Głębokie sieci konwolucyjne i predykcja strukturalna dla problemów segmentacji naczyń krwionośnych w medycznych obrazowaniach okulistycznych

Paweł Liskowski, Krzysztof Krawiec

Grupa Inteligencji Obliczeniowej Instytut Informatyki, Politechnika Poznańska

Uczenie maszynowe w robotyce i przetwarzaniu obrazów Komitet Automatyki i Informatyki PAN, Politechnika Poznańska 18 maja 2018

Diagnosing anomalies in human eye

- Condition of blood vessels in the retina determines the quality of vision.
- Diabetes:
 - 9.3% incidence in the US (2012); over 25% in those aged 65 or more,
 - 7th leading cause of death in the US
 - <u>Diabetic retinopathy</u> affects over a quarter of diabetics
- Medical imaging modalities:
 - Fundus imaging: RGB image of the back of the eye (flash)
 - Fluoresceine angiography (contrast agent required),
 - Optical coherence tomography (OCT).

Vessel segmentation problem in fundus imaging

Fundus image

Manual segmentation

STARE database (Hoover et al. 2000)

- TopCon TRV-50 fundus camera
- 20 subjects (images)
 - Includes pathological cases
- No division for training and test sets

DRIVE database (Staal et al. 2004)

- 3CCD fundus camera,
- 40 subjects
 - 7 with mild diabetic retinopathy
 - 33 clinical norm
- Training set: 20 images.
- Test set: 20 images.

Segmentation task \implies Classification task

- An example: a 27×27 patch centered at pixel
- The task: Determine the class of the central pixel in a patch
- Binary classification task: vessel vs. non-vessel

	DR	IVE	STARE		
Validation scheme Image dimensions	One-off tr 565 >	ain + test < 584	Leave-one-out 605×700		
Fundus images Total patches - positive (vessel) - negative	Training 20 3,857,818 516,152 3,341,666	Testing 20 3,993,351 538,475 3,454,876	Training 19 5,326,283 558,261 4,768,022	Testing 1 280,330 29,382 250,948	

Deep Convolutional Neural Network

Global contrast normalization

Brightness standardization

Zero-phase Component Analysis (ZCA Whitening)

$$W_{ZCA} = U\Lambda^{-1/2}U^T = \Sigma^{-1/2}$$

Augmentations

- Scaling by a factor between 0.7 and 1.2,
- Rotation by an angle from [-90, 90],
- Flipping horizontally or vertically,
- Gamma correction
- Overall: 11-fold increase of training set

Parameters and architectures

Training:

- 30,000 iterations (batches) = 19 epochs,
- Rectified Linear Units (ReLUs)
- Learning rate: 10⁻³, decays 0.1 every 10,000 iterations (batches).
- Momentum term: 0.9,
- Regularization: weight decay (L_2 penalty multiplier 5×10^{-4})
- Dropout ratio: 0.5 (first two FC layers)
- Total number of weights: ~48 millions
- Typical training time: ~10hrs (NVIDIA Titans and Tesla K20c cards). Testing:
- Querying time: 2.46 ms per pixel, 92 seconds per image (Titan) Frameworks:
 - Caffe, then moved to Theano, plus home-brew glue code in Python

 $\begin{array}{c} conv64 \rightarrow conv64 \rightarrow maxpool \rightarrow conv128 \rightarrow conv128 \rightarrow maxpool \rightarrow fc512 \rightarrow fc512$

	AUC	Acc	Acc*	Kappa	Sens	Spec
PLAIN	$.9767 \pm .0053$	$.9559 \pm .0071$	$.9551 \pm .0072$	$.7477 \pm .0451$	$.7495 \pm .0721$	$.9788 \pm .0081$
GCN	$.9787 \pm .0049$	$.9571 \pm .0064$	$.9572 \pm .0064$	$.7573 \pm .0394$	$.7620 \pm .0656$	$.9789 \pm .0072$
ZCA	$.9783 \pm .0062$	$.9563 \pm .0064$	$.9562 \pm .0066$	$.7598 \pm .0317$	$.7718 \pm .0490$	$.9783 \pm .0055$
AUGMENT	$.9744 \pm .0048$	$.9527 \pm .0068$	$.9512 \pm .0069$	$.7306 \pm .0431$	$.7376 \pm .0720$	$.9769 \pm .0086$
BALANCED	$.9820\pm.0045$	$.9309\pm.0107$	$.9620\pm.0051$	$.7021\pm.0305$	$.9307\pm.0274$	$.9304\pm.0133$
NO-POOL	$.9785\pm.0066$	$.9566\pm.0082$	$.9568\pm.0081$	$.7622\pm.0415$	$.7867\pm.0698$	$.9754\pm.0099$

