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Materiały dydaktyczne

Caveat: This is not a course on machine learning.
See: Uczenie Maszynowe i Sieci Neuronowe, ISWD, sem. 1

This is the first edition of this course.

Why English?

Why are the slides so ascetic?
file:///Users/krawiec/zajecia/EIO/wyklad/other/MIW-DL.pdf

Bugs and glitches possible.
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Credits

The author of these slides acknowledges the use of following sources:

The books cited earlier

Fei-Fei Li, Justin Johnson, Serena Yeung, the authors of the course CS231n at
Stanford University (2017, with permission)

Wikipedia

Other public resources

DLB
The Deep Learning textbook is a resource intended to help students and practitioners
enter the field of machine learning in general and deep learning in particular. The online
version of the book is now complete and will remain available online for free.
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Fundamentals
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What is an [artificial] neural network? (ANN)

A number of interconnected, relatively simple elementary processing units.

The expressive power stems from the architecture and the number of entities, not
from their individual capabilities.
An alternative model of computation (bio-inspired, but very loosely).

The program implemented by the configuration (parameters and hyperparameters)
Input data fed into network
The network responds with an output
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Biological inspirations for ANNs

Essential in the early days of the field, now largely forgotten.

ANNs’ units are very very crude models of biological neurons.
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A bit of history

Beginnings: 1940s (McCulloch and Pitts, 1943)

Perceptron: (Rosenblatt, 1958)
First wave of popularity: late 1980s – mid 1990s

Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
(Rumelhart, McClelland, and PDP Research Group, 1986),

Then: Neural network winter
Saturation of capabilities.
Growing popularity and performance of other ML methods (support vector machines
(SVM), random forests, Bayesian models, etc. )

Great come-back: ∼2005 and on

New wave: Deep Learning

Facilitated by conceptual developments and growing affordability of computing
power.
Key figures:

Geoffrey Hinton, Yann LeCun, Juergen Schmidhuber, Joshua Bengio, Andrew Ng
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State of the art

Currently: one of the most successful paradigms of AI and machine learning (ML),
particularly in:

image analysis, pattern recognition, computer vision,
natural language processing,
generative models.

Brought the capability to handle (simulate, train, query) large, deep (many-layers)
networks.

Rich branch of research on the verge of AI, ML, and other disciplines (e.g., cognitive
sciences)

A broad range of approaches and architectures: fuzzy, probabilistic, evolutionary,
spiking, counterpropagation, discrete, bidirectional, ...
Handles surprisingly well different data representations, both:

fixed-size: vectors, matrices, images, tensors,
variable-size: sequences, trees, graphs, text, ...
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Example: A sample of capabilities

A (size 1) sample of the contemporary capabilities of DL:

https://www.youtube.com/watch?v=G-kWNQJ4idw (Eslami et al., 2018)
S. M. Ali Eslami et al. “Neural scene representation and rendering”. en. In: Science

360.6394 (June 2018), pp. 1204–1210. issn: 0036-8075, 1095-9203. doi:
10.1126/science.aar6170. url:

http://www.sciencemag.org/lookup/doi/10.1126/science.aar6170 (visited on
08/16/2018)EIO K. Krawiec 13
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[Artificial] neuron (unit)

Linear unit:

An aggregating function: typically a weighted sum of inputs:

y =
n∑

i=1

wixi + b

where wi - weights, b - bias

Convenient ‘implementation’:

y =
n∑

i=0

wixi

where x0 ≡ 1 or x0 ≡ −1.
Weighted sum of inputs sometimes referred to as excitation or activation.

Can take on a different form, e.g., ||w − x ||2)

Typically implemented in a stateless (memory-less) manner.

Implements a dychotomizer: divides the space of inputs into the positive and the
negative half-space,

There is no point in composing linear units: their composition is a linear unit
(weighted sum of weighted sums).

Nevertheless, used in contemporary architectures on multiple occasions.
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Unit
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Nonlinear unit

Nonlinear unit:

A weighted sum of inputs passed through a form of nonlinearity:

y = σ(
n∑

i=1

wixi + b)

where σ is some form of nonlinearity.

Composition adds expressibility.
Types of nonlinearities (activation functions) used in ANNs:

Bounded codomain: typically S-shaped (hence σ):
Bipolar: tanh, codomain [−1, 1]
Unipolar: sig , codomain [0, 1]

sig(x) =
1

1 + exp(−βx)
,
where β controls the steepness of the slope.

