
Deep Neural Networks
(Głębokie Sieci Neuronowe)

Module 5: Graph Neural Networks
 

Krzysztof Krawiec

Wydział Informatyki i Telekomunikacji
Politechnika Poznańska

2019/2020
http://www.cs.put.poznan.pl/kkrawiec/ 

http://www.cs.put.poznan.pl/kkrawiec/


First: some news: the power of good old UNet
https://ai.googleblog.com/2020/01/using-machine-learning-to-nowcast.html?m=1 

2

https://ai.googleblog.com/2020/01/using-machine-learning-to-nowcast.html?m=1


Outline
1. Introduction
2. Message-passing GNNs: A use case
3. Covariant graph networks
4. Attempts of unification

Recall: Sequence processing will be intensely discussed in the Linguistic 
Engineering course. 

3



Introduction

4



Motivations for processing graphs
● A range of application areas involve non-tensor data: computer vision, 

chemistry, network science, programs, …
● Graphs are natural for modeling many natural phenomena: relationships, 

flows, dependencies, ...

5



Challenges in processing graphs with NNs
The primary challenge: variable-size structure. 
Compared to sequence learning:
● Sequences are 1D structures; trees and graphs aren’t.
● More arbitrarity in traversing the structure:

○ Which node to start with? Which to select next? Or should we parse all nodes in parallel?

● No ‘natural ordering’ of constituents of the structure. 
○ Note that for sequences such ordering is explicit.

Therefore:
● Most approaches assume that graph structure does not change during 

processing.
● Rather than that, they process iteratively the transient states generated for 

and associated with individual nodes and edges (~ message passing).
6



Types of Graph NNs (GNNs)
● Message-passing
● Graph-2-graph transducers
● Generic models (e.g. Battaglia et al.)

7



Message-passing GNNs: A use case
Graph Representations for Higher-Order Logic and Theorem Proving
Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, Christian Szegedy
https://arxiv.org/abs/1905.10006 

8

https://arxiv.org/abs/1905.10006


Application area
● The goal: To improve the effectiveness of theorem provers. 
● Key question/challenge: How to navigate in the vast space of premises (and 

corresponding paths of proof) during theorem proving? 

The benchmark:
● HOList (Bansal et al. 2019): stateless theorem proving API

https://sites.google.com/view/holist/home 
● More than 20k mathematical theorems and their proofs (human-constructed).
● The HOList proof assistant allows ML algorithms to interact with the HOL 

Light interactive theorem prover.  

9

https://sites.google.com/view/holist/home


The hol-light database

https://github.com/brain-research/hol-light/blob/master/Tutorial/Recursive_definitions.ml 10

https://github.com/brain-research/hol-light/blob/master/Tutorial/Recursive_definitions.ml


Data representation
S-expressions, e.g.: f(x) is represented as

 (a (v (fun A B) f) (v A x)))

● a: function application
● v: is-a-variable; (v A a) states “a is a variable of type A”
● A, B: input and output types

Important: The authors consider also variants with bottom-up edges (each child 
points to its parents).

Motivation for graphs: TreeNNs focus on each node capturing only the properties 
of the subgraph rooted in that node. 11



ASTs: Tree vs. graph
Representation of the axiom:

Graph representations are more compact by avoiding subtree duplication (which 
then requires potentially costly testing for equivalence). 12



Scope of experiments
Input graphs can be transformed before feeding into a GNN.

Transformations considered by the authors:
● Sharing nodes of syntactically equal subexpressions (subexpression sharing).
● Sharing equal leaves of the AST (leaf sharing).
● Replacing all variable names by x (variable blinding).
● Removing all edges from nodes to their parents and only keeping those to 

their children (top down).
● Removing all edges from nodes to their children and only keeping those to 

their parents (bottom up).
● Adding random edges (random).

13



Impact of leaf and subexpression sharing
Statistics of the HOList database:

14



Core component: Message-passing GNN
Graph neural networks (GNNs) compute embeddings for nodes in a graph via 
consecutive rounds (also called hops) of end-to-end differentiable message 
passing. 

● Iterative aggregation (t) of information ‘received’ by each node from its 
neighbors. 

