
Deep Neural Networks
(Głębokie Sieci Neuronowe)

Module 3: Recurrent Neural Networks

Krzysztof Krawiec

Wydział Informatyki i Telekomunikacji
Politechnika Poznańska

2019/2020
http://www.cs.put.poznan.pl/kkrawiec/

http://www.cs.put.poznan.pl/kkrawiec/

Outline
1. Recurrent Architectures
2. LSTM: Where it all started (more or less)

a. Notable variants (including GRU)

3. Examples of RNN usage
a. The Seq2seq blueprint

4. An example of follow-up of the Seq2Seq paradigm

2

Recurrent Architectures

3

Recurrent vs. recursive

4

recurrent | rɪˈkʌr(ə)nt |
adjective
● occurring often or repeatedly: she had a recurrent dream about falling.

recursive | rɪˈkəːsɪv |
adjective
characterized by recurrence or repetition.
● Mathematics & Linguistics relating to or involving the repeated application of a

rule, definition, or procedure to successive results: this restriction ensures that
the grammar is recursive.

● Computing relating to or involving a program or routine of which a part
requires the application of the whole, so that its explicit interpretation requires
in general many successive executions: a recursive subroutine.

Learning from sequences
Sequences:
● x0, x1, …, xt, ….
● In general vectors

Key properties:
● Structure present along the time axis

○ No permutation invariance.

● Variable length

5

Where it all started (more or less)
Long short-term memory
Sepp Hochreiter; Jürgen Schmidhuber
Neural Computation, 9 (8), 1997: 1735–1780.

6

Main challenges in learning time sequences
Simple recurrent NNs (SRNs):
● Were difficult to train.
● Had problems when modeling long time dependencies.

Core idea:
● Maintain state.

○ Note: all models considered so far in this course were stateless (timeless).

● ‘Self-control’ by gating signals.

7

Usage scenarios

8

‘Vanilla’ LSTM
Slightly upgraded compared to the 1997 version.

Core components:
● Three gates:

○ input gate: decides how much the current input should influence the state,
○ forget gate: can reset the state of the cell,
○ output gate: decides how much of the current state should be passed to the next layer.

● Block input
● Single cell (Constant Error Carousel)
● Output activation function
● Peephole connections [optional]

The output goes back to input and all the gates.
9

Vanilla LSTM

10

Details on signal propagation
Input xt: a vector of length M

11

Parameters
● M: number of inputs (input ‘channels’)
● N: number of LSTM blocks (in a layer),

○ i.e. the number of outputs from the layer

● Weight matrices:

● Implications:
○ All internal quantities and the output are vectors of length N
○ For a single LSTM block (N=1), internal quantities are scalars
○ ‘Mixing’ of inputs (M -> N dimensions) occurs only at the entries to the cell.
○ For a sequence of T elements of dimensionality M (TxM tensor), a LSTM cell produces a

sequence of T elements of dimensionality N (TxN tensor)
○ Independently of that, batching is typically possible too (e.g. in TensorFlow) 12

Training: Backpropagation through time
Δt: the vector of deltas passed down from
the layer above

Deltas for the inputs (to be
backpropagated to the preceding layer):

13

Training: Backpropagation through time
Δt: the vector of deltas passed down from
the layer above

Deltas for the inputs (to be
backpropagated to the preceding layer):

14

Training: Backpropagation through time
Final step: gradients aggregated over the considered time horizon [0,T]

where star denotes any of the internal quantities (before being passed through
nonlinearity, i.e. those with dashes); 〈〉is scalar product.

15

Observations
LSTM features two levels of recursion:
● internal, aimed at maintaining

the state c,
● external, resulting from y being fed back

to the cell in each iteration.

Peephole connections: used only in most
sophisticated variants, meant to allow the
state to control the gates ‘immediately’.
● Without them, there’s always a lag of 1.

16

LSTM variants
“Ablated” variants:
● NIG: No Input Gate: it = 1
● NFG: No Forget Gate: ft = 1
● NOG: No Output Gate: ot = 1
● NIAF: No Input Activation Function: g(x) = x
● NOAF: No Output Activation Function: h(x) = x
● CIFG: Coupled Input and Forget Gate: ft = 1 - it

More complex:
● NP: No Peepholes:
● FGR: Full Gate Recurrence:

17

Demos shown in the paper (‘Space odyssey’)
● TIMIT: speech recognition

○ Input: 12 MFCCs (Mel Frequency Cepstrum Coefficients) + energy
○ Task: classification of phonemes

● IAM Online: The IAM Online Handwriting Database
○ Inputs: pen positions
○ Outputs: characters
○ Task: mapping

● JSB Chorales:
○ Inputs: MIDI sequences of 382 JS Bach chorales transposed to C major or C minor, sampled

every quarter note
○ Task: next-step prediction
○ Loss function: minimizing neg log-likelihood
○ A sample (other authors): https://www.youtube.com/watch?v=Iz8xQou2OqA

18

https://www.youtube.com/watch?v=Iz8xQou2OqA

IAM Online example

19

Notable variants (by other authors)
Gated Recurrent Unit (GRU)
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
https://arxiv.org/abs/1412.3555

Key differences w.r.t. canonical LSTM:
● no peephole connections,
● no output activation function,
● the input and forget gate coupled into an update gate.