Unbounded codomain: e.g., Rectified Linear Unit (ReLU):

relu(x) = max(x , 0)
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Activation functions
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Common abstraction of unit: Layer

Computational capabilities of a single unit are limited.

Neurons typically combined into layers (vectors of unit)
The simplest layers are one-dimensional, but sometimes we endow them with some
higher-dimensional topology:

matrix (2D)
tensor (nD, n ≥ 3)

Later on, our smallest unit of discourse will be a layer (even if it features just one
unit).
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Key features of the neural computing paradigm

Continuous
Opens the door to the use of whole lot of maths.
Does not preclude handling discrete variables (via, e.g., output thresholding)

Non-symbolic (sometimes referred to as subsymbolic)
Distributed, and hence:

Easily parallelizable
Robust to local failures (kind of, mostly when implemented in hardware)

AI researchers develop ‘Darwin,’ a neuromorphic chip based on spiking neural networks,
December 23, 2015, Science China Press
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ANNs are universal approximators (Cybenko, 1989)

Let ϕ(·) be a nonconstant, bounded, and monotonically-increasing continuous function.
Let Im denote the m-dimensional unit hypercube [0, 1]m. The space of continuous
functions on Im is denoted by C(Im). Then, given any ε > 0 and any function f ∈ C(Im),
there exist an integer N, real constants vi , bi ∈ R and real vectors wi ∈ Rm, where
i = 1, · · · ,N, such that we may define:

F (x) =
N∑
i=1

viϕ
(
wT

i x + bi
)

as an approximate realization of the function f , where f is independent of ϕ; that is,

|F (x)− f (x)| < ε

for all x ∈ Im.

In brief: a linear combination of monotonic nonlinearities (ANN with one sigmoid layer
followed by a linear layer) can approximate any continuous function f arbitrarily well.
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A note on expressibility

A single unit partitions the input space into two half-spaces.

Two layers of units can ‘carve out’ an arbitrary convex polyhedron in the input space.

A third layer can combine multiple convex regions into an arbitrary shape.

Single units may approximate logical operators: and, or, nor, ...
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Units can be arranged in arbitrary architectures

Main line of division:
Feed-forwarded
Feed-back (recurrent)

Implications:
The former are stateless, the latter stateful.
Both used in contemporary architectures.

Note: Some architectures do not feature explicitly defined inputs/outputs (e.g., the
Hopfield network is a clique of units, each collecting signals from all units, including
itself).
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Examples of architectures: Hopfield network
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Examples of architectures: Fully connected
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Examples of architectures: Convolutional

convolution
layer

pooling
layer

input layer convolution
layers

fully-connected
layers

feature maps
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Examples of architectures: Convolutional Autoencoder (3D)
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Examples of architectures: Recurrent
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Terminology

Search space: Units’ weights. Typically Rn

In DL, n quite often very large (in the order of millions, billions, ...)

Network parameters: weights and biases of units

Network hyperparameters: everything else (architecture, learning algorithm, ...)

Note:

ANN 6= deep learning: Some ANNs are shallow.
Deep ML models can be designed/trained/synthesized using other paradigms of ML,
e.g.

Graphical models / Bayesian networks
Evolutionary computation

Related terms: representation learning, feature engineering
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Training ANNs
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Training ANNs

Q: If ANNs is a computing paradigm, how do we program them?

A: Via learning from examples.

We adopt the mindset of machine learning (ML): given a sample of examples
(training set), an inducer/learner produces a function (classifier, regression machine,
etc) that [attempts to] minimize certain loss function.

Most ANN learning algorithms leave network topology intact, and optimize only
networks’ parameters.
Classes of training algorithms:

Direct (e.g., for Hopfield network, single perceptron)
Generate-and-test (e.g., evolutionary computation)
Gradient-based

The task of training is NP-hard (Blum and Rivest, 1992):
We consider a 2-layer, 3-node, n-input neural network whose nodes compute linear
threshold functions of their inputs. We show that it is NP-complete to decide
whether there exist weights and thresholds for this network so that it produces
output consistent with a given set of training examples. We extend the result to
other simple networks.
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Types of error/loss functions

Properties:

Defines the quantity to be minimized by the learner (network).

Has minima at (globally) optimal configurations of weights.

