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Introduction



Fundamentals of Convolutional NNs

Fundamentals of Convolutional NNs have been covered in the “Pattern
Recognition” course (first semester of the Master’s course). Please consult your
lecture notes, and the CS231n Stanford course, which that part of my course is
based on: http://cs231n.stanford.edu/

More specifically, the slides are available here:
http://cs231n.stanford.edu/slides/2017/

(permission granted by dr Justin Johnson)


http://cs231n.stanford.edu/
http://cs231n.stanford.edu/slides/2017/

Some thoughts on CNNs

Why are CNNs so powerful?
e Multiple filters working in parallel.
e Nonlinear mapping.
e Hierarchical organization.
e Helpful: initialization, training algorithms, batch normalization,



Some observations about CNNs
e \Weight sharing:

o Features are learned globally

e The dimensions of (purely) convolutional layers are not fixed.
o Convolution is a strictly local operation, it cares only about the part of the input that falls within
the dimensions of its receptive field (mask)
o See, e.g., the documentation of Keras.
e In contemporary CNNs, the large number of parameters originate mostly in:
o  Fully-connected layers
o Large numbers of filters/channels.

e CNNs can be used for harvesting global image features.



Some observations about CNNs

Using pretrained networks is almost always worth considering.
o Visual features are universal.

Super efficient implementation, particularly on GPUs and hardware
architectures that target tensor-based computing.

Can be easily ‘uplifted’ to higher dimensions:
o 3D
o 2D+time
o Many software packages provide and
The concept of convolution can be generalized to other spaces.
o E.g. graph convolution.

One may extend input with image metadata to provide the learner with more
information:

o E.g., image dimensions.
o Some nonlinear mapping necessary.



Milestone CNN architectures



AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton
http://arxiv.org/pdf/1409.0575



http://arxiv.org/pdf/1409.0575

Contributions

Large and deep (by 2012 standards)

Trained on 1.2M images

Bet SoTA methods of the time.

Second place in the ILSVRC-2012 competition

Architecture:

Five conv layers

Some max pooling layers

Uses dropout (recently introduce at that time)

One of the first networks to use RelL.Us

~60M parameters

1000 classes (ImageNet LSVRC contest)
Deployed and trained on 2 GPUs (GTX 580, 3GB)
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Results

Effectiveness of ReLLUs

Summary of results:

| Model | Top-1 (val) | Top-5 (val) | Top-5 (test) |
SIFT + FVs [7] — — 26.2%
1 CNN 40.7% 18.2% —
5 CNNs 38.1% 16.4% 16.4%
1 CNIN* 39.0% 16.6% —_
7 CNNs* 36.7% 15.4% 15.3%

1 CNN - single CNN

5 CNN - averaging the predictions of 5 CNNs
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Figure 1: A four-layer convolutional neural
network with ReLLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

12



Top-5
characteristics

mite

container ship

motor scooter

mite

black widow
cockroach
tick
starfish

container ship

motor scooter

lifeboat
amphibian
fireboat

drilling platform

go-kart
moped
bumper car

golfcart

cheetah
snow leopard
Egyptian cat

- >~ ok & '
mushroom cherry Madagascar cat
~ convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’s-fingers currant howler monkey




VGG models

Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan, Andrew Zisserman
https://arxiv.org/abs/1409.1556

14


https://arxiv.org/abs/1409.1556

Original contribution

Our main contribution is a thorough evaluation of networks of increasing depth
using an architecture with very small (3x3) convolution filters, which shows that a
significant improvement on the prior-art configurations can be achieved by pushing
the depth to 16—19 weight layers.

The effect: lower number of parameters, more efficient training, less overfitting.

VGG-16
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Advanced CNN architectures



Inception Network

Going Deeper with Convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
https://arxiv.org/abs/1409.4842
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Main features

e Carefully crafted design,

e Increased the depth and width of the network while keeping the computational
budget constant

e Architectural decisions based on the Hebbian principle and the intuition of
multi-scale processing.

e Specific variant/instance: GooglLeNet, a 22-layer Inception network
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Motivations

Arora et al. [2]:

If the probability distribution of the dataset is representable by a large, very
sparse deep neural network, then the optimal network topology can be
constructed layer after layer by analyzing the correlation statistics of the
preceding layer activations and clustering neurons with highly correlated

outputs.
o Related to Hebbian principle — Neurons that fire together, wire together [Donald Hebb, 1949]

If two convolutional layers are chained, an increase in the number of their

filters results in a quadratic increase of computation.
o If the added capacity is used inefficiently (for example, if most weights end up to be close to
zero), then much of the computation is wasted.
o This could be addressed with sparse data structures, but today’s computing architectures are
inefficient for such structures.
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Motivations

How an optimal local sparse structure of a convolutional vision network can

be approximated and covered by readily available dense components?
o Assuming translation invariance => use convolutional building blocks.
o All we need is to find the optimal local construction and to repeat it spatially.

In the lower layers (the ones close to the input) correlated units would

concentrate in local regions.
o Clusters concentrated in a single region can be covered by a layer of 1x1 convolutions.

Smaller number of more spatially spread out clusters that can be covered by

convolutions over larger patches
o Hence also 3x3 and 5x5 convolutions.

All those layers concatenated into a filter bank’
Additional pooling operations performed in parallel to the above.
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Inception module: naive version

Filter
concatenation
/"‘
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

A

Previous layer

e The ratio of 3x3 and 5x5 convs to 1x1 should increase with consecutive
layers, as features become sparser and more spatially distributed.
e The challenge: large depth of concatenated filters.



Inception module

1x1 convolutions

1x1 convolutions 1x1 convolutions

Filter
concatenation

T e

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

)

Previous layer

A

3x3 max pooling

.
>

e 1x1 convolutions embed the stimuli in a lower-dimensional space.
e Added before convolutions, to preserve spatial sparseness.

e Implement also RelLus
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Complete Inception architecture

A network consisting of modules of the above type stacked upon each other,
e (Occasional max-pooling layers with stride 2 to halve the resolution of the grid.
For memory efficiency: start using Inception modules only at higher layers
while keeping the lower layers in traditional convolutional fashion
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GooglLeNet

e 22 layers deep when counting only layers with parameters
o 27 layers if also counting pooling
e The overall number of layers (feature maps): about 100.
e Uses average pooling before the classifier (with additional linear layer)

Addressing the vanishing gradient problem:
e The strong performance of shallower networks on this task suggests that the

features produced by the layers in the middle of the network should be very

discriminative.
e By adding auxiliary classifiers connected to these intermediate layers,
discrimination in the lower stages in the classifier was expected

