
Genetic Programming

Krzysztof Krawiec

Laboratory of Intelligent Decision Support Systems
Institute of Computing Science, Poznan University of Technology, Poznań, Poland

http://www.cs.put.poznan.pl/kkrawiec/

June 10, 2016

– 1

http://www.cs.put.poznan.pl/kkrawiec/

Introduction

Introduction– 2

Outline and objectives

1 Introduction: GP as a variant of EC
2 Specific features of GP
3 Variants of GP
4 Applications
5 Some theory
6 Case studies

Introduction– 3

Recommended reading

Koza, J. R. Genetic Programming: On the Programming of Computers by Means
of Natural Selection MIT Press, 1992

A Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4)
http://www.gp-field-guide.org.uk/

Langdon, W. B. Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Kluwer, 1998

Langdon, W. B. & Poli, R. Foundations of Genetic Programming Springer-Verlag,
2002

Riolo, R. L.; Soule, T. & Worzel, B. (ed.) Genetic Programming Theory and
Practice V Springer, 2007

Riolo, R.; McConaghy, T. & Vladislavleva, E. (ed.) Genetic Programming Theory
and Practice VIII Springer, 2010

See: http://www.cs.bham.ac.uk/~wbl/biblio/

Introduction– 4

http://www.cs.bham.ac.uk/~wbl/biblio/

Recommended reading

A Field Guide to Genetic Programming http://www.gp-field-guide.org.uk/
[39]

(This presentation uses some figures from the Field Guide)

Introduction– 5

http://www.gp-field-guide.org.uk/

Background

Background– 6

Evolutionary Computation (EC)

Heuristic bio-inspired global search algorithms

Operate on populations of candidate solutions

Candidate solutions are encoded as genotypes

Genotypes get decoded into phenotypes when evaluated by the fitness function f
being optimized.

Formulation:

p∗ = argmax
p∈P

f (p)

where

P is the considered space (search space) of candidate solutions (solutions for
short)

f is a (maximized) fitness function

p∗ is an optimal solution (an ideal) that maximizes f .

Background– 7

Generic evolutionary algorithm

Evolutionary Algorithm

Population P of individuals

Evaluation

Selection

Mutation and recombination

Initialization of population P

Solution/individual s

f(s)

Output: Best solution s+

Termination criteria

Fitness function f

Background– 8

[Unique] characteristic of EC

Black-box optimization (f ′s dependency on the independent variables does not
have to be known or meet any criteria)

Variables do not have to be explicitly defined

Fining an optimum cannot be guaranteed, but in practice a well-performing
suboptimal solution is often satisfactory.

Importance of crossover: a recombination operator that makes the solutions
exchange certain elements (variable values, features)

Without crossover, EC boils down parallel stochastic local search

Background– 9

What is genetic programming?

What is genetic programming?– 10

Genetic programming

In a nutshell:

A variant of EC where the genotypes represent programs, i.e., entities capable of
reading in input data and producing some output data in response to that input.

Fitness function f measures the similarity of the output produced by the program
to the desired output, given as a part of task statement.

Standard representation: expression trees.

Important implication: Additional input required by the algorithm (compared to EC):

Set of instructions (programming language of consideration).

Data to run the programs on.

What is genetic programming?– 11

Conceptual preliminaries of GP: Space of candidate solutions P

Candidate solutions p ∈ P evolving under the selection pressure of the fitness
function f are themselves functions of the form p : I →O,

I and O are, respectively, the spaces of input data and output data accepted and
produced by programs from P.

Cardinality of |P| is typically large or infinite.

The set of program inputs I , even if finite, is usually so large that running each
candidate solution on all possible inputs becomes intractable.

GP algorithms typically evaluate solutions on a sample I ′ ⊂ I , |I ′| � |I | of possible
inputs, and fitness is only an approximate estimate of solution quality.

The task is given as a set of fitness cases, i.e., pairs (xi ,yi) ∈ I ×O, where xi
usually comprises one or more independent variables and yi is the output variable.

What is genetic programming?– 12

Conceptual preliminaries: Fitness function f

In most cases (and most real-world applications of GP), fitness function f
measures the similarity of the output produced by the program to the desired
output, given as a part of task statement.

Then, fitness can be expressed as a monotonous function of the divergence of
program’s output from the desired one, for instance as:

f (p) =−∑
i

||yi −p(xi)||, (1)

where

p(xi) is the output produced by program p for the input data xi ,

|| · || is a metric (a norm) in the output space O,

i iterates over all fitness cases.

What is genetic programming?– 13

Conceptual preliminaries: Character of candidate solutions

The candidate solutions in GP are being assembled from elementary entities called
instructions.

A part of formulation of a GP task is then also an instruction set I , i.e., a set of
symbols used by the search algorithm to compose the programs (candidate
solutions).

Design of I usually requires some background knowledge;
In particular, it should comprise all instructions necessary to find solution to the
problem posed (closure).