Examples of loss functions:

Quadratic loss: L2(ŷ , y) = ||ŷ − y ||22 (square of Euclidean norm)
In practice same as Mean Square Error: MSE(ŷ , y) = 1

m
L2(ŷ , y)

Absolute loss: L1(ŷ , y) = ||ŷ − y ||1
Zero-one loss (accuracy of classification)

Implementation depends on the interpretation of output
L0−1(ŷ , c) = 1(argmax(ŷ = c))

Cross-entropy: the number of bits/nats required to encode P using distribution of
another variable Q

L(P,Q) = −Ex∼P logQ(x)

Discrete case:
L(P,Q) = −

∑
i

pi log qi

Compare to entropy, i.e., the expected information content: −
∑

i pi log pi

Categorical cross-entropy: analogous, but for multi-valued categorical variables.
EIO K. Krawiec 31



Error landscape

Given fixed y , loss L is a function of model parameters and may be visualized as an
error landscape (fitness landscape in EC).
The difficulty of minimizing L depends on:

The existence of global optimum.
The existence and number of local optima.
The ‘ruggedness’ of L.
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Perfect 6= good enough

Finding a good local optimum is often sufficient/satisfactory, because:
There exists a lavel required performance that is ’good enough’ (e.g., accuracy of
classification).

Related: the law of diminishing returns.

Training data is usually limited anyway, so we actually don’t know the exact value of
L – we only estimate it using the training sample.

For technical reasons, we often estimate L from an even smaller sample – a batch.

There’s noise in data.
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Classes of learning tasks (DLB 5.1.1)

Heteroassociation:
Classification: f : Rn → {1, . . . , k}

Binary classification: f : Rn → {0, 1}; alternatively: f : Rn → B
Anomaly detection (the anomaly class is very small and/or hard to model)

Classification with missing inputs.

Regression: f : Rn → R
Transcription: f : X→ T, where T is text (a sequence of words), and X is a piece of
‘relatively unstructured information’ (e.g., image; example: Google Street View
reading house numbers).

Machine translation: f : T1 → T2

Structured prediction (structured output): predicting a number (m) of labels
simultenously:

E.g., f : Rn → Bm

Other:
Autoassociation:

Denoising: f : Rn → Rn

Imputation of missing values: f : Rn
− → Rn

Synthesis and sampling: f : Rn → Rm, where n� m

Density estimation: f : Rn → [0, 1]
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Example: Denoising OCT imaging using convolutional autoencoder
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Example: Segmenting OCT imaging using convolutional autoencoder
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Gradient

Generalization of derivative to functions of multiple arguments.

∇f = [
∂f

∂x1
, . . . ,

∂f

∂xn
]

∇f is a function, as f .

Informs about the f ’s rate of change w.r.t. all its arguments.

Fundamental and extremely useful concept in many branches of CS/AI, in particular
in ANNs

Implication: diffability of components is important (and sometimes essential in
ANNs)
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Gradient descent (GD)

A heuristic algorithm that uses gradient as a guidance.

Simple formulation:
w ← w − η∇Lw

where η – learning speed (a small positive constant).
Guaranteed to converge to the global optimum for some problem classes (e.g.,
quadratic loss)
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Gradient: Remarks

Some caveats:
Assumption: knowledge about gradient in the current location can be translated into
parameter updates that take one closer to the global optimum.

Does not hold in general, but works surprisingly well in practice.

The probability of any given point being a local optimum quickly vanishes with the
number of dimensions.

This can be shown by analyzing the Hessian matrix of the error function (the positivity
of eigenvalues)
However, for the same reason, saddle points are more likely than local optima (DLB
8.2.3; [Dauphin et al. 2014])

Practical upshot: Gradient works well in practice, though it’s not obvious that
following it (in an iterative search process) is always the best thing to do.

Otherwords: Gradient is not necessarily the best search driver.
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Delta rule for linear units

Application/implementation of GD to a single linear unit trained under quadratic loss.

w ← w − η∇Lw

Recall quadratic loss:

L2(ŷ , y) = ||ŷ − y ||22 =
∑
i

(ŷi − yi )
2 =

∑
i

δ2
i

∇Lw = [. . . ,
∂Lw

∂wi
, . . .]

. . .

w ← w − ηδx
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Motivations: Why compose units?

Some problems cannot be solved with a single unit.

