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Introduction
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Fundamentals of Convolutional NNs
Fundamentals of Convolutional NNs have been covered in the “Pattern 
Recognition” course (first semester of the Master’s course). Please consult your 
lecture notes, and the CS231n Stanford course, which that part of my course is 
based on: http://cs231n.stanford.edu/ 

More specifically, the slides are available here: 
http://cs231n.stanford.edu/slides/2017/ 

(permission granted by dr Justin Johnson)
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Some thoughts on CNNs
Why are CNNs so powerful?
● Multiple filters working in parallel. 
● Nonlinear mapping. 
● Hierarchical organization.
● Helpful: initialization, training algorithms, batch normalization, 
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Some observations about CNNs
● Weight sharing:

○ Features are learned globally

● The dimensions of (purely) convolutional layers are not fixed.
○ Convolution is a strictly local operation, it cares only about the part of the input that falls within 

the dimensions of its receptive field (mask)
○ See, e.g., the documentation of Keras. 

● In contemporary CNNs, the large number of parameters originate mostly in:
○ Fully-connected layers
○ Large numbers of filters/channels. 

● CNNs can be used for harvesting global image features. 
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Some observations about CNNs
● Using pretrained networks is almost always worth considering. 

○ Visual features are universal.

● Super efficient implementation, particularly on GPUs and hardware 
architectures that target tensor-based computing.

● Can be easily ‘uplifted’ to higher dimensions:
○ 3D
○ 2D+time
○ Many software packages provide and   

● The concept of convolution can be generalized to other spaces. 
○ E.g. graph convolution. 

● One may extend input with image metadata to provide the learner with more 
information:

○ E.g., image dimensions. 
○ Some nonlinear mapping necessary. 
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Milestone CNN architectures
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AlexNet
ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
http://arxiv.org/pdf/1409.0575 
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Contributions
● Large and deep (by 2012 standards)
● Trained on 1.2M images
● Bet SoTA methods of the time.
● Second place in the ILSVRC-2012 competition 

Architecture:
● Five conv layers
● Some max pooling layers
● Uses dropout (recently introduce at that time)
● One of the first networks to use ReLUs
● ~60M parameters
● 1000 classes (ImageNet LSVRC contest)
● Deployed and trained on 2 GPUs (GTX 580, 3GB)
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Results
Effectiveness of ReLUs  ––––––––>

Summary of results:

1 CNN - single CNN
5 CNN - averaging the predictions of 5 CNNs 
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Top-5 
characteristics
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VGG models
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan, Andrew Zisserman
https://arxiv.org/abs/1409.1556 

14

https://arxiv.org/abs/1409.1556


Original contribution
Our main contribution is a thorough evaluation of networks of increasing depth 
using an architecture with very small (3×3) convolution filters, which shows that a 
significant improvement on the prior-art configurations can be achieved by pushing 
the depth to 16–19 weight layers. 

The effect: lower number of parameters, more efficient training, less overfitting. 
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Advanced CNN architectures
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Inception Network
Going Deeper with Convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir 
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
https://arxiv.org/abs/1409.4842 
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Main features
● Carefully crafted design, 
● Increased the depth and width of the network while keeping the computational 

budget constant
● Architectural decisions based on the Hebbian principle and the intuition of 

multi-scale processing.
● Specific variant/instance: GoogLeNet, a 22-layer Inception network
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Motivations
● Arora et al. [2]: 

If the probability distribution of the dataset is representable by a large, very 
sparse deep neural network, then the optimal network topology can be 
constructed layer after layer by analyzing the correlation statistics of the 
preceding layer activations and clustering neurons with highly correlated 
outputs.

○ Related to Hebbian principle – Neurons that fire together, wire together [Donald Hebb, 1949]

● If two convolutional layers are chained, an increase in the number of their 
filters results in a quadratic increase of computation.

○ If the added capacity is used inefficiently (for example, if most weights end up to be close to 
zero), then much of the computation is wasted.

○ This could be addressed with sparse data structures, but today’s computing architectures are 
inefficient for such structures. 
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Motivations
● How an optimal local sparse structure of a convolutional vision network can 

be approximated and covered by readily available dense components?
○ Assuming translation invariance => use convolutional building blocks. 
○ All we need is to find the optimal local construction and to repeat it spatially.