What is genetic programming?– 14

Genetic programming

Main evolution loop (‘vanilla GP’)

1: procedure GeneticProgramming(f ,I) . f - fitness function, I - instruction set
2: P ←{p←RandomProgram(I)} . Initialize population
3: repeat . Main loop over generations
4: for p ∈P do . Evaluation
5: p.f ← f (p) . p.f is a ‘field’ in program p that stores its fitness
6: end for
7: P ′ ← /0 . Next population
8: repeat . Breeding loop
9: p1 ←TournamentSelection(P) . First parent
10: p2 ←TournamentSelection(P) . Second parent
11: (o1,o2)←Crossover(p1 ,p2)
12: o1 ←Mutation(o1 ,I)
13: o2 ←Mutation(o2 ,I)
14: P ′ ←P ′ ∪{o1,o2}
15: until |P ′|= |P|
16: P ←P ′

17: until StoppingCondition(P)
18: return argmaxp∈P p.f

19: end procedure

What is genetic programming?– 15

Crossover

Crossover: exchange of randomly selected subexpressions (subtree swapping crossover).

1: function Crossover(p1,p2)
2: repeat
3: s1 ← Random node in p1
4: s2 ← Random node in p2
5: (p′1,p

′
2)← Swap subtrees rooted in s1 and s2

6: until Depth(p′1)< dmax ∧Depth(p′2)< dmax . dmax is the tree depth
limit

7: return (p′1,p
′
2)

8: end function

What is genetic programming?– 16

Mutation

Mutation: replace a randomly selected subexpression with a new randomly generated
subexpression.

1: function Mutation(p,I)
2: repeat
3: s← Random node in p
4: s ′ ←RandomProgram(I)
5: p′ ← Replace the subtree rooted in s with s ′

6: until Depth(p′)< dmax . dmax is the tree depth limit
7: return p′

8: end function

What is genetic programming?– 17

Exemplary run: Setup

Objective: Find program whose output matches x2+x+1 over the range [−1,1].
Such tasks can be considered as a form of regression.
As solutions are built by manipulating code (instructions), this is referred to as
symbolic regression.

Fitness: sum of absolute errors for x ∈ −1.0,−0.9, ...0.9,1.0
In other words, the set of fitness cases is:

xi -1.0 -0.9 . . . 0 . . . 0.9 1.0
yi 1 0.91 . . . 1 . . . 2.71 3

What is genetic programming?– 18

Exemplary run: Setup

Instruction set:
Nonterminal (function) set: +, -, % (protected division), and x ; all operating on
floats
Terminal set: x , and constants chosen randomly between -5 and +5

Selection: fitness proportionate (roulette wheel) non elitist

Initial pop: ramped half-and-half (depth 1 to 2. 50% of terminals are constants)
(to be explained later)

Parameters:
population size 4,
50% subtree crossover,
25% reproduction,
25% subtree mutation, no tree size limits

Termination: when an individual with fitness better than 0.1 found

What is genetic programming?– 19

Initial population (population 0)

What is genetic programming?– 20

Fitness assignment for population 0

Fitness values: f(a)=7.7, f(b)=11.0, f(c)=17.98, f(d)=28.7

What is genetic programming?– 21

Breeding

Assume:

a gets reproduced

c gets mutated (at loci 2)

a and d get crossed-over

a and b get crossed over

What is genetic programming?– 22

Population 1

Population 0:

Population 1:

Individual d in population 1 has fitness 0.
What is genetic programming?– 23

Summary of our first glimpse at GP

Summary of our first glimpse at GP– 24

Specific features of GP

The solutions evolving under the selection pressure of the fitness function are
themselves functions (programs).

GP operates on symbolic structures of varying lengths.
There are no variables for the algorithm to operate on (at least in the common
sense).

The program can be tested only on a limited number of fitness cases (tests).

=⇒ In contrast to most EC methods that are typically placed in optimization
framework, GP is by nature an inductive learning approach that fits into the domain of
machine learning [?].

Summary of our first glimpse at GP– 25

In a broader context

As opposed to typical ML approaches, GP is very generic
Arbitrary programming language, arbitrary input and output representation

The syntax and semantic of the programming language of consideration serve as
means to provide the algorithm with prior knowledge

(common sense knowledge, background knowledge, domain knowledge).

GP is not the only approach to program induction (but probably the best one :)
See, e.g., inductive logic programming, ILP

GP embodies the ultimate goal of AI: to build a system capable of
self-programming (adaptation, learning).

Summary of our first glimpse at GP– 26

What is GP? – Question revisited

Genetic programming is a branch of computer science studying heuristic
algorithms based on neo-Darwinian principles for synthesizing programs, i.e.,
discrete symbolic compositional structures that process data.

Summary of our first glimpse at GP– 27

Why should GP be considered a viable approach to program synthesis?

GP combines two powerful concepts marked in underline in the above definition:
1 Representing candidate solutions as programs,

which in general can conduct any Turing-complete computation (e.g.,
classification, regression, clustering, reasoning, problem solving, etc.), and thus
enable capturing solutions to any type of problems (whether the task is, e.g.,
learning, optimization, problem solving, game playing, etc.).

2 Searching the space of candidate solutions using the ‘mechanics’ borrowed from
biological evolution,
which is unquestionably a very powerful computing paradigm, given that it
resulted in life on Earth and development of intelligent beings.

Summary of our first glimpse at GP– 28

Consequences of the above definition

Heuristic nature of search.

Symbolic program representation.

Input sensitivity and inductive character.

State-fullness.

Unconstrained data types.