Q:

Would combining multiple linear units help?
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Delta rule for non-linear units

Application/implementation of GD to a single nonlinear unit trained under quadratic loss.

w ← w − η∇Lw

Quadratic loss:
L2(ŷ , y) = ||ŷ − y ||22 =

∑
i

(ŷi − yi )
2 =

∑
i

δ2
i

∇Lw = [. . . ,
∂Lw

∂wi
, . . .]

. . .

w ← w − ηδx ∂f
∂e

where ∂f
∂e

is the derivative of the activation function wrt its argument (excitation).
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Activation functions

How would ∂f
∂x

look like for particular activation functions?
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Error backpropagation I

Error backpropagation is essentially application of gradient descent to entire ANNs
(rather than to individual units).

This is crucial for determining the error of hidden units in a network.
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Error backpropagation II

The chain rule implies that the error associated with a given hidden unit is a
weighted sum of the errors committed by its successors:

δi =
∑
j

w(i→j)δj

where w(i→j) is the weight connecting ith unit (in some layer) with jth unit (in a
subsequent layer – usually), i.e., the latter unit is the successor of the former one in
this sense.

Some terminology:

Forward pass vs. backward pass

Training vs. querying
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ANN as a (special case of) computation graph

Important: chain rule works for any differentiable components, not just scalar product
and common activation functions.
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Technical realization of gradient

Numerical differentiation
Usually an overkill in ANNs, as we know the analytical formulas of the expressions
being differentiated.

Symbolic differentiation
Elegant, but may lead to convoluted expressions.
See, e.g. SymPy https://www.sympy.org/

Automatic differentiation
Relies on the concept of dual numbers (ε2 = 0)
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Automatic Differentiation

Let’s extend the domain of real numbers to dual numbers.

z = a + bε

where a, b ∈ R, and ε has the following property: ε2 = 0 (nilpotence). Note the analogy
to extending the reals R to complex numbers C .

Consider f (x) = x2. Now, what is f (x) if x is a dual number?

f (a + bε) = (a + bε)2 = a2 + 2abε+ b2ε2 = f (a) + f ′(a)bε

Is this a coincidence?

No. For any polynomial:
P(a + bε) = P(a) + bP ′(a)ε

Even more generally, this holds for any analytic function, by the virtue of Taylor
expansion:

f (a + bε) =
∞∑
n=0

f (n)(a)bnεn

n!
= f (a) + bf ′(a)ε

(note what happens to Taylor expansion terms for n ≥ 2)

Practical upshot: dual numbers allow us to calculate gradients (symbolically) alongside
with the signals propagated through an ANN.

EIO K. Krawiec 48



Automatic Differentiation

Let’s extend the domain of real numbers to dual numbers.

z = a + bε

where a, b ∈ R, and ε has the following property: ε2 = 0 (nilpotence). Note the analogy
to extending the reals R to complex numbers C .

Consider f (x) = x2. Now, what is f (x) if x is a dual number?

f (a + bε) = (a + bε)2 = a2 + 2abε+ b2ε2 = f (a) + f ′(a)bε

Is this a coincidence?

No. For any polynomial:
P(a + bε) = P(a) + bP ′(a)ε

Even more generally, this holds for any analytic function, by the virtue of Taylor
expansion:

f (a + bε) =
∞∑
n=0

f (n)(a)bnεn

n!
= f (a) + bf ′(a)ε

(note what happens to Taylor expansion terms for n ≥ 2)

Practical upshot: dual numbers allow us to calculate gradients (symbolically) alongside
with the signals propagated through an ANN.

EIO K. Krawiec 49



Automatic Differentiation

Let’s extend the domain of real numbers to dual numbers.

z = a + bε

where a, b ∈ R, and ε has the following property: ε2 = 0 (nilpotence). Note the analogy
to extending the reals R to complex numbers C .

Consider f (x) = x2. Now, what is f (x) if x is a dual number?

f (a + bε) = (a + bε)2 = a2 + 2abε+ b2ε2 = f (a) + f ′(a)bε

Is this a coincidence?

No. For any polynomial:
P(a + bε) = P(a) + bP ′(a)ε

Even more generally, this holds for any analytic function, by the virtue of Taylor
expansion:

f (a + bε) =
∞∑
n=0

f (n)(a)bnεn

n!
= f (a) + bf ′(a)ε

(note what happens to Taylor expansion terms for n ≥ 2)

Practical upshot: dual numbers allow us to calculate gradients (symbolically) alongside
with the signals propagated through an ANN.EIO K. Krawiec 50



Example: Automatic Differentiation in Scala
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Challenges in ANN training

Local optima and saddle points (already covered)

Overfitting

Initialization of parameters
Setting of hyperparametres

Number of layers and their sizes
Learning speed
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Overfitting vs. underfitting

Overfitting particularly likely in ANNs due to large number of parameters (routinely
in the order of 100ks and millions in SOTA ANNs)

Applies to all types of tasks, not only regression.

