Fitnessless Coevolution

Wojciech Jaśkowski Krzysztof Krawiec Bartosz Wieloch

Institute of Computing Science Poznan University of Technology, Poland

GECCO'08, July 14th, 2008

- Coevolutionary algorithm = individual's fitness depends on other individuals
 - The *objective* fitness function absent or not known.
- This paper: *one-population competitive coevolution* = direct competition between individuals in *one* population.
- Mostly explored in the context of games, hence the game theory nomenclature.

- Non-archive methods:
 - Round robin tournament
 - K-random opponents (*k*RO)
 - Single ellimination tournament (SET)
- Archive-based methods
 - IPCA, LAPCA, DECA, ...
- Fitnessless coevolution \in non-archive methods

Single-elimination tournament (SET)

- Applied globally to the entire population.
- The individuals are paired at random, play games against each other, and the winners pass to the next stage.
- The fitness of an individual = the number of stages it passed in the tournament.

- Games a selective by nature.
- Writing down the result of games as a fitness and then using it in the selection phase seems superfluous.
- The idea: Combine the evaluation phase and selection phase, so that the games directly determine the outcome of selection.

- The combined evaluation+selection process:
 - A group G of individuals randomly drawn from the population.
 - Applying SET to G
 - The winner of the last game becomes the result of the selection process
- Similar idea suggested in (Tettamanzi 1996)
- Note: 'Fitnessless' does not mean lack of selection pressure

The dynamics of fitnessless coevolution

• Follows the line of reasoning of (Luke & Wiegand 2002)

Theorem

A single-population coevolutionary algorithm employing fitnessless selection (i.e., fitnessless coevolution) is dynamically equivalent to an evolutionary algorithm with tournament selection using the objective function f, if

$$\forall_{i,j}f_i > f_j \iff a_{ij} > a_{ji}.$$

(See the paper for proof)

• The consequence:

If the payoff matrix A is transitive, there always exists an objective function f, such that the evolutionary algorithm using f as a fitness function is dynamically equivalent to fitnessless coevolution using A.

• Does not need to know f explicitly; the existence of f is enough.

• For transitive problems, one can argue that it would be easier to construct *f* it explicitly, and run a traditional evolutionary algorithm using *f*

However:

- Occam's razor principle
- Numerical fitness may be over-interpreted by attributing to it more meaning than it actually has

The experiment

- The goal: compare fitnessless coevolution (FC) with single-elimination tournament (SET) and k-random opponents (kRO) (k = 1...10)
- The problems:
 - Transitive
 - Tic Tac Toe (Noughts and Crosses)
 - The Nim game
 - Non-tranisitive
 - Optimization of Rosenbrock function
 - Optimization of Rastrigin function
- Following the setup of (Angeline & Pollack 1993) and (Panait & Luke 2002)

- All methods use tournament selection of size 2
- Evolution stops after reaching the total of 100,000 of games played
- 50 independent runs for each architecture
- Implementation based on ECJ

Intransitivity of TTT and Nim

 $\mathsf{A}>\mathsf{B}>\mathsf{C}>\mathsf{A}$

- Noise = reversing the game outcome (thus swapping players' rewards) with a given probability.
- n% of noise means n% of games have the result reversed.
- Note: all problems become intransitive in the presence of noise.

Performance of FC against the other methods.

	Tic Tac Toe				Nim				Rosenbrock				Rastrigin			
	<i>k</i> RO			SET	<i>k</i> RO			SET	kRO			SET	<i>k</i> RO		SET	
Noise	<	=	>		<	=	>		<	=	>		<	=	>	
0%		2	8	=			10	<			10	>			10	>
30%		10		=	2	5	3	=			10	>		4	6	>
40%	4	6		>	3	6	1	=	6		4	>	6	1	3	>
Total	4	18	8		5	11	14		6		24		6	5	19	

Results for games

Wojciech Jaśkowski, Krzysztof Krawiec, Bartosz Wieloch

Fitnessless Coevolution

Results for function optimization

Wojciech Jaśkowski, Krzysztof Krawiec, Bartosz Wieloch

Fitnessless Coevolution

- Fitnessless coevolution:
 - comparable to SET and kRO on intransitive problems (games).
 - significantly better than SET and *k*RO for transitive problems (function optimization).
- Reasonable immunity to noise; less affected than SET
- Simplicity and elegance
- Locality (works with a small subset of individuals) convenient for distributed processing