● In the lower layers (the ones close to the input) correlated units would 
concentrate in local regions. 

○ Clusters concentrated in a single region can be covered by a layer of 1x1 convolutions. 

● Smaller number of more spatially spread out clusters that can be covered by 
convolutions over larger patches

○ Hence also 3x3 and 5x5 convolutions. 

● All those layers concatenated into a ‘filter bank’
● Additional pooling operations performed in parallel to the above. 
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Inception module: naive version

● The ratio of 3x3 and 5x5 convs to 1x1 should increase with consecutive 
layers, as features become sparser and more spatially distributed. 

● The challenge: large depth of concatenated filters.  22



Inception module

● 1x1 convolutions embed the stimuli in a lower-dimensional space.
● Added before convolutions, to preserve spatial sparseness. 
● Implement also ReLus 23



Complete Inception architecture
● A network consisting of modules of the above type stacked upon each other, 
● Occasional max-pooling layers with stride 2 to halve the resolution of the grid.
● For memory efficiency: start using Inception modules only at higher layers 

while keeping the lower layers in traditional convolutional fashion
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GoogLeNet
● 22 layers deep when counting only layers with parameters 

○ 27 layers if also counting pooling

● The overall number of layers (feature maps): about 100.
● Uses average pooling before the classifier (with additional linear layer)

Addressing the vanishing gradient problem: 
● The strong performance of shallower networks on this task suggests that the 

features produced by the layers in the middle of the network should be very 
discriminative. 

● By adding auxiliary classifiers connected to these intermediate layers, 
discrimination in the lower stages in the classifier was expected
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GoogLeNet
● Trained using asynchronous GD with 0.9 momentum.
● Quite sophisticated image cropping approach for harvesting the training data. 
● Softmax probabilities are averaged 

○ over multiple crops 
○ and over all the individual classifiers 
○ to obtain the final prediction.

● Uses an ensemble of 7 independently trained GoogLeNets:
○ Trained with the same initialization, even with the same initial weights, due to an oversight (!) 
○ Same dynamic learning rate policies. 
○ They differed only in sampling methodologies and the randomized input image order.
○ The ensemble included one wider version.
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Residual networks
Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
https://arxiv.org/abs/1512.03385 

33

https://arxiv.org/abs/1512.03385


Residual networks
● Explicitly reformulate the layers as learning residual functions with reference 

to the layer inputs, instead of learning unreferenced functions.
● The authors evaluate residual nets with a depth of up to 152 layers—8 deeper 

than VGG nets, but still having lower complexity.
● 1st place on the ILSVRC 2015 classification task
● 1st places on the tasks of ImageNet detection, ImageNet localization, COCO 

detection, and COCO segmentation.
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Motivations
● Let H(x) be the mapping to be fit by a few stacked layers (not necessarily the 

entire net), with x denoting the inputs to the first of these layers. 
● If a multiple nonlinear layers can asymptotically approximate complicated 

functions, then it is equivalent to hypothesize that they can asymptotically 
approximate the residual functions, i.e., H(x) - x

○  (assuming that the input and output are of the same dimensions).

● Let’s explicitly let these layers approximate a residual function F(x) := 
H(x)-x. 

● In other words: the original function becomes F(x)+x. 
● Although both forms should be able to asymptotically approximate the desired 

functions (as hypothesized), the ease of learning might be different (due to 
‘shortcuts’ in gradient flow).
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Basic building block
Mapping realized by a Resnet building block: 

Note: requires the shape of y to be the same as x. What if, for some reason, that’s 
impossible?

Nevertheless, the authors work mostly with the former case. 
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Basic building block
The specific building block used by the authors:

Resnets are thus modular networks (though there’s no weight sharing between 
individual building blocks/modules. 
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Overall architecture
Design follows VGG networks:
● Mostly 3x3 filters 
● For the same output feature map size, the layers have the same number of 

filters (what did I mean by that?)
● If the feature map size is halved, the number of filters is doubled so as 

to preserve the time complexity per layer.
● Downsampling using convolution with stride 2 (“/2”). 