● The number of iterations (hops) T determines the effective size of the 
neighborhood (‘receptive field’).

● Individual mappings realized with multi-layer perceptrons (MLP).
● The resulting graph has exactly the same topology as the input one. 

○ Extra steps required to produce output for classification, regression, etc.

Next slides describe the steps of a single iteration of message passing. 15



Graph definition

where:
● V is a set of nodes, 
● E is a set of directed edges, 
● lV maps nodes to a fixed vocabulary of tokens, 
● lE maps each edge e to a single scalar indicating if the edge is to (or from) the 

first or the second child*, encoded as 0 and 1  (recall: we consider directed 
graphs, in general)

*child = node in this context

Definition of lE can be extended for graphs with labels on edges. 16



Propagation: Step 1
Separate embedding of each node v and edge e individually:

where:
● xt: trainable feature vector associated with t-th token (token/label embedding)
● lE: binary variable indicating the direction of the edge

This paper: |hv|=128

17



Propagation: Step 2
Generation of messages: for each edge (u,v) aggregates 
● the embeddings for u, v, 
● and the edge that connects them, 

separately for the parent (incoming) nodes (first formula) and the child (outgoing) 
nodes (second formula): 

18



Propagation: Step 3
Aggregation of messages for each node separately, based on averaged 
messages:

where:
● p(v): the number of parents of v
● c(v): the number of children of v

Comments:
● Just five MLPs in total. 
● The whole formalism becomes even simpler for undirected graphs.
● Notice the incremental character of the formula.  19



Message passing: Example (node B)
Single (t-th) step of processing:

● MLPs applied independently to each node and edge.
● What does the lowermost arrow remind you of? 

20



Comments
Model’s perception of the actual graph structure is quite limited. Recall the 
averaging in the aggregation step: 

Limitations:
● The aggregation network has no access to the number of adjacent nodes.
● Different sets of messages will be mapped to the some output.  

Question:
● What type of architecture is this message passing GNN?
● How to set T? What is its relationship with graph size?

21



Overall architecture for proof search
The approach uses two message-passing GNNs (same architecture, distinct 
weights) for:
1. Scoring the 41 predefined tactics used by the prover (Tactic Classifier)
2. Scoring the premises to follow in the next step of proof (Premise Scorer)

● The input to TC is only the current goal (an intermediate state in proof search)
● PS takes into account both the current goal and a candidate premise

● Node embedding used in both GNNs is relatively small (128), so the authors 
expand them afterwards to 1024 using 1x1 convolutions.

● Cross-entropy for permise scoring. 

22



Overall architecture

● GNNs operate as graph embeddings
○ Not to be confused with node and edge embeddings used by GNNs internally!

● Interesting combiner network: concatenates both inputs and their elementwise 
multiplication, and then applies 3 FC layers.  

● GNN-2 applied to premises off-line (?), so only the combiner network has to 
be applied to all goal-premise combinations for a given (sub)goal 23



Comments
● Learning mode: Imitation learning: the system learns to mimic the behavior of 

a human prover. 
○ Notice the difference with supervised learning (?)
○ A plausible alternative: reinforcement learning

● Training set derived from 10,200 top-level theorems.
○  ~375,000 proof steps (subgoals)

● Test set: 3,225 theorems. 
● Each positive examples is a triple fetched from a human proof:

○ the (sub)goal to be proven (at that step),
○ the tactic applied to it
○ a list of theorem parameters passed to the tactic (or special token for no parameter). 

● Negative examples: random pairing of goals with theorems, for theorems that 
have been used at least once in the training set. 

24



Loss function
Weighted combination of:
● cross-entropy loss of the tactic classifier, 
● cross-entropy loss of pairwise premise scorer, and 
● AUCROC loss (Burges et al. 2005; Eban et al. 2017):

where i ranges over the positive premises in batch b, and j ranges over the 
negatives in b.

Relation to ranking: an attempt to maximize the spread between the positives and 
negatives.  
 

25



Recall: Scope of experiments
Input graphs can be transformed before feeding into a GNN.