Summary of our first glimpse at GP– 29

Origins of GP

http://www.genetic-programming.com/johnkoza.html

Home assignment: Indentify John Koza’s unique visual trait :)

Summary of our first glimpse at GP– 30

http://www.genetic-programming.com/johnkoza.html

Life demonstration of GP using ECJ

Life demonstration of GP using ECJ– 31

GP on ECJ

ECJ, Evolutionary Computation in Java,
http://cs.gmu.edu/~eclab/projects/ecj/

by Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew Skolicki, Elena
Popovici, Keith Sullivan, et al.

Probably the most popular freely available framework for EC, with a strong
support for GP

Licensed under Academic Free License, version 3.0

As of March 2012: version 20.

Many other libraries integrate with ECJ.

Life demonstration of GP using ECJ– 32

http://cs.gmu.edu/~eclab/projects/ecj/

Selected ECJ features

GUI with charting

Platform-independent checkpointing and logging

Hierarchical parameter files

Multithreading

Mersenne Twister Random Number Generators (compare to:
http://www.alife.co.uk/nonrandom/)

Abstractions for implementing a variety of EC forms.

Prepared to work in a distributed environment (including so-called island model)

Life demonstration of GP using ECJ– 33

http://www.alife.co.uk/nonrandom/

GP-related ECJ features

GP Tree Representations

Set-based Strongly-Typed Genetic Programming

Ephemeral Random Constants

Automatically-Defined Functions and Automatically Defined Macros

Multiple tree forests

Six tree-creation algorithms

Extensive set of GP breeding operators

Grammatical Encoding

Eight pre-done GP application problem domains (ant, regression, multiplexer,
lawnmower, parity, two-box, edge, serengeti)

Life demonstration of GP using ECJ– 34

Exemplary run of ECJ

Standard output:
java ec.Evolve -file ./ec/app/regression/quinticerc.params
...
Threads: breed/1 eval/1
Seed: 1427743400
Job: 0
Setting up
Processing GP Types
Processing GP Node Constraints
Processing GP Function Sets
Processing GP Tree Constraints
{-0.13063322286594392,0.016487577414659428},
{0.6533404396941143,0.1402200189629743},
{-0.03750634856569701,0.0014027712093654706},
...
{0.6602806044824949,0.13869498395598084},
Initializing Generation 0
Subpop 0 best fitness of generation: Fitness: Standardized=1.1303205 Adjusted=0.46941292 Hits=10
Generation 1
Subpop 0 best fitness of generation: Fitness: Standardized=0.6804932 Adjusted=0.59506345 Hits=7
...

Life demonstration of GP using ECJ– 35

Exemplary run: The result

The log file produced by the run:
Generation: 0
Best Individual:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=1.1303205 Adjusted=0.46941292 Hits=10
Tree 0:
(* (sin (* x x)) (cos (+ x x)))
Generation: 1
Best Individual:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=0.6804932 Adjusted=0.59506345 Hits=7
Tree 0:
(* (rlog (+ (- x x) (cos x))) (rlog (- (cos (cos (* x x))) (- x x))))
....

Life demonstration of GP using ECJ– 36

Exemplary run

The log file produced by the run:
Best Individual of Run:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=0.08413165 Adjusted=0.92239726 Hits=17
Tree 0:
(* (* (* (- (* (* (* (* x (sin x)) (rlog

x)) (+ (+ (sin x) x) (- x x))) (exp (* x
(% (* (- (* (* (* (* x x) (rlog x)) (+ (+

(sin x) x) (- x x))) (exp (* x (sin x))))
(sin x)) (rlog x)) (exp (rlog x)))))) (sin

x)) (rlog x)) x) (cos (cos (* (* (- (* (*
(exp (rlog x)) (+ x (* (* (exp (rlog x))
(rlog x)) x))) (exp (* (* (* (- (exp (rlog
x)) x) (rlog x)) x) (sin (* x x))))) (sin
x)) (* x (% (* (- (* (* (* (* x x) (rlog
x)) (+ (+ x (+ (+ (sin x) x) (- x x))) (-
x x))) (exp (* x (sin x)))) (sin x)) (rlog
x)) (exp (rlog x))))) x))))

Life demonstration of GP using ECJ– 37

GP in R

http://cran.r-project.org/web/packages/gpr/index.html

Life demonstration of GP using ECJ– 38

http://cran.r-project.org/web/packages/gpr/index.html

GP in Mathematica

Life demonstration of GP using ECJ– 39

Assessment of GP techniques

Assessment of GP techniques– 40

Criteria for assessing the quality of GP-evolved solutions

Criteria for assessing GP algorithms:
success rate (percentage of evolutionary runs ended with success)

time-to-success (can be ∞)

error of the best-of-run individual

Criteria for assessing programs obtained with GP:

error rate (percentage of tests passed)

program size (number of instructions)

execution time

transparency

Assessment of GP techniques– 41

GP Benchmarks

Problem Definition (formula)
Sextic x6−2x4+x2

Septic x7−2x6+x5−x4+x3−2x2+x
Nonic x9+x8+x7+x6+x5+x4+x3+x2+x
R1 (x+1)3/(x2−x+1)
R2 (x5−3x3+1)/(x2+1)
R3 (x6+x5)/(x4+x3+x2+x+1)

Assessment of GP techniques– 42

Even more GP benchmarks ...