The figure that follows:
● Left: VGG-19 model: 19.6 billion FLOPs
● Center: A plain network with 34 parameter layers: 3.6 billion FLOPs
● Right: A residual network with 34 parameter layers: 3.6 billion FLOPs

The dotted shortcuts increase dimensions.
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Other elements
Batch normalization after each convolution (before activation)

Two options for the dotted connections:
● A: The shortcut still performs identity mapping, with extra zero entries padded 

for increasing dimensions (no extra parameters)
● B: The projection shortcut in is used to match dimensions, using done by 1x1 

convolutions:



Considered configurations
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Some results
(A) zero-padding shortcuts are used for 
increasing dimensions, and all shortcuts are 
parameter free
(B) projection shortcuts are used for 
increasing dimensions, and other shortcuts 
are identity; 
(C) all shortcuts are projections

Trained with ordinary SGD with momentum!

Experimented also with ensambles; 
networks up to 1000 layers (found it to be 
worse than 110-layer net)  
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Why do ResNets work?
● They address the vanishing/exploding gradient problem.

○ Recall what happens with gradient in computation graphs/flows.  

● This implicitly allows maintaining relatively low depth (number of 
channels/dimensions) along the network 

○ Notice the not too frequent dotted connections.

● Does modularity help?
○ An open question.
○ Eases automation of architecture optimization (see, e.g., neuroevolution).  
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Related architectures

47



Wide Residual Networks (Wide-Nets)
Wide Residual Networks, Sergey Zagoruyko, Nikos Komodakis, 
http://arxiv.org/abs/1605.07146
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Motivations
● The study of residual networks has focused mainly on the order of activations 

inside a ResNet block and the depth of residual networks.
● Goal: To explore a much richer set of network architectures of ResNet blocks 

and thoroughly examine how several other different aspects besides the order 
of activations affect performance

● Width vs depth in residual networks.
● shallow circuits can require exponentially more components than deeper 

circuits
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Motivations
● Diminishing feature reuse [28]: As gradient flows through the network there 

is nothing to force it to go through residual block weights and it can avoid 
learning anything during training, so it is possible that there is either only a 
few blocks that learn useful representations, or many blocks share very little 
information with small contribution to the final goal. 

○ Some earlier works tried to address this by randomly disabling residual blocks during training. 

● Hypothesis: show that the widening of ResNet blocks (if done properly) 
provides a much more effective way of improving performance of residual 
networks compared to increasing their depth.

● In particular, we present wider deep residual networks that significantly 
improve over [13], having 50 times less layers and being more than 2 times 
faster.

●
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The architecture
● k multiplies the number of features 

in convolutional layers
● k=1 => ResNet
● N: the number of blocks in a group
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Some results (no dropout)
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Related architectures
● Highway networks: Rupesh Kumar Srivastava, Klaus Greff, Jürgen Schmidhuber, 

https://arxiv.org/abs/1505.00387
○ Shortcut connections with gating functions (rather than identities): transform gate T and carry 

gate C:

○ Original paper: T is a dense sigmoid layer and:

○ T’s bias initialized to implement the carry behavior.
○ Allow unimpeded information flow across several layers on "information highways"

● Fractal networks, FractalNet [Larsson et al. 2017]: parallel multi-scale, trained 
by dropping out entire modules/paths

● Deep networks with stochastic depth [Huang et al. 2016]: a bit like dropout on 
the level of entire layers
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Fully convolutional architectures
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Motivations
Any usage scenario that requires image -> image mapping, i.e. image processing. 
Examples:
● Image segmentation 

○ Including semantic segmentation

● Image denoising
○ A CNN serves as a denoising filter. 
○ Can adapt in training to the characteristics (distributions) of a given class of images. 

● Image superresolution
● Style transfer
● Virtually any image processing.

Note: All these tasks offer much stronger training signal than regular classification 
or regression.

56



Image segmentation has many faces ...
● ‘Ordinary’ segmentation

○ We’re happy if the algorithms manages to delineate perceptually distinct regions.  

● Semantic segmentation
○ The algorithm is expected to work with semantics-rich labels, like sidewalk, car, person, road 

sign, ...

● Object instance segmentation
○ Multiple instances of the same type of entity should be delineated.  

