method takes as input the buggy C source code, a failed test case that demonstrates
the bug, and a small number of other test cases that encode the required functionality
of the program. The repair procedure does not rely on formal specifications, making it
applicable to a wide range of extant software for which formal specifications rarely
exist.
dl.acm.org/ft_gateway.cfm?id=1735249&type=html
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Paper #6: Modularity

R. A. Watson and J. B. Pollack. Modular interdependency in complex dynamical
systems. Artif. Life, 11(4):445–458, 2005
Abstract: Herbert A. Simon’s characterization of modularity in dynamical systems
describes subsystems as having dynamics that are approximately independent of those
of other subsystems (in the short term). This fits with the general intuition that
modules must, by definition, be approximately independent. In the evolution of
complex systems, such modularity may enable subsystems to be modified and adapted
independently of other subsystems, whereas in a nonmodular system, modifications to
one part of the system may result in deleterious side effects elsewhere in the system.
But this notion of modularity and its effect on evolvability is not well quantified and is
rather simplistic. In particular, modularity need not imply that intermodule
dependences are weak or unimportant. In dynamical systems this is acknowledged by
Simon’s suggestion that, in the long term, the dynamical behaviors of subsystems do
interact with one another, albeit in an “aggregate” manner—but this kind of
intermodule interaction is omitted in models of modularity for evolvability. In this brief
discussion we seek to unify notions of modularity in dynamical systems with notions of
how modularity affects evolvability. This leads to a quantifiable measure of modularity
and a different understanding of its effect on evolvability.
http://www.mitpressjournals.org/doi/pdf/10.1162/106454605774270589
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Paper #7: Modularity, EA

N. Kashtan and U. Alon. Spontaneous evolution of modularity and network motifs.
Proceedings of the National Academy of Sciences, 102(39):13773–13778, Sept. 27
2005
Abstract: Biological networks have an inherent simplicity: they are modular with a
design that can be separated into units that perform almost independently.
Furthermore, they show reuse of recurring patterns termed network motifs. Little is
known about the evolutionary origin of these properties. Current models of biological
evolution typically produce networks that are highly nonmodular and lack
understandable motifs. Here, we suggest a possible explanation for the origin of
modularity and network motifs in biology. We use standard evolutionary algorithms to
evolve networks. A key feature in this study is evolution under an environment
(evolutionary goal) that changes in a modular fashion. That is, we repeatedly switch
between several goals, each made of a different combination of subgoals. We find that
such modularly varying goals lead to the spontaneous evolution of modular network
structure and network motifs. The resulting networks rapidly evolve to satisfy each of
the different goals. Such switching between related goals may represent biological
evolution in a changing environment that requires different combinations of a set of
basic biological functions. The present study may shed light on the evolutionary forces
that promote structural simplicity in biological networks and offers ways to improve the
evolutionary design of engineered systems.
www.pnas.org/content/102/39/13773.abstract
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