Symbolic Regression Drug Bioavailability [43]

Tower [52] ... Protein Structure Classification [58]

Boolean Functions Time Series Forecasting [53]

N-Multiplexer [17], N-Majority [17], N-Parity [17] Path-finding and Planning

Generalised Boolean Circuits [12, 59] Physical Travelling Salesman [28]

Digital Adder [55] Artificial Ant [17]

Order [9] Lawnmower [18]

Digital Multiplier [55] Tartarus Problem [6]

Majority [9] Maximum Overhang [36]

Classification Circuit Design [29]

mRNA Motif Classification [24] Control Systems

DNA Motif Discovery [25] Chaotic Dynamic Systems Control [26]

Intrusion Detection [11] Pole Balancing [31]

Protein Classification [19] Truck Control [16]

Intertwined Spirals [17]

Predictive Modelling

Mackey-Glass Chaotic Time Series [21]

Financial Trading [5, 4, 8]

Sunspot Prediction [17]

GeneChip Probe Performance [22]

Prime Number Prediction [54]

Assessment of GP techniques– 43

... and more

Game-Playing

TORCS Car Racing [50]

Ms PacMan [10]

Othello [27]

Chessboard Evaluation [44]

Backgammon [44]

Mario [49]

NP-Complete Puzzles [14]

Robocode [44]

Rush Hour [44]

Checkers [44]

Freecell [44]

Dynamic Optimisation

Dynamic Symbolic Regression [34, 35, 51]

Dynamic Scheduling [13]

Traditional Programming

Sorting [15, 1]

Assessment of GP techniques– 44

Case study

Case study– 45

Case study 1: Evolution of temperature models

Based on: Karolina Stanisławska, Krzysztof Krawiec, Zbigniew W. Kundzewicz:
Modeling Global Temperature Changes using Genetic Programming – A Case Study

Institute of Computing Science, Poznan University of Technology, Poznan, Poland

Institute for Agricultural and Forest Environment, Polish Academy of Sciences,
Poznan, Poland and Potsdam Institute for Climate Impact Research, Potsdam,
Germany

Konferencja Algorytmów Ewolucyjnych i Optymalizacji Globalnej, KAEiOG,
September 21, 2011

Case study– 46

A more detailed view on GP
(vanilla GP is not the whole story)

A more detailed view on GP, (vanilla GP is not the whole story)– 47

Where to get [random] candidate solutions from?

Every stochastic search method relies on some sampling algorithm(s)

The distribution of randomly generated solutions is important, as it implies
certain bias of the algorithm.

Problems:
We don’t know the ‘ideal’ distribution of GP programs.
Even if we knew it, it may be difficult to design an algorithm that obeys it.

The most widely used contemporary initialization methods take care only of the
syntax of generated programs.

Mainly: height constraint.

A more detailed view on GP, (vanilla GP is not the whole story)– 48

Initialization: Full method

Specify the maximum tree height hmax.

The full method for initializing trees:
Choose nonterminal nodes at random until hmax is reached
Then choose only from terminals.

A more detailed view on GP, (vanilla GP is not the whole story)– 49

Initialization: Grow method

Specify the maximum tree height hmax.

The grow method for initializing trees:
Choose nonterminal or terminal nodes at random until hmax is reached
Then choose only from terminals.

A more detailed view on GP, (vanilla GP is not the whole story)– 50

Homologous crossover for GP

Earliest example: one-point crossover [23]: identify a common region in the
parents and swap the corresponding trees.

The common region is the ‘intersection’ of parent trees.

A more detailed view on GP, (vanilla GP is not the whole story)– 51

Uniform crossover for GP

Works similarly to uniform crossover in GAs

The offspring is build by iterating over nodes in the common region and flipping a
coin to decide from which parent should an instruction be copied [38]

A more detailed view on GP, (vanilla GP is not the whole story)– 52

How to employ multiple operators for ‘breeding’?

How should the particular operators coexist in an evolutionary process? In other words:

How should they be superimposed?

What should be the ‘piping’ of particular breeding pipelines?

A topic surprisingly underexplored in GP (and in EC probably too).

An example: Which is better:
pop.subpop.0.species.pipe = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.num-sources = 1
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline

Or:
pop.subpop.0.species.pipe.num-sources = 2
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.0.species.pipe.source.0.prob = 0.9
pop.subpop.0.species.pipe.source.1 = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.source.1.prob = 0.1

A more detailed view on GP, (vanilla GP is not the whole story)– 53

The Challenges for GP

The Challenges for GP– 54

Bloat

The evolving expressions tend to grow indefinitely in size.
For tree-based representations, this growth is typically exponential[-ish]

Evaluation becomes slow, algorithm stalls, memory overrun likely.

One of the most intensely studied topics in GP: 240+ papers as of March, 2012.

The Challenges for GP– 55

Bloat example

Average number of nodes per generation in a typical run of GP solving the Sextic
problem x6−2x4+x2.

(GP: dotted line)

The Challenges for GP– 56

Countermeasures for bloat

Constraining tree height
Surprisingly, can speed up bloat!

Favoring small programs:
Lexicographic parsimony pressure: given two equally fit individuals, prefer (select)
the one represented by a smaller tree.

Bloat-aware operators: size-fair crossover.

The Challenges for GP– 57

Highly non-uniform distribution of program ‘behaviors’

Convergence of binary Boolean random linear functions (composed of AND, NAND,
OR, NOR, 8 bits)

From: [20] Langdon, W. B. Cantú-Paz, E. (ed.) Random Search is Parsimonious Late
Breaking Papers at the Genetic and Evolutionary Computation Conference
(GECCO-2002), AAAI, 2002, 308-315

The Challenges for GP– 58

High cost of evaluation

Running a program on multiple inputs
can be expensive.