Natural countermeasure: Prefer small architectures.
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Overfitting: Remedies

Regularization: constraining network’s parameters in order to reduce their effective
number.

When is a parameter (weight) wi ineffective?

L2 loss with L1 regularization (ridge regression):
Tends to select features, because there is no additional penalty for distributing weights
unevenly (e.g., 2 + 2 = 1 + 3).

L2(ŷ , y) = ||ŷ − y ||22 + λ||w||1
L2 loss with L2 regularization (lasso regression):

Tends to weigh features, because there is additional penalty for distributing weights
unevenly (e.g., 22 + 22 < 12 + 32).

L2(ŷ , y) = ||ŷ − y ||22 + λ||w||22
λ controls the complexity of the resulting model.
In extreme cases, regularization may ‘erode’ some weights to zero, and the network
can be pruned.

In small networks, this may facilitate human interpretation – see the concept of
explainable ML/AI.
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Overfitting: Remedies

Early stopping: watch your generalization capability while training and stop once it
starts to deteriorate.

Requires partitioning the dataset into training, validation, and test set.

Note:
Applicable to any iterative learning algorithm.
Validation set ‘consumes’ part of (potentially valuable) training data.
Temporary fluctuations of validation loss may lead to premature stopping – robust
decision rule is required.
Frequent validation may incurr significant computational overheads.
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Making ANN training effective and efficient
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Weight initialization

Prehistoric times: just draw weights (including biases) at random from a small
interval (typically something between [−0.01, 0.01] and [−0.1, 0.1]).

Typically works well for small (shallow) networks.
However, may lead to problems for deeper networks.

The problem: naive initialization may lead to undesired distributions of activations in
the subsequent layers.

Example: distributions of activations in a 10-layer fully-connected network, 500 neurons
per layer, tanh activation function, init range [−0.01, 0.01].

(courtesy of CS231n, Fei-Fei et al.)

Implications for backpropagation of gradient?
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Weight initialization

Example: Same network, init range [−1.00, 1.00].

(courtesy of CS231n, Fei-Fei et al.)

Implications for backpropagation of gradient?
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Weight initialization

Example: Same network, ‘Xavier’ initialization (Glorot and Bengio, 2010)

Randomly drawn weights divided by
√
fanin factor.

(courtesy of CS231n, Fei-Fei et al.)

Implications for backpropagation of gradient?
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Weight initialization

What about other activation functions?
Example: Same network, ‘Xavier’ initialization, but ReLU activation functions.

(courtesy of CS231n, Fei-Fei et al.)
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Weight initialization

Example: Same network (ReLU), (He et al., 2015b) initialization

Randomly drawn weights divided by
√

fanin/2 factor.

(courtesy of CS231n, Fei-Fei et al.)

Lessons learned:
Initialization and type of activation function are tightly linked.
Proper operation of a network depends heavily on the distribution of activations.
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Batch normalization

Observation: activations ranging in intervals typical for N (0, 1) entice significant
gradients from activation functions and lead to effective error backpropagation.

Idea: standardize the activations between each pair of layers: [Ioffe and Szegedy,
2015]

x̂ (k) =
x (k) − E [x (k)]√

Var [x (k)]

where k stands for batch number.

However, such forced normalization could counteract learning. In practice, we want to
allow the network to moderately shift and squeeze the distribution. Hence,

ŷ = γx̂ + β
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Batch normalization

Features:

Standardizes the excitations.

Differentiable.

Important: should be placed between the aggregation layer (usually linear layer) and
the activation layer (e.g., ReLU).

Makes training more stable and more dependant on initialization.

Can be considered as a form of regularization.

Technical: requires protection from division by zero (
√

Var [x (k) + ε])

At test time, uses the mean and variance calculated from the entire training set.