25
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type pa;;l;;ize/ m;itfeut depth | #1x1 iﬁjl)l(ci #3x3 i&g:ci #5x5 g::: params ops
convolution TXT[2 112x112x64 1 27K 34M
max pool 3x3/2 56 x 56 x 64 0
convolution 3x3/1 56x56x192 2 64 192 112K | 360M
max pool I%3/2 28x28x192 0
inception (3a) 28x28x256 2 64 96 128 16 32 32 159K | 128M
inception (3b) 28x28x480 2 128 128 192 32 96 64 380K | 304M
max pool 3x3/2 14x14x480 0
inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4¢) 14x14x512 2 128 128 256 24 64 64 463K | 100M
inception (4d) 14x14x 528 2 12 144 288 32 64 64 580K | 119M
inception (4e) 14x14x 832 2 256 160 320 32 128 128 840K | 170M
max pool 3x3/2 TxTx832 0
inception (5a) TxTx832 2 256 160 320 32 128 128 | 1072K | 54M
inception (5b) Tx7x1024 2 384 192 384 48 128 128 | 1388K | 7IM
avg pool Tx7/1 1x1x1024 0
dropout (40%) 1x1x1024 0
linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0




GooglLeNet

e Trained using asynchronous GD with 0.9 momentum.
e Quite sophisticated image cropping approach for harvesting the training data.

e Softmax probabilities are averaged
o over multiple crops
o and over all the individual classifiers
o to obtain the final prediction.

e Uses an ensemble of 7 independently trained GooglLeNets:

Trained with the same initialization, even with the same initial weights, due to an oversight (!)
Same dynamic learning rate policies.

They differed only in sampling methodologies and the randomized input image order.

The ensemble included one wider version.

O O O O
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Residual networks

Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Zhang, Shaoqging Ren, Jian Sun
https://arxiv.org/abs/1512.03385
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Residual networks

e Explicitly reformulate the layers as |earning residual functions with reference
to the layer inputs, instead of learning unreferenced functions.

e The authors evaluate residual nets with a depth of up to 152 layers—8 deeper
than VGG nets, but still having lower complexity.

e 1st place on the ILSVRC 2015 classification task

e st places on the tasks of ImageNet detection, ImageNet localization, COCO
detection, and COCO segmentation.
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Motivations

Let H(x) be the mapping to be fit by a few stacked layers (not necessarily the
entire net), with x denoting the inputs to the first of these layers.

If a multiple nonlinear layers can asymptotically approximate complicated
functions, then it is equivalent to hypothesize that they can asymptotically

approximate the residual functions, i.e., H(x) - x
o  (assuming that the input and output are of the same dimensions).

Let's explicitly let these layers approximate a residual function F(x) :=
H(x)-x.

In other words: the original function becomes F(x)+x.

Although both forms should be able to asymptotically approximate the desired
functions (as hypothesized), the ease of learning might be different (due to
‘shortcuts’ in gradient flow).
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Basic building block
Mapping realized by a Resnet building block:
y = F(x,{W;}) + x.

Note: requires the shape of y to be the same as x. What if, for some reason, that’s
impossible?

y = F(x,{W;}) + W,x.

Nevertheless, the authors work mostly with the former case.
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Basic building block

The specific building block used by the authors:

weight layer
F(x) l relu i
weight layer identity

F(x)+x

Resnets are thus modular networks (though there’s no weight sharing between
individual building blocks/modules.
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Overall architecture

Design follows VGG networks:
e Mostly 3x3 filters
e Forthe same output feature map size, the layers have the same number of
filters (what did | mean by that?)
o If the feature map size is halved, the number of filters is doubled so as
to preserve the time complexity per layer.
e Downsampling using convolution with stride 2 (“/27).

The figure that follows:
o Left: VGG-19 model: 19.6 billion FLOPs
e Center: A plain network with 34 parameter layers: 3.6 billion FLOPs
e Right: Aresidual network with 34 parameter layers: 3.6 billion FLOPs

The dotted shortcuts increase dimensions. v
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Other elements

Batch normalization after each convolution (before activation)

Two options for the dotted connections:

e A: The shortcut still performs identity mapping, with extra zero entries padded
for increasing dimensions (no extra parameters)

e B: The projection shortcut in is used to match dimensions, using done by 1x1
convolutions:

y = F(x,{W;}) + W,x.
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Considered configurations

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 71x7, 64, stride 2
3x3 max pool, stride 2
[ 1x1,64 1x1,64 ] 1x1,64 ]
2 56x56 A ) A
Lo ie s & l 3§3 Zj }xz [ 22;3 ]xs 3x3,64 | x3 3x3,64 | x3 3x3,64 |x3
T . . 1%1,256 | . 1%1,256 | | 11,256 |
: - . [* 1561, 128 [ 13¢1,°128 Tl 128 7
3 2 3%3.12 : 4 ’
conv3_x 28x28 %Xf: :78 %2 gxg :72 x4 I3, 128 |x4 3x3,128 | x4 3%3.128 | %8
L S L et | 1x1,512 | | 11,512 | | 1x1,512 |
- - - | 1%1.256 | 1x1,256 ] 1¢%, 256 |
) ? ’ s
comvdix | “TAx1d :i: ;gg X2 :z: ggg x6 || 3x3,256 |x6 || 3x3.256 |x23 || 3x3,256 |x36
kiR LT . | 1x1,1024 | 1x1,1024 | 1x1,1024 |
- - - . | 151,512 ] 131,512 131,512
2 ? ? ?
convS_x T 2x.:§:; %2 :X":z:% 3 B33 512 || %3 I3 12 |3 I3 312 |3
“ate ahat U | R et | 1x1,2048 | 1x1,2048 1x1,2048
I1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6x10° 3.8x10° 7.6x10° 11.3x10°




Some reSUItS model top-1 err. top-5 err.
VGG-16 [41] 28.07 0.33

(A) zero-padding shortcuts are used for GoogLeNet [44] : 9.15
increasing dimensions, and all shortcuts are PReLUmnet[13] | 24.27 43
f plain-34 28.54 10.02
parameter iree ResNet-34 A 25.03 776
(B) projection shortcuts are used for ResNet-34 B 24.52 7.46
i ing dimensions, and other shortcuts Reser34.€ 21y 740
Increasing di ’ ResNet-50 22.85 6.71
are identity; ResNet-101 2175 6.05
ResNet-152 21.43 5.71

(C) all shortcuts are projections

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B

Trained with Ordinary SGD with momentum that only uses projections for increasing dimensions.