● ...
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DNN-based approaches to segmentation
Main categories of representatives:
● Patch-based - a ‘naive’ approach

○ Replaces the segmentation task with classification of individual pixels based of image patches

● Fully convolutional (FCNN), ‘holistic’
○ Performs segmentation of all image patches in parallel

● Recurrent
○ Uses recurrent layers/cell/networks to ‘sweep’ the input image. 
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Patch-based segmentation
Segmenting Retinal Blood Vessels with Deep Neural Networks
Paweł Liskowski, Krzysztof Krawiec
https://ieeexplore.ieee.org/document/7440871?arnumber=7440871 
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A naive approach to segmentation using DL
● A network in a sliding-window setup 

predicts class label of each pixel by 
analyzing a local region (patch) 
around that pixel (e.g., Ciresan et al. 
[1])

● Advantage: each training image gives 
rise to thousands or more of training 
examples (patches)
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Patch-based segmentation: Summary
Disadvantages: 
● Slow, in particular at querying, because of explicit scanning of the image. 
● Trade-off between the localization accuracy and the use of context:

○ Larger patches require typically more max-pooling layers, which reduces localization accuracy 
(spatial ‘aliasing’)

63



U-Net
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger, Philipp Fischer, Thomas Brox
https://arxiv.org/abs/1505.04597 
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The architecture
● Uses FCNN to supplement a usual contracting network by successive layers, 

where pooling operators are replaced by upsampling operators.
○ Increase the resolution of the output.

● Two main building blocks:
○ a contracting path to capture context
○ a symmetric expanding path that enables precise localization

● The network does not have any fully connected layers and only uses the valid 
part of each convolution. 

○ Padding via mirroring at the edge of the image. 
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Some comments on U-net
● Advantages: Trains effectively from small samples. 
● Q: Is this an autoencoder?
● The ‘copy and crop’ connections are not equivalent to residual connections. 

○ However, they definitely allow part of gradient flow along a shorter path. 

● Even though the numbers in the figure (previous slide) refer to specific image 
dimensions, this is still a FCNN:

○ All operations (convolutions, max pooling, up-conv) rely on local receptive fields. 
○ Therefore, U-nets are scalable/applicable to images of arbitrary dimensions. 
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Other features
● Uses weighted target: separating background labels between touching 

objects (e.g., cells) obtain relatively large weight. 
● Separation border computed using morphological operations. 

● Where: 
○ wc : balances class frequencies; 
○ d1: distance to the border of the nearest object (cell in the original paper), 
○ d2: distance to the border of the second nearest cell. 
○ The authors used w0=10
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Henrietta Lacks (1920-1951)
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HeLa
● HeLa is an immortal cell line used in scientific research. 

○ The first human cells grown in a lab that were naturally "immortal", meaning that they do not 
die after a set number of cell divisions 

● It is the oldest and most commonly used human cell line  (1951).
● The first human cells grown in a lab that were naturally "immortal", meaning 

that they do not die after a set number of cell divisions 
● Scientists have grown an estimated 50 million metric tons of HeLa cells 
● Almost 11,000 patents based on the HeLa line.
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U-Net’s weighted target on HeLa cells image
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Other features
● Loss function: cross-entropy on output (softmax) and target labels 

● Notice: ‘soft labels’
○ Effectively, the classification tasks turned into a regression task. 
○ Disputable, as regression tasks are usually more difficult (must approach the target value as 

closely as possible). 

● Makes extensive use of augmentations.
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Some results
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Some results

IOU = Intersection over Union
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Recurrent Neural Nets for Segmentation
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RNNs for segmentation
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron 
Courville, Yoshua Bengio
https://arxiv.org/abs/1505.00393 
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Motivations
● Not explicitly stated 
● “Apply a recurrent NN to an image and see what happens”?
● A nice example of versatility of contemporary DNN architectures. 
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Architecture
● Replace each convolutional+pooling 

layer in the CNN with four RNNs 
that sweep over lower-layer features 
in different directions: 

○ (1) bottom to top, 
○ (2) top to bottom, 
○ (3) left to right and 
○ (4) right to left. 

● Each feature activation in its output 
is an activation at the specific 
location

● Use conventional sequential 
(one-dimensional RNNs)
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Some details
Formally, for the vertically-scanning layer:

● fVFWD and fVREV can be 
○ LSTM cells (Hochreiter & Schmidhuber 1997), or 
○ GRU cells (Cho et al. 2014)

● The outputs of the hidden steps are concatenated and so create a composite 
feature map. 