Transformations considered by the authors:
● Sharing nodes of syntactically equal subexpressions (subexpression sharing).
● Sharing equal leaves of the AST (leaf sharing).
● Replacing all variable names by x (variable blinding).
● Removing all edges from nodes to their parents and only keeping those to 

their children (top down).
● Removing all edges from nodes to their children and only keeping those to 

their parents (bottom up).
● Adding random edges (random).

26



Some results
The metric: Percentage of proofs closed 
on the validation set: running the prover 
once over the validation set using the 
parameterized tactics predicted by the 
checkpoint to guide proof search.

Conclusions: More hops helps. Subexpression sharing is essential. 27



28



Covariant graph networks
Predicting molecular properties with covariant compositional networks
Truong Son Hy, Shubhendu Trivedi, Horace Pan, Brandon M. Anderson, and Risi 
Kondor
https://doi.org/10.1063/1.5024797 

Covariant Compositional Networks For Learning Graphs
Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, Shubhendu Trivedi
http://arxiv.org/abs/1801.02144 

Summary: Address the question: which types of invariances should we care about 
when processing graphs?

29

https://doi.org/10.1063/1.5024797
http://arxiv.org/abs/1801.02144


Motivations
The two major issues that graph learning methods need to grapple with are:
● invariance to permutations,
● capturing structures at multiple different scales.

Claim: Invariant aggregation functions, of the type popularized by message 
passing neural networks, are not the most general way to build compositional 
models for compound objects, such as graphs.

For instance: 
● In CNNs, if the input image is translated, the activations in each layer 

translate in the same way (barring pooling etc.) 
● This quasi-invariance is called equivariance. 

30



Quasi-invariance in Comp-nets
Quasi-invariance amounts to asserting that the activation f i at any given node 
must only depend on Pi = (ej1 , ... , ejk) as a set and not on the internal ordering of 
the atoms ej1 , ... , ejk making up the receptive field.

However, this property is potentially problematic since we lose all information 
about which vertex (in the receptive field) has contributed what to the aggregate 
information (activation). 

The solution is to regard the Pi receptive fields as ordered sets and explicitly 
establish how f i co-varies with the internal ordering of the receptive fields.

31



Formal definition of covariance

32



Implementation
Uses k-order tensors and permutation matrices to implement the covariance. 

Represents excitations as vectors and `stacks’ permutation matrices using 
Kronecker product: 

33



Receptive fields

34



35



Benchmarks
Classification:
1. MUTAG: 188 mutagenic aromatic and heteroaromatic compounds
2. PTC: 344 chemical compounds that have been tested for positive or negative 

toxicity in lab rats
3. NCI1 and NCI109: 4110 and 4127 compounds, respectively, each screened 

for activity against small cell lung cancer and ovarian cancer lines.
Regression: 
● Harvard Clean Energy Project (HCEP): 2.3M organic 

candidate compounds for use in solar cells
○ Inputs: molecular graphs (derived from their SMILES strings), 
○ Regression target: power conversion efficiency (PCE).

Other: QM9: 134K organic molecules. 
● Target: 13 molecular properties (multiple regression)

36



Some results

37



HCEP 

38



QM9
Properties:

39



40



Attempts of unification
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, 
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam 
Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin 
Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria 
Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt 
Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu
https://arxiv.org/abs/1806.01261 

41

https://arxiv.org/abs/1806.01261


Motivation
Can we define an overarching formalism for Graph NNs?

What are the types of invariance and relational inductive biases embodied by 
various NN architectures?

42



Types of weigth sharing in NNs and DL

43



Different graph representations

44



Definition of ‘extended graph’

45



Signal propagation algorithm

46



Updates in a GN block

Blue indicates the element that is being updated, and black indicates other 
elements which are involved in the update.
● Note that the pre-update value of the blue element is also used in the update.

47



Summary
● A rather conceptual work.

○ No experimental validation. 

● Unifying perspective
● The authors how a few major earlier architectures can be realized within the 

GN framework:  
○ Message-passing NN
○ Non-local neural networks (NLNN)
○ Relation Networks
○ Deep Sets
○ PointNet
○ ...

48



49