Particularly for some types of data,
e.g., images

Solutions:

Caching of outcomes of subprograms

Parallel execution of programs on
particular fitness cases

Bloat prevention methods

The Challenges for GP– 59

Variants of GP

Variants of GP– 60

Strongly typed GP (STGP)

A way to incorporate prior knowledge and impose a structure on programs [30]

Implementation:
Provide a set of types
For each instruction, define the types of its arguments and outcomes
Make the operators type-aware:

Mutation: substitute a random tree of a proper type
Crossover: swap trees of compatible1 types

1Compatible: belonging to the same ‘set type’
Variants of GP– 61

Strongly typed GP in ECJ

For the problem of simple classifiers represented as decision trees:

Classifier syntax:
Classifier ::= Class_id
Classifier ::= if_then_else(Condition, Classifier,
Classifier)
Condition ::= Input_Variable = Constant_Value

Implementation in ECJ parameter files:
gp.type.a.size = 3
gp.type.a.0.name = class
gp.type.a.1.name = var
gp.type.a.2.name = const
gp.type.s.size = 0
gp.tc.size = 1
gp.tc.0 = ec.gp.GPTreeConstraints
gp.tc.0.name = tc0
gp.tc.0.fset = f0
gp.tc.0.returns = class

gp.nc.size = 4
gp.nc.0 = ec.gp.GPNodeConstraints
gp.nc.0.name = ncSimpleClassifier
gp.nc.0.returns = class
gp.nc.0.size = 0
gp.nc.1 = ec.gp.GPNodeConstraints
gp.nc.1.name = ncCompoundClassifier
gp.nc.1.returns = class
gp.nc.1.size = 4
gp.nc.1.child.0 = var
gp.nc.1.child.1 = const
gp.nc.1.child.2 = class
gp.nc.1.child.3 = class
gp.nc.2 = ec.gp.GPNodeConstraints
gp.nc.2.name = ncVariable
gp.nc.2.returns = var
gp.nc.2.size = 0
gp.nc.3 = ec.gp.GPNodeConstraints
gp.nc.3.name = ncConstant
gp.nc.3.returns = const
gp.nc.3.size = 0

Variants of GP– 62

Linear Genetic Programming

Motivation:
Tree-like structures are not natural for contemporary hardware architectures

Program = a sequence of instructions

Data passed via registers

Pros:
Directly portable to machine code, fast execution.
Natural correspondence to standard (GA-like) crossover operator.

Applications: direct evolution of machine code [32].

Initial register
contents

Final register
contents

x1

x2 O1 O2

x3

O3 O4 g2

g3

g1r1

r2

r3

r1

r2

r3

Variants of GP– 63

Linear GP

Variants of GP– 64

Stack-based GP

The best-known representative: Push and PushGP
hampshire.edu/lspector/push.html [48]

Pros:
Very simple syntax: program ::= instruction | literal | (program*)
No need to specify the number of registers
The top element of a stack has the natural interpretation of program outcome
Natural possibility of implementing autoconstructive programs [47]
Includes certain features that make it Turing-complete (e.g., YANK instruction).

Variants of GP– 65

hampshire.edu/lspector/push.html

Push: Example

Program:

(2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR)

Initial stack states:

BOOLEAN STACK: ()
CODE STACK: (2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR)
FLOAT STACK: ()
INTEGER STACK: ()

Stack states after program execution:

BOOLEAN STACK: (TRUE)
CODE STACK: ((2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR))
FLOAT STACK: (9.3)
INTEGER STACK: (6)

http://hampshire.edu/lspector/push3-description.html

Variants of GP– 66

http://hampshire.edu/lspector/push3-description.html

Other variants of GP

Grammatical Evolution: The grammar of the programming language of
consideration is given as input to the algorithm. Individuals encode the choice of
productions in the derivation tree (which of available alternative production
should be chosen, modulo the number of productions available at given step of
derivation).

Graph-based GP
Motivation: standard GP cannot reuse subprograms (within a single program)
Example: Cartesian Genetic Programming

Variants of GP– 67

Other variants of GP

Multiobjective GP. The extra objectives can:
Come with the problem
Result from GP’s specifics: e.g., use program size as the second (minimized)
objective
Be associated with different tests (e.g., feature tests [40])

Developmental GP (e.g., using Push)

Probabilistic GP (a variant of EDA, Estimation of Distribution Algorithms):
The algorithm maintains a probability distribution P instead of a population
Individuals are generated from P ‘on demand’
The results of individuals’ evaluation are used to update P

Variants of GP– 68

Simple EDA-like GP: PIPE

Probabilistic Incremental Program Evolution [41]

Variants of GP– 69

Selected theoretical results

Selected theoretical results– 70

Schemata theorem for GP

Exact formula for the expected number of individuals sampling a schema a the
next generation [37]

Plus later work for other types of crossover.

Selected theoretical results– 71

Semantic crossover

Selected theoretical results– 72

Applications of GP

Applications of GP– 73

Review

GP produced a number of solutions that are human-competitive, i.e., a GP
algorithm automatically solved a problem for which a patent exists2.