● Many such bi-layers (V+H) can be stack atop each other. 
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Comparison with conventional CNNs
● ReNets propagate information through ‘lateral’ connections, 

○ (not to be confused with latent)
○ The layer has access to “global information”. 

● Lateral connections help remove/resolve redundant features at different 
locations in the image. 

● ReNet does not use any pooling: The lateral connection in ReNet can emulate 
the local competition among features induced by the max-pooling in LeNet. 

○ Max pooling causes irreversible loss of information about the exact location of the feature 
■ (not mentioning the loss of information about the presence of features at non-maxima)

○ Avoiding max pooling makes the mapping easier to invert, and thus better applicable in 
autoencoder-like architectures. 

● Disadvantage of ReNet: Not easily parallelizable. 
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Tested on
● MNIST
● CIFAR-10
● Street View House Numbers (SVHN)

Used GRU units:

Where: x - input, h - hidden state, b - bias, u - gating signal
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Architecture used for SVHN

SoTA accuracy, but not better than conventional CNNs (next slide) 
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Comparative study of segmentation methods
Automatic choroidal segmentation in OCT images using supervised deep learning 
methods
Jason Kugelman, David Alonso-Caneiro, Scott A. Read, Jared Hamwood, Stephen 
J. Vincent, Fred K. Chen, Michael J. Collins
https://www.nature.com/articles/s41598-019-49816-4 
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Outline
● Compare patch-based methods with semantic segmentation methods
● Use

○ Conventional conv layers
○ Recurrent layers based on ReNets
○ Residual connections

● Domain specific aspect: the goal is to segment a boundary between regions, 
not the regions themselves. 

○ Notice: in general, this is not equivalent to the ‘generic’ segmentation task. 

● Next slide shows the experimental protocol for particular types of 
architectures. 

○ Warning: The term ‘semantic segmentation’ used not entirely correctly. 
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Compared
architectures
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Softmax:



Postprocessing
● Networks produce probability maps (last layer is always SoftMax)

○ These need to be converted into definitive layer locations

● Uses Dijkstra’s shortest path algorithm
● Next slide shows

○ input image
○ probability maps (midlle row); 
○ segmented boundary
○ CE = Contrast Enhancement
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Results
● Semantic segmentation (U-nets) significantly better than patch-based 

methods on some anatomical layers
● No significant differences within the above groups. 
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Some results for the standard U-Net architecture
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Object instance segmentation
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Fast R-CNN
Fast R-CNN
Ross Girshick
https://arxiv.org/abs/1504.08083 
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Core idea
● Object detection 
● Based on earlier work: R-CNN, Region proposal CNN (R. Girshick et al., 

CVPR’14). Addresses the limitations of R-CNN, which:
○ Used SVMs trained on CNN features => training was multi-stage, and not end-to-end.
○ Had high cost of training.
○ Was slow at detection (required a separate CNN forward pass for each object proposal). 

● Contributions of Fast R-CNN:
○ End-to-end training
○ Single-stage training
○ Better accuracy
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Fast R-CNN
A first (?) NN-based attempt to 
solve these problems at the same 
time:
1. object localization, 
2. object detection (object vs. 

non-object),
3. object classification. 

However, #1 is not being solved 
‘from scratch’ - RoIs must be 
given. Fast-CNN refines them. 
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Method’s pipeline
● Takes as input an entire image and a set of object proposals. 

○ Assumes that region proposals are given.

● Processes the whole image with several convolutional and max pooling layers 
to produce a feature map. 

Then, for each object proposal:
● A region of interest (RoI) pooling layer extracts a fixed-length feature vector 

from the feature map (RoI pooling).
● Each feature vector is fed into a sequence of fully connected (fc) layers that 

finally branch into two sibling output layers:
○ classification softmax: produces softmax probability estimates over K object classes plus a 

catch-all “background” class, and
○ bbox regressor: another layer that outputs four real-valued numbers for each of the K object 

classes (refined bounding box positions). 
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RoI max pooling
Uses max pooling to convert the features inside any valid region of interest into a 
small feature map with a fixed spatial extent of HxW (e.g., 7x7),

Works by: 
1. Dividing the hxw RoI window into an HxW grid of sub-windows of approximate 

size h/H x w/W 
2. Max-pooling the values in each sub-window into the corresponding output grid 

cell.