(test set, mean and .95 confidence interval)

Best-to-date accuracy and AUC – better than 70+ other methods.

Browse Journals & Magazines > IEEE Transactions on Medical ... > Volume: 35 Issue: 11 😮

Segmenting Retinal Blood Vessels With Deep Neural Networks

Related Articles

Extraction of rules from artificial neural networks for nonlinear regression

Time delays and stimulus-dependent pattern formation in periodic environments in...

Structured prediction

- Predictions for neighboring pixels are correlated.
- Idea: Classify multiple neighboring pixels (here: 5x5 square).
- Network returns predictions for 25 pixels simultaneously.

Structured prediction: Results (DRIVE)

Improved Acc and AUC by up to 1%

	s	AUC	Acc	Kappa	Sens	Spec
BALANCED-SP	3	.9787	.9507	.7925	.8460	.9673
NO-POOL-SP	3	.9771	.9519	.7891	.8020	.9757
BALANCED-SP	5	.9788	.9530	.7953	.8149	.9749
NO-POOL-SP	5	.9790	.9535	.7910	.7811	.9807
BALANCED-SP	7	.9729	.9503	.7821	.7996	.9740
NO-POOL-SP	7	.9747	.9518	.7828	.7750	.9795

... and more

- Knowledge transfer
- Central vessel reflex
- Detecting capillaries

Segmenting 3D OCT images

No benchmarks available. Hard to label. Lots of data (one image ~ 150MB)

Labeling OCT image

File Edit

Credits: Bartosz Wieloch

Labeling OCT image

3rd dimension (image 'layers') interpreted as channels

Single example: 27x27x27=19,683 voxels!

Single patch: 27x27 with 27 channels.

Data split	Preprocess.	Model	AUC	Acc	Kappa	Sens	Spec
random	GCN	PLAIN	0.9895	0.9865	0.9831	0.988	0.9851
	SCALING	PLAIN	0.9899	0.988	0.9861	0.9888	0.9873
spatial	GCN	PLAIN	0.9875	0.9722	0.9544	0.9574	0.987
	SCALING	PLAIN	0.9892	0.9773	0.9646	0.9685	0.9861
random	GCN	NOPOOL	0.9898	0.9872	0.9845	0.988	0.9864
	SCALING	NOPOOL	0.9899	0.9875	0.985	0.9883	0.9866
spatial	GCN	NOPOOL	0.9888	0.9753	0.9606	0.9627	0.9879
	SCALING	NOPOOL	0.9882	0.9521	0.9142	0.9154	0.9888

Summary

- Superb accuracy on challenging segmentation tasks.
 - No explicit domain knowledge required.
 - Versatile.
- Challenges: training time, querying time.

Summary

- Superb accuracy on challenging segmentation tasks.
 - No explicit domain knowledge required.
 - Versatile.
- Challenges: training time, querying time.

Credits: Bartosz Wieloch

National Centre for Research and Development:

Development of Interferometric Imaging Methods for Investigation of Dynamics of Biological Systems (2013–2015), NCBiR PBS1/A9/20/2013, 5,926,260PLN

P. Liskowski, K. Krawiec, Segmenting Retinal Blood Vessels with Deep Neural Networks, *IEEE Transactions on Medical Imaging*, vol. 35(11), 2016, pp. 2369-2380. M. Szkulmowski, P.

Liskowski, B. Wieloch, K. Krawiec, and B. Sikorski. Convolutional Neural Networks for Artifact Free OCT Retinal Angiography, The Annual Meeting of the Association for Research in Vision and Ophthalmology, 2017.