BN can be seen as slight randomization of the learning process (sample parameters
calculated from relatively small batches), which in itself may make learning more
robust.
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Dropout

Temporarily disable a randomly selected subset of units in each forward pass (or
batch).
Typical dropout probability: p = 0.5

The network needs to build alternative pathways to counteract the dropount.
This makes the knowledge representation acquired by the network more distributed
and the network more robust.
Lessens the likelihood of co-adaptation of features
Can be shown to be equivalent to training an exponentially large ensemble of
partially ‘crippled’ models.
Technical: At test time, activations need to be corrected (multiplied by p) to
compensate for the lower expected aggregated input at training time.

Often technically realized by ‘inverted dropout’: divide by p in training, don’t do
anything in testing.
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Data augmentation as a form of regularization I

Idea: Artificially increase the training size by augmenting it with new examples
obtained from existing ones via some transformations.

Makes sense only if the learner is expected to remain invariant with respect to those
transformations.
Most common application area: image analysis. Typical transformations:

Geometric (2D): mirroring, small translations, rotations, affine transforms, cropping

Geometric (3D): affine transforms (stretch, shear, perspective distortion),
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Data augmentation as a form of regularization II

Other: contrast enhancement, adding noise, color jitter (apply PCA to the RGB space,
draw an offset from the resulting principal axis, and apply to all pixels)
Practical upshot: facilitates learning when data is scarce.

Transformations need to be ‘semantically justified’ by the circumstances of a given
task.

Applicable beyond image domains, e.g., time-invariance in time series.
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks

A class of network architectures designed to efficiently learn and process raster
images.

Explicitly invariant w.r.t. translations.

Typically exhibits also some degree of invariance w.r.t. scaling.

Core building block: convolutional layer: a layer that convolves the input raster with
a trainable tensor of weights.

convolution
layer

pooling
layer

input layer convolution
layers

fully-connected
layers

feature maps
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Convolutional Neural Networks

Convolution:

Linear operation on functions

Fundamental in signal processing (cf. convolution theorem)

Weighted sum of pixels from small local patch in the previous layer

Weights defined by a mask
In classical signal processing, weights are usually assumed to be given.

In CNNs, we learn/optimize them.
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Convolutional Neural Networks

Implications:

Not fully-connected anymore.

Weight sharing: all units in a layer share the same vector of weights.

Reduction of the number of parameters lowers the risk of overfitting.

Provides for translational invariance, which is (usually) desirable in computer vision.

Generalizable to an arbitrary number of dimensions (not necessarily spatial ones).

Some terminology:

Feature map: an array of units that share the same weight vector.

A layer typically comprises a number of feature maps.

Pooling: aggregating the outputs from spatially close units in the previous layer
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CNNs: Illustrative example
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CNNs: Feature engineering

Transformation-invariant features emerge in intermediate layers - feature engineering.

Spontaneous formation of filters capable of detecting edges, corners, even textural
features.

Striking similarity to filters that are well-known in image processing – e.g., Gabor
wavelets.

(Krizhevsky, Sutskever, and Hinton, 2017)

EIO K. Krawiec 72



CNNs: Pooling

Properties:

Parameter-free - no training required

Reduce resolution

Types of pooling:

Max pooling – particularly desirable for detecting salient features; good (though
selective) propagation of gradient

Average pooling
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CNNs: Technicalities

Terminology:

Stride: controls how the resolution of a FOV of a unit matches that of the previous
layer

Padding: handling edge pixels: same, valid, ...

Some observations:
Nonlinear transformations still required between layers (as in FC networks) -
obviously.

ReLUs most popular; sometimes tanh used too.

Small RFs usually preferred: cumulatively provide arbitrary ‘effective’ RF size while
engaging fewer params

E.g., compare one 7x7 conv feature map with two stacked 3x3 conv feature maps

Recall: all these concepts are generalizable to arbitrary number of dimensions.
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CNNs: A bit of history

Pioneering works

Neocognitron (Fukushima, 1980)

LeNets (Lecun et al., 1998)
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CNNs: A bit of history

LeNets (Lecun et al., 1998)
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CNNs: A bit of history

AlexNet (Krizhevsky, Sutskever, and Hinton, 2017)
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CNNs: A bit of history

AlexNet (Krizhevsky, Sutskever, and Hinton, 2017)
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On 1x1 convolutions

Consider a convolutional feature map with 1x1 FOV/ROI.

Does not seem to make sense, at first sight.

Just a linear transformation of the single input pixel.

However:

In presence of multiple feature maps in the previous layer, provides their mixing.

Reduces the depth of tensors.