In other words: crude ‘max-downsampling’ of any RoI to HxW. 

Operates independently on each input channel.
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Characteristics
● RoIs from the same image share computation and memory in the forward and 

backward passes
○ With additional extensions (approximating large fc layers with truncated SVD) works almost 

real-time, when ignoring the time required to produce region proposals.

● Downsides: 
○ Needs an external RoI proposal generator.
○ Explicitly iterates over region proposals. 

● This issue has been addressed by Faster R-CNN.
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Approximating large FC layers with truncated SVD
Replace the (trained) u⨉v weight matrix W with: 

Where:
● U: u⨉t matrix of first t left-singular vectors of W
● Σt: t⨉t diagonal matrix of the top t singular values of W
● V: v⨉t matrix comprising first t right-singular vectors of W. 

Reduces the number of parameters from uv to t(u+v). 

Technical realization: two fully connected layers (no nonlinearity between them!):
● The first layer uses ΣtVT as weight matrix (no biases)
● The second layer used U as weight matrix (and biases taken from W).  
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Faster R-CNN
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal 
Networks
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun
https://arxiv.org/abs/1506.01497 
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Birds-eye view
● Faster R-CNN is an example of a region proposal method. 

○ Originally very expensive computationally. 
○ Became more feasible via parallelization with CNNs. 

● Proposal computation is nearly cost-free in the context of detection network 
computation. 

● Core components: 
○ Region Proposal Network (RPN), deep CNN 

that proposes regions
○ Fast R-CNN detector (and location refinement)

● These subnetworks share the convolutional 
layers.

○ In one variant, these are taken from VGG-16. 
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Region Proposal Network
1. Aggregates a small (3x3) window of the last convolutional layer into a 

lower-dimensional representation (+ ReLU). 
a. 3x3 may sound not much, but the effective receptive field of VGG is 228x228

2. Separately estimates the position and class using (cf. Fast R-CNN):
a. Box-regression layer (reg)
b. Box-classification layer (cls)

3. Important: there is no explicit sliding! 
a. The fully-connected layers are shared!
b. Technical realization: 1x1 convolutions.
c. High efficiency. 
d. Exercise: draw this using “box convention”.
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Anchors
● Anchor = detection proposal
● Rather than predicting just one region at one location, the reg network 

predicts k of them, for different scales and ratios. 
○ Default configuration: 3 scales and 3 ratios => k=9 anchors for each position.
○ Therefore, for, e.g. WxH locations in the convolutional feature map, WHk anchors 

(e.g. 2400x9 = 21900 anchors for the entire scene/image)

● In parallel to that, the cls network predicts 2k scores
○ Object vs. non object (hence 2 outputs per class)
○ Two-class softmax layer
○ (The authors admit they could have used one output and logistic regression). 

● The upside: the actual number of parameters of reg+cls is surprisingly small:
○ The combined number of outputs: (4+2)x9
○ Total number of parameters (for VGG): 512x(4+2)x9 = 2.8x10^4
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Loss function (1): Classification
● Consists in confronting anchors with ground truth boxes.
● Positive label assigned to:

○ The anchor that has the highest intersection over union (IoU) with the GT box, or 
○ An anchor that has an IoU overlap higher than 0.7 with any GT box. 
○ Implication: possibility of multiple positive labels coming from the same GT box. 

● Negative labels assigned when an anchor has IoU lower than 0.3 for all GT 
boxes. 

● Notice: no loss/penalty for ‘undecided’ anchors.
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Loss function (2): Regression 
● Lreg defined using robust loss function (smooth L1)

● Parameterization/standarization of coordinates for reg
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Loss function (3): Combined

where: 
● pi - cls output (object/non-object), pi* = 0/1 targets as defined above, 
● ti, ti* - predicted and actual coordinates, respectively; notice pi* next to Lreg
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More details
● In training, each mini-batch works with the GT boxes extracted from the same 

image (‘image-centric approach’)
● Not all generated anchors are taken into account (because of high imbalance: 

almost all anchors are negative):
○ “Stratified” sampling 256 anchors so that the positive/negative class ratio is close to 1:1 

(unless that’s impossible)
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Training
The authors consider a bunch of training regimes for cls and reg:
● Alternating (used as default):

○ First train the RPN
○ Use the region proposals to train Fast R-CNN
○ Repeat 

● Approximate joint training: RPN and Fast R-CNN are merged into one 
network during training.