Experimented also with ensambles;
networks up to 1000 layers (found it to be

worse than 110-layer net) 45



Why do ResNets work?

e They address the vanishing/exploding gradient problem.
o Recall what happens with gradient in computation graphs/flows.

e This implicitly allows maintaining relatively low depth (number of
channels/dimensions) along the network
o Notice the not too frequent dotted connections.

e Does modularity help?
o An open question.
o Eases automation of architecture optimization (see, e.g., neuroevolution).
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Related architectures



Wide Residual Networks (Wide-Nets)

Wide Residual Networks, Sergey Zagoruyko, Nikos Komodakis,
http://arxiv.org/abs/1605.07146
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Motivations

The study of residual networks has focused mainly on the order of activations
inside a ResNet block and the depth of residual networks.

Goal: To explore a much richer set of network architectures of ResNet blocks
and thoroughly examine how several other different aspects besides the order
of activations affect performance

Width vs depth in residual networks.

shallow circuits can require exponentially more components than deeper
circuits

49



Motivations

Diminishing feature reuse [28]: As gradient flows through the network there
is nothing to force it to go through residual block weights and it can avoid
learning anything during training, so it is possible that there is either only a
few blocks that learn useful representations, or many blocks share very little
information with small contribution to the final goal.

o Some earlier works tried to address this by randomly disabling residual blocks during training.

Hypothesis: show that the widening of ResNet blocks (if done properly)
provides a much more effective way of improving performance of residual
networks compared to increasing their depth.

In particular, we present wider deep residual networks that significantly
improve over [13], having 50 times less layers and being more than 2 times
faster.
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(a) basic (b) bottleneck (c) basic-wide (d) wide-dropout
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The architecture

k multiplies the number of features
in convolutional layers

k=1 => ResNet

N: the number of blocks in a group

group name

output size

block type = B(3,3)
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3232
32332

16x16

8x8
1 %1

[3x3. 16]
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[8x 8]

x N

x N
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Some results (no dropout)

depth-k  # params CIFAR-10 CIFAR-100

NIN [20] 381 35.67
DSN [19] 8.22 34.57
FitNet [24] 8.39 35.04
Highway [28] 172 32.39
ELU [5] 6.55 24.28
aE g N 1121(;)2 116.721\161 —? :491; ?ég
110 17M 5.23 2458
Stac-depn ) 1202 102M 491 ]
110 17M 68T -
pre-act-ResNet[ 13] 164 1.7M 5.46 24.33
1001 102M  4.92(4.64) 2271
104 89M 453 21,18
WRN (ours) 168  11.0M 4.7 20.43

28-10 36.5M 4.00 19.25




Related architectures

e Highway networks: Rupesh Kumar Srivastava, Klaus Greff, Jirgen Schmidhuber,

https://arxiv.org/abs/1505.00387
o  Shortcut connections with gating functions (rather than identities): transform gate T and carry

gate C: y = H(X, WH) T(X, WT) + X - C(X, Wc).

o Original paper: T is a dense sigmoid layer and:

y=H(xXWu) T, Wr)+x:-(1-T(x,Wr)).

o T’s bias initialized to implement the carry behavior.
o Allow unimpeded information flow across several layers on "information highways"

e Fractal networks, FractalNet [Larsson et al. 2017]: parallel multi-scale, trained

by dropping out entire modules/paths
e Deep networks with stochastic depth [Huang et al. 2016]: a bit like dropout on

the level of entire layers
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Fully convolutional architectures

55



Motivations

Any usage scenario that requires image -> image mapping, i.e. image processing.
Examples:

e |Image segmentation
o Including semantic segmentation

e Image denoising
o A CNN serves as a denoising filter.
o Can adapt in training to the characteristics (distributions) of a given class of images.

e Image superresolution
e Style transfer
e Virtually any image processing.

Note: All these tasks offer much stronger training signal than regular classification
or regression.
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Image segmentation has many faces ...

e ‘Ordinary’ segmentation
o  We’re happy if the algorithms manages to delineate perceptually distinct regions.
e Semantic segmentation
o The algorithm is expected to work with semantics-rich labels, like sidewalk, car, person, road
sign, ...
e Object instance segmentation
o Multiple instances of the same type of entity should be delineated.




DNN-based approaches to segmentation

Main categories of representatives:
e Patch-based - a ‘naive’ approach
o Replaces the segmentation task with classification of individual pixels based of image patches

e Fully convolutional (FCNN), ‘holistic’

o Performs segmentation of all image patches in parallel

e Recurrent
o Uses recurrent layers/cell/networks to ‘sweep’ the input image.
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Patch-based segmentation

Segmenting Retinal Blood Vessels with Deep Neural Networks

Pawet Liskowski, Krzysztof Krawiec
https://ieeexplore.ieee.org/document/7440871?arnumber=744087 1
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A naive approach to segmentation using DL

e A network in a sliding-window setup
predicts class label of each pixel by
analyzing a local region (patch)
around that pixel (e.g., Ciresan et al.
[1])

e Advantage: each training image gives

Fig. 1. A training image from the DRIVE database (left) and the corresponding
rise to thousands or more of training manual segmentation (right).
examples (patches)

Fig. 2. A pathological image from the STARE database (left) and the corre-
sponding manual segmentation (right).
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L.

Fig.4. Examples of positive (left) and negative (right) 27 x 27 training patches ~ Fig. 6. Positive (left) and negative (right) training patches after applying ZCA
extracted from the DRIVE images. whitening transformation.

Bl T e AR
B S T
ERNEEEE WREARTNA

) N ) ) o Fig. 7. Augmentations of positive (left) and negative (right) training patches.
Fig. 5. Examples of positive (left) and negative (right) training patches after ~ Each row shows 6 random augmentations of the leftmost patch.
applying GCN transformation.
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o

Fig. 8. A training example for the SP approach: the 27 x 27 patch with the
s X 8 = 5 X b output window (left) and the corresponding desired output

(right).



