
Deep Neural Networks
(Głębokie Sieci Neuronowe)

Module 2: Generative Adversarial Networks

Krzysztof Krawiec

Wydział Informatyki i Telekomunikacji
Politechnika Poznańska

2019/2020
http://www.cs.put.poznan.pl/kkrawiec/

http://www.cs.put.poznan.pl/kkrawiec/

Outline
1. Generative Adversarial Networks
2. Pix2pix (PatchGAN)
3. CycleGAN
4. Deep Convolutional GAN (DCGAN)
5. Wasserstein GAN

2

Generative Adversarial Networks

3

Generative Adversarial Nets
Image-to-Image Translation with Conditional Adversarial Networks
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio
http://arxiv.org/abs/1406.2661

4

http://arxiv.org/abs/1406.2661

Discrimination vs. generation
● Discriminative model (e.g., classification, regression): learns a mapping from

an input space X to some output space Y.

● Generative model: learns how to generate samples from a (possibly complex)
probability distribution.
Examples:

○ Deep Belief Networks,
○ Boltzmann machines,
○ Deep Boltzmann machines,

● Key question: How to evaluate the adequacy of the samples generated by a
generative model?

5

Adversarial setting
The goal: learn the generator’s distribution pg over some data x.

Approach:
● Define a prior on input noise variables p(z),
● Represent a mapping to data space as G(z), where G is a differentiable

function (parameterized with some parameters).
● Define D(x) that outputs a single scalar that represents the probability that x

came from the data rather than from G.
● Train simultaneously:

○ D to maximize the probability of assigning the correct label to both training examples and
samples from G.

○ G to minimize log(1 − D(G(z))):

6

Adversarial setting
Loss function defines a two-player minimax game with value function:

Simultaneously rewarding:
● D for maximizing its output for true data,
● G for causing D to fail to discriminate between the true data and the ‘fake’

examples it generates.

7

Illustration (1D)
● blue, dashed line: discriminative distribution
● black, dotted line: data generating distribution
● green, solid line: generative distribution

8

Technical realization

9

Visualization (MNIST, TFD)

● Truly random sample, not cherry-picked.
● Rightmost column shows the nearest training example of the neighboring

sample
10

Visualizations (CIFAR-10)

Fully connected (left) vs. convolutional (right)

11

Comments
● Notice the relationship to autoencoders.
● The paper contains also theoretical part - proofs of convergence.

● The space of z values may have meaningful interpretation:
E.g.: Digits obtained by linearly interpolating between coordinates in z space
of the full model:

12

Conceptual confrontation with other approaches

13

Pix2pix (PatchGAN)
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros
https://arxiv.org/abs/1611.07004

14

https://arxiv.org/abs/1611.07004

The role of loss
CNNs learn to minimize a loss function – an objective that scores the quality of
results – and although the learning process is automatic, a lot of manual effort still
goes into designing effective losses. In other words, we still have to tell the CNN
what we wish it to minimize. But, just like King Midas, we must be careful what we
wish for!
● If we take a naive approach and ask the CNN to minimize the Euclidean

distance between predicted and ground truth pixels, it will tend to produce
blurry results. This is because Euclidean distance is minimized by averaging
all plausible outputs, which causes blurring.

● Q: How to make the output indistinguishable from reality?
● A: Generative Adversarial Networks

15

Conditional GANs
● GANs learn a generative model of data
● Conditional GANs (cGANs) learn a conditional generative model.

GAN:

where: y - prediction (image), z - random noise vector

Conditional GAN:

where x - input (e.g., input image)

Discriminator: D: (x,y) -> {0,1} (fake vs. real)
16

Training protocol

17

Definition of loss
Loss:

In practice, combining with the distance from the true image helps:

(L2 caused more blurring)

The overall loss/objective:

18

Regular GAN
Control baseline (regular GAN):

19

Why GANs? Why not X -> Y?
Without z, the net could still learn a mapping from x to y, but would produce
deterministic outputs, and therefore fail to match any distribution other than a delta
function.
● A bit stretched, but conveys the essence of the generative approach: noise

forces the learning process to form robust intermediate representations.

● Original GANs used Gaussian noise.
○ This did not prove effective.

● Pix2pix adds noise via dropout applied to G.
○ Also at test time!