A recent award-winning work has demonstrated the ability of a GP system to
automatically find and correct bugs in commercially-released software when
provided with test data3.

GP is one of leading methodologies that can be used to ‘automate’ science,
helping the researchers to find the hidden complex patterns in the observed
phenomena4.

2Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., Lanza, G., 2003. Genetic Pro-
gramming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

3Arcuri, A., Yao, X., A novel co-evolutionary approach to automatic software bug fixing. In: Wang,
J. (Ed.), 2008 IEEE World Congress on Computational Intelligence. IEEE Computational Intelligence
Society, IEEE Press, Hong Kong.

4Schmidt, M., Lipson, H., 3 Apr. 2009. Distilling free-form natural laws from experimental data.
Science 324 (5923), 81–85.

Applications of GP– 74

Humies

(...) Entries were solicited for cash awards for human-competitive results that were
produced by any form of genetic and evolutionary computation and that were published

Applications of GP– 75

Humies

The conditions to qualify:
(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.
(B) The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal.
(C) The result is equal to or better than a result that was placed into a database or
archive of results maintained by an internationally recognized panel of scientific
experts.
(D) The result is publishable in its own right as a new scientific result — independent
of the fact that the result was mechanically created.
(E) The result is equal to or better than the most recent human-created solution to a
long-standing problem for which there has been a succession of increasingly better
human-created solutions.
(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.
(G) The result solves a problem of indisputable difficulty in its field.
(H) The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written computer
programs).

Applications of GP– 76

Selected Gold Humies

2004: Jason D. Lohn Gregory S. Hornby Derek S. Linden, NASA Ames Research
Center,
An Evolved Antenna for Deployment on NASA’s Space Technology 5 Mission

http://idesign.ucsc.edu/papers/hornby_ec11.pdf

Applications of GP– 77

http://idesign.ucsc.edu/papers/hornby_ec11.pdf

Selected Gold Humies using GP

2009: Stephanie Forrest Claire Le Goues ThanhVu Nguyen Westley Weimer
Automatically finding patches using genetic programming: A Genetic
Programming Approach to Automated Software Repair

Applications of GP– 78

Selected Gold Humies using GP

2008: Lee Spector David M. Clark Ian Lindsay Bradford Barr Jon Klein
Genetic Programming for Finite Algebras

2010: Natalio Krasnogor Paweł Widera Jonathan Garibaldi
Evolutionary design of the energy function for protein structure prediction GP
challenge: evolving the energy function for protein structure prediction Automated
design of energy functions for protein structure prediction by means of genetic
programming and improved structure similarity assessment

2011: Achiya Elyasaf Ami Hauptmann Moshe Sipper
GA-FreeCell: Evolving Solvers for the Game of FreeCell

Applications of GP– 79

Other applications

classification problems in machine learning [?], object recognition [?, 33], or
learning game strategies [?] .
[2, 57] has demonstrated the ability of a GP system to automatically find and
correct bugs in commercially-released software when provided with test data.

In the context of this paper, it deserves particular attention that GP is one of
leading methodologies that can be used to ‘automate’ science, helping the
researchers to find the hidden complex patterns in the observed phenomena.

In this spirit, in their seminal paper [42] have shown how GP can be used to
induce scientific laws from experimental data. Many other studies have
demonstrated the usefulness of GP for modeling different phenomena, including
those of natural origins [45, 3, 7, 56, 46].

See [?] for an extensive review of GP applications.

Applications of GP– 80

Case study 2: Evolution of feature detectors

Based on: Krzysztof Krawiec, Bartosz Kukawka and Tomasz Maciejewski (2010)
Evolving cascades of voting feature detectors for vehicle detection in satellite imagery.
In IEEE Congress on Evolutionary Computation (CEC 2010). Barcelona, IEEE Press,
pages 2392-2399.

Applications of GP– 81

Additional resources

Additional resources– 82

Additional resources

Evolutionary Computation in Java cs.gmu.edu/~eclab/projects/ecj/
Generic software framework for EA, well-prepared to work with GP

The online GP bilbiography www.cs.bham.ac.uk/~wbl/biblio/

The genetic programming ‘home page’ (a little bit messy, but still valuable)
http://www.genetic-programming.com/

Additional resources– 83

cs.gmu.edu/~eclab/projects/ecj/
www.cs.bham.ac.uk/~wbl/biblio/
http://www.genetic-programming.com/

Bibliography

Bibliography– 84

A. Agapitos and S. M. Lucas.
Evolving Modular Recursive Sorting Algorithms.
In Proc. EuroGP, 2007.

A. Arcuri and X. Yao.
A novel co-evolutionary approach to automatic software bug fixing.
In J. Wang, editor, 2008 IEEE World Congress on Computational Intelligence,
pages 162–168, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence
Society, IEEE Press.

M. Arganis, R. Val, J. Prats, K. Rodriguez, R. Dominguez, and J. Dolz.
Genetic programming and standardization in water temperature modelling.
Advances in Civil Engineering, 2009, 2009.

A. Brabazon, M. O’Neill, and I. Dempsey.
An Introduction to Evolutionary Computation in Finance.
IEEE Computational Intelligence Magazine, 3(4):42–55, 2008.

R. Bradley, A. Brabazon, and M. O’Neill.
Dynamic High Frequency Trading: A Neuro-Evolutionary Approach.
In Proc. EvoWorkshops, 2009.