20

https://arxiv.org/abs/1412.3555

GRUs vs. LSTM
● GRU has fewer parameters than LSTM.

○ Easier training.

● GRU's performance on certain tasks of polyphonic music modeling and
speech signal modeling was found to be similar to that of LSTM.

● GRUs have been shown to exhibit even better performance on certain smaller
datasets.

However,
● LSTM is "strictly stronger" than the GRU as it can easily perform unbounded

counting, while the GRU cannot
○ Weiss, Goldberg, Yahav, On the Practical Computational Power of Finite Precision RNNs for

Language Recognition, 2018.

● That's why GRU tnds to fail to learn in certain domains that are learnable by
the LSTM. 21

Other observations concerning RNNs
● Can be applied to any sequences, not only time sequences
● Can be used in bi-directional mode

○ Technically: a pair of LSTM cells: forward, backward.

● Fare pretty well on sequences that are meant to represent nonlinear
structures, e.g. trees

○ Example: Trees in prefix notation: (+ (* 2 7) (- 3 x))

● Paved the way for recurrent architectures capable of processing non-linear
data structures, e.g. trees.

22

Notable examples of RNN usage

23

The Seq2seq blueprint
● A broad class of tasks that consist in mapping sequences to sequences.
● The simplest variant: mapping of sequences of same length.
● Can be implemented with a single RNN, e.g. LSTM or GRU.
● Example: training an RNN to add numbers encoded as character strings:

● Notice the padding zeros.
● See: A ten-minute introduction to sequence-to-sequence learning in Keras, F.

Chollet, https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
24

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

The Seq2seq blueprint
● The case for non-equal lengths: “canonical” seq2seq\
● Two RNNs (e.g. LSTMs): encoder and decoder
● Encoder LSTM “folds” the input sequence into its hidden state h (i.e. a

fixed-length latent representation)
● Decoder LSTM’s state is initialized with h and is trained to predict the next

token in the target sequence given the previous tokens of the target sequence
as input (it should reproduce it’s input shifted by one token) – teacher forcing.

25

Querying of the canonical seq2seq model
● The consecutive tokens produced by the decoder are fed back to its input.

● Notice: this scheme can be also used to train the decoder without teacher
forcing.

26

The Seq2seq blueprint
● Used widely in Machine Translation, Text Summarization, Conversational

Modeling, and more
● Typically accompanied with word embeddings.

○ Embedding = a mapping from categorical domain to Cartesian space.
○ The basic form of embedding: learnable look-up table of n entries (dictionary size), each

containing an (initially random) vector of m reals (embedding dimensionality).
○ Notable representatives: Glove, Word2Vec, FastText, ELMo, ...

● A vast range of variants
○ Often involves additional over-the-sequence attention mechanisms

● Perform very well
○ One of the cornerstones of Neural Machine Translation (NMT)

More on similar models: Linguistic Engineering (Inżynieria Lingwistyczna),
mgr Mateusz Lango

27

Recommended reading
Andrej Karpathy blog
The Unreasonable Effectiveness of
Recurrent Neural Networks,
May 21, 2015
http://karpathy.github.io/2015/05/21/rnn-eff
ectiveness/

28

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

An example of follow-up of the
Seq2Seq paradigm

29

Tree2tree (recurrent) autoencoder
Ain't Nobody Got Time for Coding: Structure-Aware Program Synthesis from
Natural Language
Jakub Bednarek, Karol Piaskowski, Krzysztof Krawiec
https://arxiv.org/abs/1810.09717

30

https://arxiv.org/abs/1810.09717

Motivations
Program synthesis: producing programs from specifications.

Forms of specifications used traditionally in PS:
● examples,
● formal specifications,
● partial programs.

What is the most natural form of specification from the human viewpoint?

31

32

The benchmark (Polosukhin & Skidanov, 2018)
● Functional domain-specific language based on Lisp (AlgoLisp)
● Three types: string, bool, function
● The grammar:

● An example of an (input, output) pair:

● 99506 examples in total, split into training (79214) validation (9352) and test
set (10940 examples).

33

The decoder
● Doubly-recurrent NN

● Traversal of the output tree

34

Some results
Percentage of perfectly synthesized programs (i.e., syntactically identical to the
target ones) for SAPS configurations trained from scratch:

Comparison with other models:

Notice the relatively good performance of Seq2Seq!
35

Examples of synthesized programs

36