20

The architecture
Basic building block for both G and D:
● convolution
● batch normalization
● ReLU

Two considered architectures for G (U-Net used in the experiments):

Motivation: desired spatial correspondence between x and y.
21

Discriminator
● Because L1 causes blurring, it already takes care of the low frequencies

(overall ‘rough’ structure of the image).
● Therefore, the design of D focuses on detail (high frequencies).
● Thus, it’s enough for D to work with small image patches.
● D takes an NxN patch of y and decides whether it’s real or fake.

○ More specifically: whether it comes from a real image or fake image.

● Observations:
○ D is thus a ‘textural discriminator’ (and the associated loss can be considered texture loss).
○ D perceives the image as a Markov random field, with pixels more distant than patch’s

diameter being considered as independent random variables.

22

Training
Training setup follows the original GAN paper and other earlier recommendations:
● One step gradient descent on D interwoven with one step of GD on G.
● D trained slower than G, by using G*/2 loss
● Rather than minimize
●
● maximize

23

Experimental domains
Unidirectional (citation numbers from the original paper):
● Architectural labels→photo, trained on CMP Facades [45].
● BW→color photos, trained on [51].
● Edges→photo, trained on data from [65] and [60]; binary edges generated

using the HED edge detector [58] plus postprocessing.
● Sketch→photo: tests edges→photo models on human-drawn sketches from

[19].
● Day→night, trained on [33].
● Thermal→color photos, trained on data from [27].
● Photo with missing pixels→inpainted photo, trained on Paris StreetView from

[14].
Bidirectional:
● Semantic labels↔photo, trained on the Cityscapes dataset [12].
● Map↔aerial photo, trained on data scraped from Google Maps.

24

Evaluation
Pixel-by-pixel distance (e.g., L1 or L2) too primitive to capture the quality of the
produced output.
Therefore, other evaluation methods:
1. Amazon Mechanical Turk (AMT): human subjects score the plausibility

a. The subject (Turker) is shown the pair of x and y and should point to the fake one

2. Testing whether an off-shelf recognition system can recognize objects in the
synthesized images (‘inception score’)
a. Used FCN-8s

25

Ablation experiments

26

Ablation experiments

Ordinary GAN performs very bad because it ‘collapses’ into producing almost the
same output for all inputs.

27

Observations
● Learns effectively even from small samples (e.g. 400 images in facade

dataset) - in part because of patch-based perspective.
● Computationally efficient (training time in the order of hours on Titan X)
● Querying under 1 second
● Many more experiments covered in the paper:

○ impact of patch size: “From PixelGANs (1x1) to PatchGANs to ImageGANs (286x286)”
○ colorizing ‘hallucinations’, etc.

● G is a fully convolutional network, so it can be applied to images of arbitrary
dimensions.

More general thoughts:
● In backpropagation, D ‘translates’ binary classification signal (fake/real) into a

loss function.
● Adversarial setting = competitive coevolution. 28

Exploiting the FCN nature of G
G trained on 256x256, when tested on 512x512:

29

30

31

Human-drawn sketches to color images

32

Thermal images to RGB

33

https://vimeo.com/260612034
34

https://vimeo.com/260612034

CycleGAN
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros
http://arxiv.org/abs/1703.10593

35

http://arxiv.org/abs/1703.10593

The task of image-to-image translation
Train a mapping:

such that the output

is indistinguishable from images y ∈ Y by an adversary D trained to classify y_hat
apart from y.

Note:
● typical adversarial setting,
● in general applicable beyond images.

36

Motivation
● Paired examples for image-to-image translation tasks are hard to come by.
● However, it still make sense to talk about translation between entire

domains/sets.

37

The challenges
Switching to sets is not enough:
1. No guarantee that an individual input x and output y are paired up in a

meaningful way.
○ There are infinitely many mappings G that will induce the same distribution over y^.
○ In other words: a network can map the same set of input images to any random permutation of

images in the target domain, where any of the learned mappings can induce an output
distribution that matches the target distribution.

2. In practice, it is difficult to optimize the adversarial objective in isolation:
○ Problem of mode collapse: all input images map to the same output image; optimization fails

to make progress.

38

Solution: Cycle consistency
Motivation: Translating a sentence from English to French, and then back from
French to English, should result in the original sentence.