Patch-based segmentation: Summary

Disadvantages:
e Slow, in particular at querying, because of explicit scanning of the image.

e Trade-off between the localization accuracy and the use of context:

o Larger patches require typically more max-pooling layers, which reduces localization accuracy
(spatial ‘aliasing’)
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U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger, Philipp Fischer, Thomas Brox
https://arxiv.org/abs/1505.04597
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The architecture

Uses FCNN to supplement a usual contracting network by successive layers,

where pooling operators are replaced by upsampling operators.
o Increase the resolution of the output.
Two main building blocks:

o a contracting path to capture context
o asymmetric expanding path that enables precise localization

The network does not have any fully connected layers and only uses the valid

part of each convolution.
o Padding via mirroring at the edge of the image.
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Some comments on U-net

e Advantages: Trains effectively from small samples.
e Q: Is this an autoencoder?
e The ‘copy and crop’ connections are not equivalent to residual connections.
o However, they definitely allow part of gradient flow along a shorter path.
e Even though the numbers in the figure (previous slide) refer to specific image
dimensions, this is still a FCNN:

o All operations (convolutions, max pooling, up-conv) rely on local receptive fields.
o Therefore, U-nets are scalable/applicable to images of arbitrary dimensions.
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Other features

Uses weighted target: separating background labels between touching
objects (e.g., cells) obtain relatively large weight.
Separation border computed using morphological operations.

202

(d1(x) + do (x))?)

w(x) = we(x) + wp - exp (_

Where:
o wc : balances class frequencies;
o d1: distance to the border of the nearest object (cell in the original paper),
o d2: distance to the border of the second nearest cell.
o The authors used w0=10
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Henrietta Lacks

1920-1951

Md. for wartime employment. |
m@l cancer on 4 Oct. 1951
without 5

69



HelLa

Hela is an immortal cell line used in scientific research.
o The first human cells grown in a lab that were naturally "immortal", meaning that they do not
die after a set number of cell divisions

It is the oldest and most commonly used human cell line (1951).

The first human cells grown in a lab that were naturally "immortal”, meaning
that they do not die after a set number of cell divisions

Scientists have grown an estimated 50 million metric tons of HelLa cells
Almost 11,000 patents based on the HelLa line.
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U-Net's weighted target on Hela cells image

a . | C % d

Fig. 3. HeLa cells on glass recorded with DIC (differential interference contrast) mi-
croscopy. (a) raw image. (b) overlay with ground truth segmentation. Different colors
indicate different instances of the HeLa cells. (c¢) generated segmentation mask (white:
foreground, black: background). (d) map with a pixel-wise loss weight to force the
network to learn the border pixels.
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Other features

e Loss function: cross-entropy on output (softmax) and target labels

pi(x) = exp(ax(x))/ (L= explaw (x)))
E =) w(x)log(pyx)(x))

xef?

e Notice: ‘soft labels’
o Effectively, the classification tasks turned into a regression task.
o Disputable, as regression tasks are usually more difficult (must approach the target value as
closely as possible).

e Makes extensive use of augmentations.
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Some results

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth

(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).
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Some results

Name PhC-U373 DIC-HelLa
IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46

u-net (2015) 0.9203 0.7756

|IOU = Intersection over Union
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Recurrent Neural Nets for Segmentation



RNNs for segmentation

ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron
Courville, Yoshua Bengio

https://arxiv.org/abs/1505.00393
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Motivations

e Not explicitly stated
e “Apply a recurrent NN to an image and see what happens™?
e A nice example of versatility of contemporary DNN architectures.

77



Architecture

Replace each convolutional+pooling
layer in the CNN with four RNNs
that sweep over lower-layer features

in different directions:

o (1) bottom to top,
o (2)top to bottom,
o (3) left to right and
o (4)right to left.

Each feature activation in its output
is an activation at the specific
location

Use conventional sequential
(one-dimensional RNNSs)
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Some details

Formally, for the vertically-scanning layer:
F F .
UVij = fVFWD(Zz-,j_pPz',j)a forg = 1; w68 5

R R ;
Uij = fVREV(Zz-,jH,pz-,j), 101 = e, wmon )

° fVFWD and fVREV can be

o LSTM cells (Hochreiter & Schmidhuber 1997), or
o GRU cells (Cho et al. 2014)

e The outputs of the hidden steps are concatenated and so create a composite
feature map.
e Many such bi-layers (V+H) can be stack atop each other.
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Comparison with conventional CNNs

ReNets propagate information through ‘ateral’ connections,

o (not to be confused with /atent)
o The layer has access to “global information”.

Lateral connections help remove/resolve redundant features at different
locations in the image.
ReNet does not use any pooling: The lateral connection in ReNet can emulate
the local competition among features induced by the max-pooling in LeNet.
o Max pooling causes irreversible loss of information about the exact location of the feature
m (not mentioning the loss of information about the presence of features at non-maxima)

o Avoiding max pooling makes the mapping easier to invert, and thus better applicable in
autoencoder-like architectures.

Disadvantage of ReNet: Not easily parallelizable.
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Tested on

o MNIST
e CIFAR-10
o Street View House Numbers (SVHN)

Used GRU units: hi = (1 —wu) Ohe_1 +us © he,

hy = tanh Wz + U(ry © hy—1) + b)

[ug;me] = 0 (Weze + Ughs—1 + by) .

Where: x - input, h - hidden state, b - bias, u - gating signal
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Architecture used for SVHN

512

12

3 256 256

512

512

512

3

512

—K

SoTA accuracy, but not better than conventional CNNs (next slide)

4096

10
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Test Error | Model
0.28% [Wan et al., 2013 ]
0.31% [Graham, 2014a]x
0.35% [Ciresan et al., 2010]
0.39% [Mairal et al., 2014 ]%
0.39% [Lee etal., 2014 ]%
0.4% [Simard et al., 2003 ]x
0.44% [Graham, 2014b]*
0.45% [Goodfellow et al., 2013 ]x
0.45% ReNet
0.47% [Lin et al., 2014 ]x
0.52% [Azzopardi and Petkov, 2013]
(a) MNIST
Test Error | Model
1.92% [Lee etal., 2014 ]%
2.23% [Wan et al., 2013]*
2.35% [Lin et al., 2014 |*
2.38% ReNet
2.47% [Goodfellow et al., 2013 ]x
2.8% [Zeiler and Fergus, 2013 ]x

(c) SVHN

Test Error | Model

4.5% [Graham, 2014b]x

6.28% [Graham, 2014a]x

8.8% [Lin et al., 2014 ]%

9.35% [Goodfellow et al., 2013]x
9.39% [Springenberg and Riedmiller, 2013 ]*
9.5% [Snoek et al., 2012 ]%

11% [Krizhevsky et al., 2012]x
11.10% [Wan et al., 2013 ]x
12.35% ReNet

15.13% [Zeiler and Fergus, 2013]x
15.6% [Hinton et al., 2012]*

(b) CIFAR-10

Table 2: Generalization errors obtained by
the proposed ReNet along with those re-
ported by previous works on each of the three
datasets. x denotes a convolutional neural
network. We only list the results reported by
a single model, i.e., no ensembling of multi-
ple models. In the case of SVHN, we report
results from models trained on the Format 2
(cropped digit) dataset only.
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Comparative study of segmentation methods