G. Cuccu and F. Gomez.
When novelty is not enough.
In Proc. EvoApplications, 2011.

Bibliography– 85

M. Daga and M. C. Deo.
Alternative data-driven methods to estimate wind from waves by inverse
modeling.
Natural Hazards, 49(2):293–310, May 2009.

I. Dempsey, M. O’Neill, and A. Brabazon.
Adaptive Trading With Grammatical Evolution.
In Proc. CEC, 2006.

G. Durrett, F. Neumann, and U.-M. O’Reilly.
Computational Complexity Analysis of Simple Genetic Programming On Two
Problems Modeling Isolated Program Semantics.
In Proc. FOGA, 2011.

E. Galván-López, J. Swafford, M. O’Neill, and A. Brabazon.
Evolving a Ms. PacMan Controller Using Grammatical Evolution.
In Applications of Evolutionary Computation. Springer, 2010.

J. V. Hansen, P. B. Lowry, R. D. Meservy, and D. M. McDonald.
Genetic Programming for Prevention of Cyberterrorism through Dynamic and
Evolving Intrusion Detection.
Decision Support Systems, 43:1362–1374, 2007.

Bibliography– 86

S. Harding, J. F. Miller, and W. Banzhaf.
Developments in Cartesian Genetic Programming: self-modifying CGP.
GPEM, 11:397–439, 2010.

D. Jakobović and L. Budin.
Dynamic Scheduling with Genetic Programming.
In Proc. EuroGP, 2006.

G. Kendall, A. Parkes, and K. Spoerer.
A Survey of NP-Complete Puzzles.
International Computer Games Association Journal, 31(1):13–34, 2008.

K. E. Kinnear, Jr.
Evolving a Sort: Lessons in Genetic Programming.
In Proc. of the International Conference on Neural Networks, 1993.

J. Koza.
A Genetic Approach to the Truck Backer Upper Problem and the Inter-twined
Spiral Problem.
In Proc. International Joint Conference on Neural Networks, 1992.

J. R. Koza.
Genetic Programming: On the Programming of Computers by Means of Natural
Selection.
MIT Press, Cambridge, MA, USA, 1992.

Bibliography– 87

J. R. Koza.
Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, May 1994.

W. Langdon and W. Banzhaf.
Repeated Patterns in Genetic Programming.
Natural Computing, 7:589–613, 2008.

W. B. Langdon.
Random search is parsimonious.
In E. Cantú-Paz, editor, Late Breaking Papers at the Genetic and Evolutionary
Computation Conference (GECCO-2002), pages 308–315, New York, NY, 9-13
July 2002. AAAI.

W. B. Langdon and W. Banzhaf.
Repeated Sequences in Linear Genetic Programming Genomes.
Complex Systems, 15(4):285–306, 2005.

W. B. Langdon and A. P. Harrison.
Evolving Regular Expressions for GeneChip Probe Performance Prediction.
In Proc. PPSN, pages 1061–1070, 2008.

W. B. Langdon and R. Poli.
Foundations of Genetic Programming.
Springer-Verlag, 2002.

Bibliography– 88

W. B. Langdon, J. Rowsell, and A. P. Harrison.
Creating Regular Expressions as mRNA Motifs with GP to Predict Human Exon
Splitting.
In Proc. GECCO, 2009.

W. B. Langdon, O. Sanchez Graillet, and A. P. Harrison.
Automated DNA Motif Discovery.
arXiv.org, 2010.

M. Lones, A. Tyrrell, S. Stepney, and L. Caves.
Controlling Complex Dynamics with Artificial Biochemical Networks.
In Proc. EuroGP, pages 159–170, 2010.

S. Lucas.
Othello Competition.
http:/\protect\kern-.1667em\relax/algoval.essex.ac.uk:
8080/othello/html/Othello.html, 2012.
[Online; accessed 27-Jan-2012].

Bibliography– 89

http:/\protect \kern -.1667em\relax /algoval.essex.ac.uk:8080/othello/html/Othello.html
http:/\protect \kern -.1667em\relax /algoval.essex.ac.uk:8080/othello/html/Othello.html

S. Lucas.
The Physical Travelling Salesperson Problem.
http:
/\protect\kern-.1667em\relax/algoval.essex.ac.uk/ptsp/ptsp.html,
2012.
[Online: accessed 27–Jan-2012].

T. McConaghy.
FFX: Fast, Scalable, Deterministic Symbolic Regression Technology.
In Proc. GPTP, 2011.

D. J. Montana.
Strongly typed genetic programming.
BBN Technical Report #7866, Bolt Beranek and Newman, Inc., 10 Moulton
Street, Cambridge, MA 02138, USA, 7 May 1993.

M. Nicolau, M. Schoenauer, and W. Banzhaf.
Evolving Genes to Balance a Pole.
In Proc. EuroGP, 2010.

Bibliography– 90

http:/\protect \kern -.1667em\relax /algoval.essex.ac.uk/ptsp/ptsp.html
http:/\protect \kern -.1667em\relax /algoval.essex.ac.uk/ptsp/ptsp.html

P. Nordin and W. Banzhaf.
Genetic programming controlling a miniature robot.
In E. V. Siegel and J. R. Koza, editors, Working Notes for the AAAI Symposium
on Genetic Programming, pages 61–67, MIT, Cambridge, MA, USA, 10–12 Nov.
1995. AAAI.