● Therefore: train two translators simultaneously:

● and apply simultaneously cycle consistency loss that encourages:

39

Cycle consistency: full model

40

Loss definition
Adversarial component for G (and analogously for F):

Cycle consistency loss:

Total loss (λ=10):

The task: solve

41

Comments
Advantages:
● No pairing required.
● No need for a task-specific similarity function between input and output.
● The input and the output (x,y) do not have to lie in the same space.

 Notice:
● This can be viewed as training two autoencoders in parallel:

● However, the intermediate representations are ‘enforced’ here.
● Also related to: adversarial autoencoders.

42

Architecture
Generators:
● stride-2 convolutions,
● residual blocks
● fractionally-strided convolutions
● 6 blocks for 128x128 images, 9 blocks for 256x256 images.

Discriminators:
● Patch-level
● 70 x 70 PatchGANs (i.e., Pix2pix, Image-to-Image Translation with

Conditional Adversarial Networks, Isola et al.)

43

Training
1. Rather than using the original log-likelihood, uses least-square loss:
● More stable in training.
● Produces better results.

Technically: training G to minimize

and D to minimize

2. Addressing “model oscillation”: updating discriminators using a history of
generated images, rather than the ones produced by the latest generators.

3. Adam algorithm, batch size = 1 (!)
44

45

46

Results

Notice: pix2pix uses paired examples!
47

Metrics
● Human assessment: Amazon

Mechanical Turk (AMT)
perceptual study:

○ Subject shown pairs of images
(real, fake) an asked to click the
image they thought was real.

● FCN score:
○ Applies an FCN (CNN) network

to perform semantic
segmentation of the scene.

○ Comparing the returned labels to
ground truth labels (IoU?)

48

49

50

51

52

Comments
● More baseline algorithms used in the paper (CoGAN, SimGAN, BiGAN/ALI)

Observation (more general):
● Notice how different the 'fake-real' discrimination task is from the typical

classification tasks.
● It must almost certainly rely on completely different level of abstraction.

53

Deep Convolutional GAN (DCGAN)
Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks
Alec Radford, Luke Metz, Soumith Chintala
https://arxiv.org/abs/1511.06434

54

https://arxiv.org/abs/1511.06434

Motivations
Come up with guidelines for designing GANs that are stable to train: “constraints
on the architectural topology of Convolutional GANs”
● Replace pooling layers with strided convolutions (discriminator) and

fractional-strided convolutions (generator).
○ Allows the network to learn its own spatial downsampling.

● Use batchnorm in both the generator and the discriminator.
○ Exception: Applying batchnorm to all layers resulted in sample oscillation and model instability.
○ Therefore: no batchnorm in generator’s output layer and discriminator’s input layer.

● Remove fully connected hidden layers for deeper architectures.
○ Except for the first layer of G, which multiplies z by a matrix and reshapes it for convolution.

● Use ReLU activation in generator for all layers
○ Except for the output, which uses Tanh: bounded activation allowed the to faster saturate and

cover the color space of the training distribution.

● Use LeakyReLU activation in the discriminator for all layers.
55

Fractionally strided transposed convolution

56Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning, https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Generator architecture

57

Results
Massive experimental investigation; among others:
● Generating bedrooms: Large-scale Scene Understanding (LSUN) dataset
● Classifying CIFAR-10 and numbers in StreetView House Numbers dataset

(SVHN) using GANs as a feature extraction.
● Human faces (scrapped from the internet, 10k people, 3M images)
● Visualization of features

Interesting preprocessing for bedrooms: autoencoder for dataset deduplication.
● Trained de-noising (?) dropout regularized ReLU autoencoder on 32x32

downsampled center-crops of training examples.
● Code layer binarized via thresholding, obtaining so a form of semantic hash

code.
● FP rate < 0.01. Helped removing nearly 275,000 [near] duplicates.

58

Results
1. Z vectors of samples are

averaged over columns.
2. Arithmetic performed on

the mean vectors,
creating a new vector Z’.

3. The center sample on
the right produced by
feeding Z’ to G.

4. Uniform noise +-0.25
added to Z’ to produce
the 8 other samples (to
show interpolation
capabilities).

59

Visualization of features

● Right: guided backpropagation (Springenberg et al., 2014) visualizations of
maximal axis-aligned responses for the first 6 learned convolutional features
from the last convolution layer in the discriminator.