Automatic choroidal segmentation in OCT images using supervised deep learning
methods

Jason Kugelman, David Alonso-Caneiro, Scott A. Read, Jared Hamwood, Stephen
J. Vincent, Fred K. Chen, Michael J. Collins
https://www.nature.com/articles/s41598-019-49816-4

84


https://www.nature.com/articles/s41598-019-49816-4

Outline

e Compare patch-based methods with semantic segmentation methods

e Use

o Conventional conv layers
o Recurrent layers based on ReNets
o Residual connections

e Domain specific aspect: the goal is to segment a boundary between regions,

not the regions themselves.
o Notice: in general, this is not equivalent to the ‘generic’ segmentation task.

e Next slide shows the experimental protocol for particular types of

architectures.
o Warning: The term ‘semantic segmentation’ used not entirely correctly.
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Compared

architectures
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Postprocessing

e Networks produce probability maps (last layer is always SoftMax)
o These need to be converted into definitive layer locations

e Uses Dijkstra’s shortest path algorithm

e Next slide shows
o inputimage
o probability maps (midlle row);
o segmented boundary
o CE = Contrast Enhancement
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Results

e Semantic segmentation (U-nets) significantly better than patch-based
methods on some anatomical layers
e No significant differences within the above groups.

Evaluation time (s)
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Some results for the standard U-Net architecture




Object instance segmentation



Fast R-CNN

Fast R-CNN
Ross Girshick
https://arxiv.org/abs/1504.08083
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Core idea

e Object detection
e Based on earlier work: R-CNN, Region proposal CNN (R. Girshick et al.,
CVPR’14). Addresses the limitations of R-CNN, which:

o Used SVMs trained on CNN features => training was multi-stage, and not end-to-end.
o Had high cost of training.
o Was slow at detection (required a separate CNN forward pass for each object proposal).

e Contributions of Fast R-CNN:

o End-to-end training
o Single-stage training
o Better accuracy

94



Fast R-CNN

A first (?) NN-based attempt to

solve these problems at the same

time:

1. object localization,

2. object detection (object vs.
non-object),

3. object classification.

However, #1 is not being solved
‘from scratch’ - Rols must be
given. Fast-CNN refines them.

Outputs: bb oX
softmax regressor

Rol

Rol feature
vector

For each Rol

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (Rols) are input into a fully convolutional
network. Each Rol is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per Rol: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.
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Method’s pipeline

e Takes as input an entire image and a set of object proposals.
o Assumes that region proposals are given.

e Processes the whole image with several convolutional and max pooling layers
to produce a feature map.

Then, for each object proposal:
e Aregion of interest (Rol) pooling layer extracts a fixed-length feature vector
from the feature map (Rol pooling).
e Each feature vector is fed into a sequence of fully connected (fc) layers that

finally branch into two sibling output layers:
o classification softmax: produces softmax probability estimates over K object classes plus a
catch-all “background” class, and
o bbox regressor: another layer that outputs four real-valued numbers for each of the K object
classes (refined bounding box positions).
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Rol max pooling

Uses max pooling to convert the features inside any valid region of interest into a
small feature map with a fixed spatial extent of HxW (e.g., 7x7),

Works by:
1. Dividing the hxw Rol window into an HxW grid of sub-windows of approximate

size h/H x w/W
2. Max-pooling the values in each sub-window into the corresponding output grid

cell.

In other words: crude ‘max-downsampling’ of any Rol to HxW.

Operates independently on each input channel.
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Characteristics

e Rols from the same image share computation and memory in the forward and

backward passes
o  With additional extensions (approximating large fc layers with truncated SVD) works almost
real-time, when ignoring the time required to produce region proposals.

e Downsides:
o Needs an external Rol proposal generator.
o Explicitly iterates over region proposals.

e This issue has been addressed by Faster R-CNN.
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Approximating large FC layers with truncated SVD

Replace the (trained) uxv weight matrix W with:

WU VT

Where:
e U: uxt matrix of first t left-singular vectors of W
e 2 txtdiagonal matrix of the top t singular values of W
e V: vxt matrix comprising first t right-singular vectors of W.

Reduces the number of parameters from uv to t(u+v).

Technical realization: two fully connected layers (no nonlinearity between them!):

e The first layer uses 2 VT as weight matrix (no biases)
e The second layer used U as weight matrix (and biases taken from W).

99



Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks
Shaoging Ren, Kaiming He, Ross Girshick, Jian Sun
https://arxiv.org/abs/1506.01497
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Birds-eye view

Faster R-CNN is an example of a region proposal method.

o Originally very expensive computationally.
o Became more feasible via parallelization with CNNs.

Proposal computation is nearly cost-free in the context of detection network

com p u tat| on. classifier
Core components: " _
Rol pooling

o Region Proposal Network (RPN), deep CNN

-
that proposes regions e T
o Fast R-CNN detector (and location refinement) /4 / /—//
These SUbnetWOrkS Share the COﬂVOlUtIOHal RegionProposalNetworkr

feature maps

layers.
o In one variant, these are taken from VGG-16.

/ P
/ A
/ P
conv layers /
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Region Proposal Network

1.

Aggregates a small (3x3) window of the last convolutional layer into a
lower-dimensional representation (+ RelLU).
a. 3x3 may sound not much, but the effective receptive field of VGG is 228x228

Separately estimates the position and class using (cf. Fast R-CNN):
a. Box-regression layer (reg)

b. Box-classification layer (cls)
Important: there is no explicit sliding!

a. The fully-connected layers are shared!