G. Olague and L. Trujillo.
Evolutionary-computer-assisted design of image operators that detect interest
points using genetic programming.
Image and Vision Computing, 29(7):484–498, 2011.

M. O’Neill, A. Brabazon, and E. Hemberg.
Subtree Deactivation Control with Grammatical Genetic Programming in
Dynamic Environments.
In Proc. CEC, 2008.

M. O’Neill and C. Ryan.
Grammatical Evolution by Grammatical Evolution: The Evolution of Grammar
and Genetic Code.
In Proc. EuroGP, pages 138–149. Springer-Verlag, 5–7 Apr. 2004.

M. Paterson, Y. Peres, M. Thorup, P. Winkler, and U. Zwick.
Maximum Overhang.
In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms, 2008.

Bibliography– 91

R. Poli.
Exact schema theory for genetic programming and variable-length genetic
algorithms with one-point crossover.
Genetic Programming and Evolvable Machines, 2(2):123–163, June 2001.

R. Poli and W. B. Langdon.
On the search properties of different crossover operators in genetic programming.
In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.
Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming
1998: Proceedings of the Third Annual Conference, pages 293–301, University of
Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

R. Poli, W. B. Langdon, and N. F. McPhee.
A field guide to genetic programming.
Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.
(With contributions by J. R. Koza).

B. J. Ross and H. Zhu.
Procedural texture evolution using multiobjective optimization.
New Generation Computing, 22(3):271–293, 2004.

Bibliography– 92

R. P. Salustowicz and J. Schmidhuber.
Probabilistic incremental program evolution.
Evolutionary Computation, 5(2):123–141, 1997.

M. Schmidt and H. Lipson.
Distilling free-form natural laws from experimental data.
Science, 324(5923):81–85, 3 Apr. 2009.

S. Silva and L. Vanneschi.
State-of-the-Art Genetic Programming for Predicting Human Oral Bioavailability
of Drugs.
In Proc. 4th International Workshop on Practical Applications of Computational
Biology and Bioinformatics, 2010.

M. Sipper.
Let the Games Evolve!
In Proc. GPTP, 2011.

C. Sivapragasam, R. Maheswaran, and V. Venkatesh.
Genetic programming approach for flood routing in natural channels.
Hydrological Processes, 22(5):623–628, 2007.

C. Sivapragasam, N. Muttil, S. Muthukumar, and V. M. Arun.
Prediction of algal blooms using genetic programming.
Marine Pollution Bulletin, 60(10):1849–1855, 2010.

Bibliography– 93

L. Spector.
Towards practical autoconstructive evolution: Self-evolution of problem-solving
genetic programming systems.
In R. Riolo, T. McConaghy, and E. Vladislavleva, editors, Genetic Programming
Theory and Practice VIII, volume 8 of Genetic and Evolutionary Computation,
chapter 2, pages 17–33. Springer, Ann Arbor, USA, 20-22 May 2010.

L. Spector, C. Perry, and J. Klein.
Push 2.0 programming language description.
Technical report, School of Cognitive Science, Hampshire College, Apr. 2004.

J. Togelius, S. Karakovskiy, J. Koutnik, and J. Schmidhuber.
Super Mario Evolution.
In Proc. IEEE Computational Intelligence and Games, 2009.

TORCS: The Open Car Racing Simulator.
http://torcs.sourceforge.net/, 2012.

L. Vanneschi and G. Cuccu.
Variable Size Population for Dynamic Optimization with Genetic Programming.
In Proc. GECCO, 2009.

Bibliography– 94

E. Vladislavleva, G. Smits, and D. Den Hertog.
Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic
Regression via Pareto Genetic Programming.
IEEE Trans EC, 13(2):333–349, 2009.

N. Wagner, Z. Michalewicz, M. Khouja, and R. McGregor.
Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program
Model.
IEEE Trans EC, 2007.

J. Walker and J. Miller.
Predicting Prime Numbers Using Cartesian Genetic Programming.
In Proc. EuroGP, 2007.

J. A. Walker, K. Völk, S. L. Smith, and J. F. Miller.
Parallel Evolution using Multi-chromosome Cartesian Genetic Programming.
GPEM, 10:417–445, 2009.

W.-C. Wang, K.-W. Chau, C.-T. Cheng, and L. Qiu.
A comparison of performance of several artificial intelligence methods for
forecasting monthly discharge time series.
Journal of Hydrology, 374(3-4):294–306, 2009.

Bibliography– 95

W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen.
Automatic program repair with evolutionary computation.
Communications of the ACM, 53(5):109–116, June 2010.

P. Widera, J. Garibaldi, and N. Krasnogor.
GP challenge: Evolving energy function for protein structure prediction.
GPEM, 11:61–88, 2010.

T. Yu.
Hierarchical Processing for Evolving Recursive and Modular Programs Using
Higher-Order Functions and Lambda Abstraction.
GPEM, 2:345–380, 2001.

Bibliography– 96

	Introduction
	Background
	What is genetic programming?
	Summary of our first glimpse at GP
	Life demonstration of GP using ECJ
	Assessment of GP techniques
	Case study
	A more detailed view on GP (vanilla GP is not the whole story)
	The Challenges for GP
	Variants of GP
	Selected theoretical results
	Applications of GP
	Additional resources
	Bibliography