○ Has some deficiencies (ignores the derivatives w.r.t. proposal coordinates)  

● Non-approximate joint training 
○ Advanced, handled in another paper. 

Ultimately the paper uses a hybrid of the above. 
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Some comments
● Recall that the convolutional nature of CNNs addresses only the translation 

invariance. 
● Faster R-CNN addresses also scale invariance (to an extent). 
● Rotation- and pose-invariance remains a challenge. 
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Object detection as a regression problem: YOLO
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
http://arxiv.org/abs/1506.02640 
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Key contributions
● Frames object detection as a regression problem to spatially separated 

bounding boxes and associated class probabilities.
● A single neural network predicts bounding boxes and class probabilities 

directly from full images in one evaluation.
● No sliding window.

Implications:
● More than twice the mean average precision of other real-time systems.
● Fast: base version 45 fps on Titan X GPU, fast version >150 fps.
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● Divide image into SxS grid (S=7)
● If the center of an object falls into a grid cell, that grid cell is responsible for 

detecting that object.
● Each grid cell predicts 

○ B=2 bounding boxes and confidence scores for those boxes.
■ Confidence scores defined as Pr(Object) * IoU(predicted, actual)

○ C conditional class probabilities Pr(Classi|Object)

● Each BB prediction comprises: 
○ Center and dimensions of the box: x, y, w, h,
○ Confidence

● Querying: multiplying conditional class 
probabilities and box-level confidence
predictions. 

● Output tensor size: SxSx(5B+C)

Operation
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Architecture
● Inspired by GoogLeNet: 24 conv layers, 2fc layers. 
● Pretrained on 1000-class ImageNet
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Results
● Fast YOLO: only 9 conv layers
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Results: Picasso and People-Art datasets
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Other architectures
● Maxout
● Highway nets
● Mask R-CNN, Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick 

https://arxiv.org/abs/1703.06870   
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Learning higher-level concepts 
for scene interpretation
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Summary
All those impressive results notwithstanding, all that research just scratches the 
surface of ‘visual intelligence’.
● Focus on mappings: classification (image-level, object-level, pixel-level), 

segmentation, regression, bounding box regression, …
● Can we design DL agents that really reason about scenes? 
● More precisely, reason about: 

○ Objects and object properties
○ Relationships between objects 
○ Spatial arrangement of objects in the scene. 
○ ...
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Deep learning for scene interpretation
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and 
Sentences From Natural Supervision
Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, Jiajun Wu
http://arxiv.org/abs/1904.12584 
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The role of language in scene interpretation
Motivation: humans are capable of learning visual concepts by jointly 
understanding vision and language. 
● The cues: ‘Correlations’ between the content of the scene and the associated 

statement (see examples below). 
● Authors call this natural supervision: learning from pairs (image, QA).
● Also known as Visual Query Answering task (VQA) 
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CLEVR dataset
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual 
Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. 
Lawrence Zitnick, Ross Girshick
http://arxiv.org/abs/1612.06890 
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CLEVR dataset 
● Represents the class of task of Visual Query Answering (VQA)
● 70k training scenes, rendered in Blender
● Uses symbolic description of scenes
● Scene description is used for scene rendering
● Multiple NL questions can be generated for the same scene
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CLEVR dataset
● Objects: three object shapes (cube, sphere, and cylinder), two absolute sizes 

(small and large), two materials (shiny “metal” and matte “rubber”), and eight 
colors.

● Relationships: “left”, “right”, “behind”, and “in front”.
● Scene representation: a scene graph, where nodes are objects annotated 

with attributes and edges connect spatially related objects.
○ Contains all ground-truth information for an image and could be used to replace the vision 

component of a VQA system with perfect sight.

● Image generation: random sampling a scene graph and rendering it using 
Blender.

● Question representation: a functional program that can be executed on an 
image’s scene graph, yielding the answer to the question. Built from simple 
basic functions that correspond to elementary operations like  querying object 
attributes, counting sets of objects, or comparing values. 126
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Back to NS-CL: Neural symbolic reasoning (?)
We need to define some symbolic framework to reason in. 
● Concepts: Cube, Red, … (‘constants’)
● Attributes: Shape, Color, … 

○ Concepts are ‘values’ of attributes. 