H H . . 2k scores 4k coordinates k anchor boxes
b. Technical realization: 1x1 convolutions. |dslayel_ | | mglayLl_ <=
c. High efficiency. \ f
d. Exercise: draw this using “box convention”. | 256 | D

t intermediate layer

NN

sliding window:

=

conv feature map
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Anchors

e Anchor = detection proposal

e Rather than predicting just one region at one location, the reg network

predicts k of them, for different scales and ratios.
o Default configuration: 3 scales and 3 ratios => k=9 anchors for each position.
o Therefore, for, e.g. WxH locations in the convolutional feature map, WHk anchors
(e.g. 2400x9 = 21900 anchors for the entire scene/image)
e In parallel to that, the c/s network predicts 2k scores

o Object vs. non object (hence 2 outputs per class)
o Two-class softmax layer

o (The authors admit they could have used one output and logistic regression).

e The upside: the actual number of parameters of reg+cls is surprisingly small:
o The combined number of outputs: (4+2)x9
o Total number of parameters (for VGG): 512x(4+2)x9 = 2.8x10"4
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Loss function (1): Classification

e Consists in confronting anchors with ground truth boxes.

e Positive label assigned to:

o The anchor that has the highest intersection over union (loU) with the GT box, or
o An anchor that has an loU overlap higher than 0.7 with any GT box.
o Implication: possibility of multiple positive labels coming from the same GT box.

e Negative labels assigned when an anchor has loU lower than 0.3 for all GT
boxes.

e Notice: no loss/penalty for ‘undecided’ anchors.
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Loss function (2): Regression

e L __defined using robust loss function (smooth L1)
g

| x| if |x| > a;
Ll;smooth — 1,2 x| < «

||

e Parameterization/standarization of coordinates for reg

tx = (x—xa)/wa, ty — (y_ya)/haa
b = loglw/m); 1 =loglh/hy);

t: =| (x* = xa)/waa t;; — (y* - ya)/haa
o = loglar” Jai ), &, = loglh™/h.),
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Loss function (3): Combined

L{{pi}{t:}) =

cls pza pz

§ pz reg uz

reg

where:
e pi - cls output (object/non-object), pi* = 0/1 targets as defined above,
e i, ti* - predicted and actual coordinates, respectively; notice pi* next to Lreg
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More detalils

e In training, each mini-batch works with the GT boxes extracted from the same
image (‘image-centric approach’)
e Not all generated anchors are taken into account (because of high imbalance:

almost all anchors are negative):
o “Stratified” sampling 256 anchors so that the positive/negative class ratio is close to 1:1

(unless that’s impossible)
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Training

The authors consider a bunch of training regimes for cls and reg:

e Alternating (used as default):
o First train the RPN
o Use the region proposals to train Fast R-CNN
o Repeat

e Approximate joint training: RPN and Fast R-CNN are merged into one

network during training.
o Has some deficiencies (ignores the derivatives w.r.t. proposal coordinates)

e Non-approximate joint training
o Advanced, handled in another paper.

Ultimately the paper uses a hybrid of the above.
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Some comments

e Recall that the convolutional nature of CNNs addresses only the translation
invariance.

e Faster R-CNN addresses also scale invariance (to an extent).

e Rotation- and pose-invariance remains a challenge.
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Object detection as a regression problem: YOLO

You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
http://arxiv.org/abs/1506.02640

113


http://arxiv.org/abs/1506.02640

Key contributions

e Frames object detection as a regression problem to spatially separated
bounding boxes and associated class probabilities.

e A single neural network predicts bounding boxes and class probabilities
directly from full images in one evaluation.

e No sliding window.

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Implications:
e More than twice the mean average precision of other real-time systems.

e Fast: base version 45 fps on Titan X GPU, fast version >150 fps. »



Operation

e Divide image into SxS grid (S=7)
e If the center of an object falls into a grid cell, that grid cell is responsible for
detecting that object.

e Each grid cell predicts
o B=2 bounding boxes and confidence scores for those boxes.
m Confidence scores defined as Pr(Object) * loU(predicted, actual)
o C conditional class probabilities Pr(Class |Object)

e FEach BB prediction comprises:
o Center and dimensions of the box: x, y, w, h,
o Confidence

e Querying: multiplying conditional class
probabilities and box-level confidence i
predictions. T i vl detecions
e Qutput tensor size: SxSx(5B+C) W

Class probability map



Architecture

e Inspired by GooglLeNet: 24 conv layers, 2fc layers.
e Pretrained on 1000-class ImageNet
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Results

e Fast YOLO: only 9 conv layers

Precision

Real-Time Detectors Train mAP FPS
100Hz DPM [ ] 2007  16.0 100
30Hz DPM [ 1] 2007  26.1 30
Fast YOLO 2007+2012  52.7 155
YOLO 2007+2012  63.4 45
Less Than Real-Time

Fastest DPM [ ] 2007  30.4 15
R-CNN Minus R [ 1] 2007  53.5 6
Fast R-CNN [ 4] 2007+2012 70.0 0.5
Faster R-CNN VGG-16[“] 2007+2012  73.2 7
Faster R-CNN ZF [¢] 2007+2012  62.1 18
YOLO VGG-16 2007+2012  66.4 21
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Results: Picasso and People-Art datasets

Sk Tl
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Other architectures

e Maxout

e Highway nets

e Mask R-CNN, Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick
https://arxiv.org/abs/1703.06870
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Learning higher-level concepts
for scene interpretation



Summary

All those impressive results notwithstanding, all that research just scratches the
surface of ‘visual intelligence’.
e Focus on mappings: classification (image-level, object-level, pixel-level),
segmentation, regression, bounding box regression, ...
e Can we design DL agents that really reason about scenes?

e More precisely, reason about:

o Objects and object properties

o Relationships between objects

o Spatial arrangement of objects in the scene.
O
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Deep learning for scene interpretation

The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and

Sentences From Natural Supervision
Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, Jiajun Wu

http://arxiv.org/abs/1904.12584
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The role of language in scene interpretation

Motivation: humans are capable of learning visual concepts by jointly
understanding vision and language.
e The cues: ‘Correlations’ between the content of the scene and the associated
statement (see examples below).
e Authors call this natural supervision: learning from pairs (image, QA).
e Also known as Visual Query Answering task (VQA)

I. Learning basic, object-based concepts.  II. Learning relational concepts based on referential expressions.

Q: How many objects are right of the red object?

A: 2.

Q: How many objects have the same material as the cube?
A:2

Q: What’s the color of the object?
A: Red.

Q: Is there any cube?
A: Yes.

Q: What’s the color of the object?
A: Green.

Q: Is there any cube?
A: Yes.

III. Interpret complex questions from visual cues.

Q: How many objects are both right of the green cylinder
and have the same material as the small blue ball?
A:3
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CLEVR dataset

CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual
Reasoning

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C.
Lawrence Zitnick, Ross Girshick

http://arxiv.org/abs/1612.06890
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CLEVR dataset

Represents the class of task of Visual Query Answering (VQA)
70k training scenes, rendered in Blender

Uses symbolic description of scenes

Scene description is used for scene rendering

Multiple NL questions can be generated for the same scene

Q: What’s the shape of the big Q: What size is the cylinder that ~ Q: What’s the shape of the big Q: What size is the cylinder that
yellow thing? is left of the cyan thing thatis in  yellow thing? is left of the cyan thing thatis in
front of the big sphere? front of the gray cube?
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CLEVR dataset

Objects: three object shapes (cube, sphere, and cylinder), two absolute sizes
(small and large), two materials (shiny “metal” and matte “rubber”), and eight
colors.