● Notice how localized the features are (recall: last convolutional layer!)
60

A representative of other variants of GANs:
Coulomb GANs
Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields
Thomas Unterthiner, Bernhard Nessler, Calvin Seward, Günter Klambauer, Martin
Heusel, Hubert Ramsauer, Sepp Hochreiter
http://arxiv.org/abs/1708.08819

61

http://arxiv.org/abs/1708.08819

Motivation
● It has been proven that GAN learning does converge when discriminator and

generator are learned using a two time-scale learning rule (Heusel et al.,
2017).

○ Convergence means that the expected SGD-gradient of both the discriminator objective and
the generator objective are zero.

○ Thus, neither the generator nor the discriminator can locally improve, i.e., learning has
reached a local Nash equilibrium.

● However, convergence alone does not guarantee good generative
performance.

○ It is possible to converge to sub-optimal solutions which are local Nash equilibria.

Authors’ proposal:
● Coulomb GAN, which has only one Nash equilibrium.
● Show that this Nash equilibrium is optimal, i.e., the model distribution matches

the target distribution.
62

Side-note on mode collapse
Mode collapse is a special case of a local Nash equilibrium associated with
suboptimal generative performance.
● For example:

○ Assume a two-mode real world distribution where one mode contains too few and the other
mode too many generator samples.

○ If no real world samples are between these two distinct modes, then the discriminator
penalizes to move generated samples outside the modes.

○ Therefore the generated samples cannot be correctly distributed over the modes.

● Thus, standard GANs cannot capture the global sample density such that the
resulting generators are prone to neglect large parts of the real world
distribution.

63

Coulomb GAN: The intuition
True samples (blue) and generated samples (red) create a potential field (scalar
field). Blue samples act as sinks that attract the red samples, which repel each
other. The superimposed vector field shows the forces acting on the generator
samples to equalize potential differences, and the background color shows the
potential at each position.

64

Realization
Rather than minimizing the difference* between densities ρ(a) = py(a) - px(a),
where px(a) is the model density and py(a) is the target density, minimize a
potential function defined via kernel functions k(a,b) that define the influence of a
point at b onto a point at a:

Minimizing this potential function causes minimization of the difference of densities
ρ(a).

65* In conventional GANs, D(a) is optimized to approximate the probability of seeing a target sample, or ρ(a).

Technical realization
For Nx fakes (transformed by the generator) and Ny real samples, an unbiased
estimate of Ф is:

Update rule for the discriminator:

Update rule for the generator (note: G is implicit in this formula):

(more technical details in the paper).
66

Results
● Tested on images CelebA, LSUN bedrooms, and CIFAR-10.
● Coulomb GANs tend to outperform standard GAN approaches like BEGAN

and DCGAN, but are outperformed by the Improved Wasserstein GAN.
○ However Improved Wasserstein GAN used a more advanced network architecture based on

ResNet blocks (Gulrajani et al., 2017).

● Results in terms of FID, Frechet Inception Distance (Frechet =
Wasserstein-2):

○ Like inception score, but takes into account the distributions.

67

68

Wasserstein GAN
Wasserstein GAN
Martin Arjovsky, Soumith Chintala, Léon Bottou
https://arxiv.org/abs/1701.07875

69

https://arxiv.org/abs/1701.07875

Motivation
● Learning a generator in GAN is learning a probability distribution using a

parameterized family of densities Pθ:

The authors:
● Point to the fact that training a traditional GAN aims at minimizing the KL

divergence between Pθ and the real distribution Pr.
● Discuss the pros and cons of various measure of the similarity of Pθ to Pr.
● Provide a comprehensive theoretical analysis of how the Earth Mover (EM)

distance behaves in comparison to popular probability distances and
divergences used in the context of learning distributions.

● Propose Wasserstein GAN that minimizes a reasonable and efficient
approximation of the EM distance.

70

Distances/divergence studied in the paper
Total Variation (TV) distance:

Kullback-Leibler (KL) divergence:

Jensen-Shannon (JS) divergence:

Earth-Mover (EM) distance (Wasserstein-1):

71

Distance/divergence characteristics
as a function of distribution parameter θ:

72

73

Wasserstein GAN
Key element: weight clipping.

74
RMSProp: T. Tieleman and G. Hinton. Lecture 6.5, RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning, 2012.

Implications
● a meaningful loss metric that correlates with the generator's convergence and

sample quality
● improved stability of the optimization process

Shown empirically.

75