● Relational concepts: Left, Front, …
● Objects
● Set of objects
● Integers
● Booleans

Note:
● This is actually the type system of CLEVR (see inset on the right).
● Scene interpretation as program synthesis and programmatic inference.  
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Domain-Specific Language (DSL) for CLEVR
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Domain-Specific Language (DSL) for CLEVR
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NS-CL: Overall architecture
Key feature: use neural symbolic reasoning as a bridge to jointly learn visual 
concepts, words, and semantic parsing of sentences.
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Operation: Three key components
1. Visual perception module (VPM)

a. Detects objects in the scene
b. Creates deep latent representation for each object

2. Semantic parsing module (SPM) 
a. Translates an input question in natural language into an executable program in the DSL

3. Program executor 
a. Executes the program upon the derived scene representation and answers the question. 
b. The execution is quasi-symbolic, because the instructions in the DSL, though symbolic, have 

neural underlying implementation. 
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Visual Perception Module (VPM)
● Pretrained Mask R-CNN (He et al., 2017) to generate object proposals
● Bounding box for each single object paired with the original image sent to a 

ResNet-34 (He et al., 2015) to extract respectively the features: 
○ Region-based features (RoI, more specifically: RoIAlign ->) 
○ Image-based features (to convey contextual information)
○ Concatenated to represent each object.  

● Attributes (e.g. Shape and Color) are implemented as neural operators. 
● The operators map object representations into a visual-semantic space.
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Interlude: Mask R-CNN
Mask R-CNN
Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick
http://arxiv.org/abs/1703.06870 

Extends Faster R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition.
● The mask branch is a small FCN applied to each RoI, predicting a 

segmentation mask in a pixel-to-pixel manner.
● The authors propose a simple, 

quantization-free layer, called RoIAlign, 
that faithfully preserves exact spatial 
locations.
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Mask R-CNN: ROIAlign
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Semantic Parser Module (SPM)
● Bidirectional GRU cell (a type of recurrent NN architecture, (Cho et al. 2014))
● Outputs a fixed-length embedding of the entire query
● A decoder based on GRU cells is applied to the embedding, and recovers the 

hierarchy of operations as the latent program. 
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Exemplary execution
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Recall: the program, though symbolic has neural underlying implementation. 
● Each program is thus fully differentiable. 
● The outcome of program P is confronted with the correct answer to the visual 

question and produces reward.  
● The reward resulting from program execution is back-propagated through 

program structure to train VPM and SPM. 

Training objective:

where S is the scene, A is the answer, P is drawn from SemanticParse(Q;Θs),Θs 
are parameters of the parser, Θv are parameters of the visual perception module.  

Training
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Training: 
For the visual perception:

For the semantic parser: REINFORCE (Williams, 1992)

reward r = 1 if the answer is correct and 0 otherwise
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Quasi-symbolic execution
ObjectSet is a vector of probabilities corresponding to objects in the scene 
(probability that the i-th object of the scene belongs to the set). 
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Comparison to related work
Two approaches in related work on semantic sentence parsing for visual 
reasoning:
● implicit programs as conditioned neural operations,
● explicit programs as sequences of symbolic tokens

○ Problem: to learn, require extra supervision, e.g. tround-truth program annotations
○ NSCL: uses visual grounding as distant supervision to parse questions in natural languages 

into explicit programs, with zero program annotations.
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Results
Questions of the type 
“How many red objects
are there?”
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Performance on different types of questions
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Generalizing to new visual compositions
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Results: Data efficiency
Can we learn efficiently from small 
numbers of examples? 
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Summary
Neuro-Symbolic Concept Learner:
● Achieves state-of-the-art performance on the CLEVR dataset
● Naturally learns disentangled visual and language concepts
● Capable of combinatorial generalization w.r.t. both visual scenes and 

semantic programs, more specifically generalization to:
○ scenes with more objects and longer semantic programs
○ new visual attribute compositions
○ novel visual concepts, such as learning a new color.
○ new tasks, such as image-caption retrieval, without any extra fine-tuning

(all shown in the paper).

● Explicit program semantics enjoys compositionality, interpretability, and 
generalizability.
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