Relationships: “left”, “right”, “behind”, and “in front”.

Scene representation: a scene graph, where nodes are objects annotated

with attributes and edges connect spatially related objects.
o Contains all ground-truth information for an image and could be used to replace the vision
component of a VQA system with perfect sight.

Image generation: random sampling a scene graph and rendering it using
Blender.

Question representation: a functional program that can be executed on an
image’s scene graph, yielding the answer to the question. Built from simple
basic functions that correspond to elementary operations like querying object
attributes, counting sets of objects, or comparing values. 126




Sizes, colors, shapes, and materials

Large red
Large gray metal cube
metal | | -

sphere

Small green
metal sphere

Small blue
metal cylinder

Large brown |arge purple Small cyan
rubber rubber rubber
sphere cylinder cube

Small yellow
rubber

sphere

Left vs. right

Left | Right

In front vs. behind

Behind
In front

Sample chain-structured question:

Filter Filter Filter Query
color shap } Unlque» Relate} hap } Umque} o >

yellow

sphere right cube

What color is the cube to the right of the yellow sphere?

Sample tree-structured question:

Fllter} Umqueﬂ Relate
color

Filter
green left shape
Filter f
Unique Relate i
Sre } q H € cylinder
small in front

How many cylinders are in front of the small
thing and on the left side of the green object?

CLEVR function catalog

Value mp

Filter <attr> —p Objects

objects ==—

bjects m——p

- J.ec : - =P Objects

objects ==———pFOF

objects == EX'St s
ount >

object—»—-» value

yes/no
number

ValUue mp
Equal —P ves/No
Value s—p
NUMDET s
Equal =P yeS/No
number = FLesSs/ More

object—>—> objects

Value m—p
object m=——p

oty — (GG —» obec

127

Relate =P objects




Back to NS-CL: Neural symbolic reasoning (?)

We need to define some symbolic framework to reason in.
e Concepts: Cube, Red, ... (‘constants’)

Data Types. Our basic functional building blocks operate

e Attributes: Shape’ COIOI’, o on values of the following types:
o Concepts are ‘values’ of attributes. * Object: A single object in the scene.
. e ObjectSet: A set of zero or more objects in the
e Relational concepts: Left, Front, ... scene.
. e Integer: An integer between 0 and 10 (inclusive).
® ObJeCtS e Boolean: Either yes or no.
e Set of objects .
— Size: Oneof large or small.
() Integers — Color: One of gray, red, blue, green,
brown, purple, cyan, or yellow.
L BOOleanS — Shape: One of cube, sphere, or cylinder.

— Material: One of rubber ormetal.

e Relation: One of left, right, in front, or

Note: behind.
e This is actually the type system of CLEVR (see inset on the right).
e Scene interpretation as program synthesis and programmatic inference.
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Domain-Specific Language (DSL) for CLEVR

Operation Signature Semantics

Scene () — ObjectSet Return all objects in the scene.

Filter (ObjectSet, ObjConcept) — ObjectSet  Filter out a set of objects having the
object-level concept (e.g., red) from
the input object set.

Relate (Object, RelConcept) — ObjectSet Filter out a set of objects that have
the relational concept (e.g., left)
with the input object.

AERelate (Object, Attribute) — ObjectSet (Attribute-Equality Relate) Filter
out a set of objects that have the
same attribute value (e.g., same
color) as the input object.

Intersection (ObjectSet, ObjectSet) — ObjectSet Return the intersection of two ob-
ject sets.

Union (ObjectSet, ObjectSet) — ObjectSet Return the union of two object sets.

Query (Object, Attribute) — ObjConcept Query the attribute (e.g., color) of

the input object.
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Domain-Specific Language (DSL) for CLEVR

AEQuery

(Object, Object, Attribute) — Bool

(Attribute-Equality Query) Query
if two input objects have the same
attribute value (e.g., same color).

Exist

(ObjectSet) — Bool

Query if the set is empty.

Count

(ObjectSet) — Integer

Query the number of objects in the
input set.

CLessThan

(ObjectSet, ObjectSet) — Bool

(Counting LessThan) Query if the
number of objects in the first input
set is less than the one of the second
set.

CGreaterThan

(ObjectSet, ObjectSet) — Bool

(Counting GreaterThan) Query if
the number of objects in the first
input set is greater than the one of
the second set.

CEqual

(ObjectSet, ObjectSet) — Bool

(Counting Equal) Query if the num-
ber of objects in the first input set
is the same as the one of the second
set.
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NS-CL: Overall architecture

Key feature: use neural symbolic reasoning as a bridge to jointly learn visual
concepts, words, and semantic parsing of sentences.

Q. | Visual Representation | Concept Embeddings | pai e
V | Obj

L A0
—iObj

Symbolic Reasoning

Answer: Cylinder
Groundtruth: Box

Semantic Parsing (Candidate Interpretations)
i v Query(Shape, Filter(Red, Relate(Left, Filter(Sphere))))
] — X Query(Shape, Filter(Sphere, Relate(Left, Filter(Red)))) —
the red object left of the X Exist(AERelate(Shape, Filter(Red, Relate(Left, Fllter(Sphere))))) REINFORCE
sphere? —

05

Q: What 1s the shape of
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Operation: Three key components
1. Visual perception module (VPM)

a. Detects objects in the scene
b. Creates deep latent representation for each object
2. Semantic parsing module (SPM)

a. Translates an input question in natural language into an executable program in the DSL

3. Program executor
a. Executes the program upon the derived scene representation and answers the question.
b. The execution is quasi-symbolic, because the instructions in the DSL, though symbolic, have
neural underlying implementation.
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Visual Perception Module (VPM)

e Pretrained Mask R-CNN (He et al., 2017) to generate object proposals
e Bounding box for each single object paired with the original image sent to a
ResNet-34 (He et al., 2015) to extract respectively the features:

o Region-based features (Rol, more specifically: RolAlign ->)
o Image-based features (to convey contextual information)
o Concatenated to represent each object.

e Attributes (e.g. Shape and Color) are implemented as neural operators.
e The operators map object representations into a visual-semantic space.