Is now a common building block in many large-scale CNN architectures (e.g.,
Inception network).
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Inception/GoogLeNet architecture

Principles (Szegedy et al., 2014):

Modularity

Basic building block: Inception module

1x1 convolution bottlenecks the signals and reduces immensely the number of
parameters,
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Inception/GoogLeNet architecture

1 Stem network (2x convolution + pooling)
2 A stack of Inception modules
3 Fully-connected classification layers (involve just one FC layer)
4 Auxiliary fully-connected classification layers to provide additional gradient at the

intermediate levels of Inception stack.
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Interlude: modularity

Bottlenecking might be a universal principle for constructing large-scale AI architectures.

Forces emergence of compact and informative intermediate representations

Encourages modularity

Relation to program synthesis (Krzysztof Krawiec, 2012).

Illustrative example: calculation of median of an array.
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ResNet

Residual (skip) connections to ease the propagation of gradient (He et al., 2015a)

Motivating principle: adding additional layers to an existing architecture should not
in principle deteriorate the accuracy (building atop of what’s already learned)
152 layers (!), made of residual blocks with convolutions of different sizes and
depths, with occasional downsampling (stride 2), with just one FC layer at the end
Also involves bottlenecking, like in GoogLeNet
Batch normalization, Xavier initialization, ordinary SGD with momentum (though
learning rate adapted reactively to validation error), weight decay,
3.57% top-5 error rate in 2015 - absolute winner, superhuman accuracy.
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Further developments

Wide residual Networks (WideNets) [Zagoruyko et al. 2016]: emphasis on residual
connections, rather than net (outperformed ResNet with ‘only’ 50 layers)

Fractal networks, FractalNet [Larsson et al. 2017]: parallel multi-scale, trained by
dropping out entire modules/paths

Deep networks with stochastic depth [Huang et al. 2016]: a bit like dropout on the
level of entire layers)

Network in Network (NiN),

Also: scaled-down variants of the above, e.g., SqueezeNet [Iandola et al. 2017]

and more ...
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Learning via autoassociation
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Learning via autoassociation

Recall the types of learning tasks (classification, regression, ...)
Common characteristics: a single ‘target’ variable that is to be predicted

Example: Image → {Cat,Dog}
Typically very succinct and specific characterization of the input.
Often refers to high-level conceptual framework.

Consequences:

Learning mapping from input to specific concepts

‘Targeted’ features

Poor gradient in learning

Relatively high risk of overfitting
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Fooling neural nets

Even small perturbations of input can occasionally lead to qualitative changes in output.

Particularly when created in an adversarial manner

E.g., a generator ANN is trained to cause the classifier to make mistakes.

Related to (among others) Generative Networks, and in particular to Generative
Adversarial Networks

(I. J. Goodfellow, Shlens, and Szegedy, 2014)
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Fooling neural nets

(Athalye et al., 2017)
https://www.youtube.com/watch?v=piYnd_wYlT8
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Autoassociation

A type of learning task in which the goal is to associate the input with itself.

A special case of heteroassociation

Conceptual argument: being able to reproduce/restore the (possibly complex) input
from some other input requires good understanding of the domain/task.

Practical implication in gradient-based learning: rich information that can be
backpropagated through the network.

Core architecture: autoencoder: a composition of encoder f and decoder g ,
connected via a latent layer h.

EIO K. Krawiec 91



Autoencoders

Autoencoder: system trained to reproduce its input, however, under constraints, i.e.
‘designed to be unable to learn to copy perfectly’ (I. Goodfellow, Bengio, and
Courville, 2016)

Can be deterministic or probabilistic.
Good for dimensionality reduction, feature learning, and generative modeling.

Common scenario: train an AC, take f and use it as feature extractor in some other
architecture.
Another: train an AC, take g and use it as a generator of examples.

Because the goal is to reproduce the input, the output is typically not of interest.
The focus is on the intermediate (latent) representations emerging in the hidden
layers. The system is enforced to elaborate them via:

Reduced dimensionality of the latent layer(s) h
Regularization

Nomenclature:
If |x | > |h|: undercomplete autoencoder.
If |x | < |h|: overcomplete autoencoder.
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Convolutional autoencoder

The encoder and decoder can be essentially any networks:

Fractional/transposed convolutions used on the decoder side.
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Training autoencoders

Typical loss definition:
L(x , g(f (x)))

Type of multivariate multiple regression task (nonlinear)

When L = L2 and both f and g are linear functions, an autoencoder learns PCA.

Nonlinear encoders and decoders give rise to more sophisticated transformations.
The main challenge: the infinite capacity of real numbers.

Even a single real number can store an arbitrary amount of information.
Conceptual illustration: given expressive enough f and g , f can learn to encode each
training example into a unique number, while g can learn to map them back to the
original input space.
Implication: poor generalization.
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Regularizing autoencoders

Rather than keeping f and g shallow and/or keeping |h| small, we may enforce other
properties on h, like:

sparsity,

smallness of the derivative of the representation,

robustness to noise and/or missing inputs.
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Regularizing for sparsity

The goal: to come up with latent representation h such that only a small number units in
h are active at any given time (for any given example)

L(x , g(f (x))) + Ω(h)

where Ω is sparsity penalty. Common choice:

L(x , g(f (x))) +
∑
i

λ|hi |

Has an elegant probabilistic interpretation in terms of priors.

Another idea: use ReLUs in the latent layer – causes some of the latent units to be
exactly zero, and in this sense sparse.
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Other types of autoencoders

Autoencoders regularized with the second derivative:

L(x , g(f (x))) + λ
∑
i

||∇xhi ||2

The extra term penalizes the network for coming up with latent representations that
have large derivatives w.r.t. the input x , i.e. such that change abruptly.

The induced latent representation will be likely smooth

Computationally convenient: the gradient is calculated during training anyway.

Denoising autoencoders:
L(x , g(f (x̃)))

where x̃ is a corrupted copy of x (e.g., with some noise added).

Note: strictly speaking, not autoassociative learning anymore.

Can be used for denoising, or still as a way of making the latent representation more
robust.
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Stochastic perspective on autoencoders

The deterministic autoencoders g(f (x)) can be seen as a special case of stochastic
autoencoders, in which x , y (and also h) are random variables. Then we have:

pe(h|x): encoding (conditional) distribution,

pd(x |h): decoding (conditional) distribution,

The variables in x are typically assumed to be independent given h

Training is equivalent to minimizing the negative log likelihood of the decoder:

− log pd(x |h)

In practice, some extra noise is being injected into the network.
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Stochastic perspective on denoising autoencoders

Denoising autoencoder minimizes the following expectation:

−Ex∼p̂data(x)Ex̃∼C(x̃|x) log pd(x |h = f (x̃))

where:

C(x̃ |x) is a corruption process (a conditional distribution over corrupted samples x̃
given data sample x ,

p̂data is the training distribution,

The autoencoder attempts to map the corrupted datapoints x̃ back to the original
datapoint.

g(f (x̃)) esimates the center of mas of the clean points x which could have given rise
to x̃

Can be interpreted in terms of vector field (‘forces’ acting on xs)
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Variational autoencoders

Stochastic autoencoder designed at addressing the problem of infinite capacity of reals.

The values obtained at the latent layer are not directly fed into the decoder g .
Rather than that, they parameterize a probability distribution from which samples
are drawn and fed into g .
The typical distribution of choice: normal distribution.

The encoder builds µ and σ, and h (z) is drawn from that distribution.

Particularly useful in generative models.
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Variational autoencoders: Impact on the latent space

VAE addresses the problem of the unpredictability of distribution on latent variables
(arbitrality of codes in h): similar inputs will lead to similar zs.

However, this model trained under normal reconstruction loss will tend to move the
means away from each other =⇒ poor generalization and discontinuity in latent
space.

Loss function has to be redefined to allow for sampling on one hand, and be
compact on the other.

Idea: force the distribution of z to match a specific distribution
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Variational autoencoders: MNIST Latent space

VAE latent space optimized only for reconstruction loss:
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Variational autoencoders: MNIST Latent space

VAE latent space optimized only for divergence loss:
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Variational autoencoders: MNIST Latent space

VAE latent space optimized only for divergence loss:
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Variational autoencoders
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Applications of autoencoders

Using trained autoencoders for:

denoising

Using latent spaces for:

improved interpretability

better performance and lower demand on resources (time, memory)
semantic hashing, i.e., mapping continuous entries to binary codes and back (a hash
function on latent binary codes facilitates efficient search); used both with text and
images

Side note: interesting trick to enforce the code to be close to binary: adding random
noise before nonlinearity, so that the units are forced to extremalize their outputs

manifold learning,

generative models.
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%

Recurrent Neural Networks (RNNs)
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