! : “/ﬂ H B B ECube
i g o *——— N EEEESEE Sphere
imm) ShapeOf( ) =u > — SN WY W B Cylinder
i m ShapeOf(Objl) Cube

Similarity(ms === ,msu=n) =099

Visual Perception Module : Visual Attribute Operators Visual-Semantic Space Concept Embeddings



Interlude: Mask R-CNN

Mask R-CNN
Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick
http://arxiv.org/abs/1703.06870

Extends Faster R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition.

e The mask branch is a small FCN applied to each Rol, predicting a
segmentation mask in a pixel-to-pixel manner.

e The authors propose a simple,
quantization-free layer, called RolAlign,
that faithfully preserves exact spatial
locations.
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Mask R-CNN: ROIAlign

AR T g | Figure 3. RolAlign: The dashed grid rep-
. - /J' _____ .| | resents a feature map, the solid lines an Rol
] l \?f\ ' . } l (with 2x2 bins in this example), and the dots
S A (SR T ---——+ the 4 sampling points in each bin. RoIAlign

l l i . computes the value of each sampling point
e i R e s e < by bilinear interpolation from the nearby grid
| ' points on the feature map. No quantization is

performed on any coordinates involved in the
Rol, its bins, or the sampling points.
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Semantic Parser Module (SPM)

e Bidirectional GRU cell (a type of recurrent NN architecture, (Cho et al. 2014))

e Qutputs a fixed-length embedding of the entire query
e A decoder based on GRU cells is applied to the embedding, and recovers the

hierarchy of operations as the latent program.
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" Q: Does the red object left of the green
Exemplary eXeCUt|On cube have the same shape as the

purple matte thing?

Step1: Visual Parsing

Obj 1
Obj 2
Obj 3
Obj 4

Step2, 3: Semantic Parsing and Program Execution

Q Program Representations Concepts  Outputs

1
w Green Cube _l__
|
el o2 il
|
1
AR L
1
m Purple Matte __l_
1
Object 1~ Objeet 3 gpape No (0.98)

I
v
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Training

Recall: the program, though symbolic has neural underlying implementation.
e Each program is thus fully differentiable.
e The outcome of program P is confronted with the correct answer to the visual
question and produces reward.
e The reward resulting from program execution is back-propagated through
program structure to train VPM and SPM.

Training objective:

©,, 0, < arg max Ep[Pr|A = Executor(Perception(S;©,), P)]]

(Vi) S

where S is the scene, A is the answer, P is drawn from SemantiCParse(Q;G)S),G)S
are parameters of the parser, © are parameters of the visual perception module.
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Training:
For the visual perception:
©, as Vo, Ep|Dk1 (Executor(Perception(S; ©,), P)||A)]

For the semantic parser: REINFORCE (Williams, 1992)
Vo, = Ep[r - logPr[P = SemanticParse(Q;0,)]]

reward r = 1 if the answer is correct and 0 otherwise
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Quasi-symbolic execution

ObjectSet is a vector of probabilities corresponding to objects in the scene
(probability that the i-th object of the scene belongs to the set).

Signature Implementation

Scene() — out: ObjectSet out; :=1

Filter(in: ObjectSet, oc: ObjConcept) — out; := min(in,;, ObjClassify(oc);)
out: ObjectSet

Relate(in: Object, rc: RelConcept) — out; := ) _;(in; - RelClassify(rc);,:))
out: ObjectSet

AERelate(in: Object, a: Attribute) — out; := ). (in; - AEClassify(a);,:))
out: ObjectSet

Intersection(in': ObjectSet, out; := min(ingl), in§2))

in®: ObjectSet) — out: ObjectSet

Union(in'Y: ObjectSet, in®: ObjectSet) —  out; := max(mg”,m?))

out: ObjectSet

ObjClassify(oc); - by©
3. ObjClassify(oc’); - b3’

AEQuery(in™: Object, in(®: Object, bi=3, 3 (in{" - in{? - AEClassify(a);.:))
a: Attribute) — b: Bool

Query(in: Object, a: Attribute) —
out: ObjConcept

Prlout= we|1= ) i »
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Comparison to related work

Two approaches in related work on semantic sentence parsing for visual
reasoning:
e implicit programs as conditioned neural operations,

e explicit programs as sequences of symbolic tokens
o Problem: to learn, require extra supervision, e.g. tround-truth program annotations
o NSCL: uses visual grounding as distant supervision to parse questions in natural languages
into explicit programs, with zero program annotations.
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Results

Questions of the type
“How many red objects
are there?”

Visual Mean Color Mat. Shape Size

IEP Conv. 90.6 91.0 90.0 89.9 90.6
MAC Attn. 959 98.0 914 944 942
TbD (hres.) Attn. 96.5 96.6 92.2 954 92.6
NS-CL Obj. 98.7 99.0 98.7 98.1 99.1
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Performance on different types of questions

Prog. Chip. ... QUEry Cp,
Model Anno. Overall Count Num. Exist Attr Atir
Human N/A 92,6 86.77 864 96.6 95.0 96.0
NMN 0K 2.1 3525 727 7193 7198 780
N2NMN 700K 88.8 68.5 849 85.7 90.0 88.8
IEP JOOK. 969 927 98.7 971 981 98.9
DDRprog 700K 98.3 96.5 984 98.8 99.1 99.0
TbD 700K 991 97.6 994 99.2 99.5 99.6
RN 0 95 901 96 918 911 VI
FiLM 0 976 945 938 992 99.2 990
MAC 0 989 972 994 995 993 99.5
NS-CL 0 989 982 990 988 99.3 99.1

143



Generalizing to new visual compositions

Split A Split B Split C Split D

Q: What’s the shape of the big Q: What size is the cylinder that ~ Q: What’s the shape of the big Q: What size is the cylinder that
yellow thing? is left of the cyan thing thatis in  yellow thing? 1s left of the cyan thing thatis in
front of the big sphere? front of the gray cube?
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Results: Data efficiency

- : Accuracy  Accuracy
Can we learn efficiently from small Model Visual (100% Data) (10% Data)
numbers of examples?

TbD Attn. 99.1 54.2
TbD-Object  Obj. 84.1 52.6
TbD-Mask  Attn. 99.0 55.0
MAC Attn. 98.9 67.3
MAC-Object Obj;. 79.5 51.2
MAC-Mask Attn. 98.7 68.4

NS-CL Ob;. 99.2 98.9
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Summary

Neuro-Symbolic Concept Learner:

Achieves state-of-the-art performance on the CLEVR dataset
Naturally learns disentangled visual and language concepts
Capable of combinatorial generalization w.r.t. both visual scenes and

semantic programs, more specifically generalization to:
o scenes with more objects and longer semantic programs
o new visual attribute compositions
o novel visual concepts, such as learning a new color.
o new tasks, such as image-caption retrieval, without any extra fine-tuning
(all shown in the paper).

Explicit program semantics enjoys compositionality, interpretability, and
generalizability.
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