Poznan University of Technology
Faculty of Computer Science
Institute of Computer Science

Master’s Thesis

RESEARCH INTO
IMPLEMENTATION OF EXPLANATORY MODELLING
BASED ON GENETIC PROGRAMMING
IN A DISTRIBUTED ENVIRONMENT OF APACHE SPARK

Jakub Guner, 106529

Supervisor
dr hab. inz. Krzystof Krawiec

This thesis is a part of research project: Praca powstala w ramach projektu:
"Explanatory modelling system for big data 'Srodowisko wyjasniania i modelowania duzych
(LUCID)" zbioréw danych (LUCID)"
TANGO2/340026 /NCBR /2017 TANGO2/340026 /NCBR /2017

Poznan, 2017

Contents

1 Introduction

1.1 Scientific method
1.2 The two pillars of Data Science L.
1.3 Goal and scope of the thesis oo
2 Genetic Programming
2.1 Population-based, biologically inspired metaheuristic
2.1.1 Single solution vs population oo
2.1.2 Biological inspirations e
2.1.3 Hierarchy e
2.2 Evolutionary computation L Lo
2.2.1 Selection e e
2.22 Mutation e
2.2.3 CrosSOVEr . . . o v v i e e
2.3 Genetic Programming and Symbolic Regression
2.3.1 Genetic operations in GP Lo
3 Apache Spark
3.1 Scala
3.2 Fundamentals of Apache Spark
3.3 Distributed collections L
3.4 GraphX
4 Genetic Programming on Apache Spark
4.1 Population
4.1.1 Implementation in GraphX oL oo
4.1.2 Imitial, random population Lo Lo
4.2 Fitness evaluation Lo L
4.3 Tournament selection L L
4.4 Search operators
4.4.1 Mutation
4.4.2 CroSSOVET . . . v v v v i it e e e e e
4.5 Next generation L L
4.6 Stop conditionso
4.7 SUmMMAry e e e

5 Experiment

5.1 Common settings
5.2 Local computations
5.3 Distributed computations L oo

6 Summary

6.1 Future development
6.2 Final thoughts
Bibliography

(RGN N

—
(e R eniNe N0 cle N0 BENEEN e N NS

—_

14
15
15
16
18
21
22
22
23
24
24
25

26
26
28
32

36
36
38

39

Chapter 1

Introduction

Computers are at the verge of taking over the role of scientists. In 2009, Cornell University
researchers, Michael Schmidt and Hod Lipson, built a software system that synthesized natural
laws from data [SL09]. The two authors explain the essence of their experiment:

“the discovery of physical laws, from scratch, directly from experimentally captured
data [...] without prior knowledge about physics, kinematics, or geometry.”

What it means is that it is now sufficient to feed the computer with raw measurement data
from the real life experiments and the software is capable of coming up with any function or equa-
tion that, firstly, binds the variables captured during the experiment, and secondly, embodies the
natural law that governed the experiment in the first place.

Should scientists worry about their job security? Many other professionals certainly do. The
technological unemployment has been tied to the development of computers from the very begin-
ning. In the book The Innovators [Isald], Walter Isaacson describes the origins of ENTAC — the
first electronic, general purpose computer. At the time, the major concern was calculation of firing
tables for American artillery during World War II. The task was initially performed by over 170
people who operated mechanical adding machines. Isaacson recounts:

“women math majors were recruited from around the nation. But even with all of this
effort, it took more than a month to complete just one firing table”.

John Mauchly and J. Presper Ecker of University of Pennsylvania convinced the army to fund
the construction of ENTAC, promising it would greatly reduce the amount of time required to
prepare the firing tables. Eventually, the machine delivered:

“it was able to perform five thousand additions and subtractions in one second, which
was more than a hundred times faster than any previous machine”.

As a result, dozens of mathematicians, at the time called computers, had to move on to other,
less routine occupation. This trend continues today. IRRC Institute estimates that the automation
of brick and mortar stores will lead to disappearance of at least 6 million retail jobs in the United
States alone [SVC17]. The extreme version of the future is Amazon Go - a completely automated,
cashier-less grocery store [amal7]. Autonomous cars are another example. It is predicted that
about 4 million truck and cab drivers are going to loose their jobs [Sim17] to the likes of auto-pilot
Tesla truck and driver-less Uber.

However, despite the marvels of machine learning and artificial intelligence in the examples
above, is it possible for computers to replace scientists as well? Is it viable to tackle probably
the most difficult, creative and demanding job out there? To answer this questions we need to
understand the realm of scientific method and see which parts of it, if any, can be automated.

1.1. Scientific method 2

1.1 Scientific method

The goal of science is to provide testable and universally true explanations for the phenomena
of the natural world. Scientists worldwide agree that scientific method is the best way to obtain
unbiased and accurate description of reality. Scientific method is a series of steps that lead from
the initial inspection to the final conclusions. It begins with the observation of an event or process
and asking a question why it is the way it is. The next phase is to form a hypothesis, a possible
explanation that may or may not be true. Then a hypothesis-based forecast is made and compared
with reality through experiment. If the prediction and the result of the experiment match then
the hypothesis can be accepted and becomes a law or a scientific theory. Otherwise it has to be
rejected and a different one proposed and tested.

The crucial aspect of scientific method is that it offers two complementary ways of understand-
ing reality: prediction and explanation. Science not only allows us to anticipate what is going to
happen but also gives us tools to explain why and how it is going to happen. The explanations
are embodied in models - simplified versions of reality that are comprehensible by humans. The
process of constructing such models is called explanatory modelling.

In the context of this thesis, explanatory modelling is going to be restricted to synthesis of
mathematical equations or functions that bind the physical quantities measured during the exper-
iments. This is the part of the scientific method that can be automated and performed by the
computer. Scientists are still required to choose an area of interest and perform an experiment.
However, the task to :

“extract some information about how nature is associating the response variables to
the input variables” [Bre01]

as Leo Breiman, a renowned statistician and one of the pioneers of machine learning, put it, can be
ceded to the computers. For example, let’s say we have measurements of four physical quantities of
objects moving in the gravitational field. The computer would be able to synthesize the equation
1.1 that holds true for all data points.

6.674 x 1071 % 29 * x5
= 2
Ty

In this form, the equation is vague and difficult to interpret. It needs to be cleaned and
transformed before being presented to the scientific community. The x5 and x3 are masses of two
interacting objects and x4 is the distance between them. They should be given more convenient
names: mi, mo, and r respectively. Then, x; is the resulting force of attraction between the two
objects; the better symbol would be F. Finally, the value of 6.674 * 10~!! is a universal constant,
so it should be named as the gravitational constant, given proper units (m3kg~'s~2) and replaced
with the symbol G. Thus, the Newton’s law of universal gravitation was synthesized (1.2).

G xmq * may

F= (1.2)

r2

The natural processes can be extremely complicated and diverse. They can be described in

a number of ways with varying levels of accuracy and complexity. A lot of data is also required

to capture and understand their intricacies. For example, the particle detectors of Large Hadron

Collider at CERN can deliver about 25 GBs worth of data per second [CER17]. Hence, any

explanatory modelling software that hopes to be used in large-scale, practical applications needs
to answer the following three fundamental questions:

e How to come up with any model?
e How to produce the good models?
e How to have a lot of good models to choose from?

In 2016, a group of computer scientists from Poznan University of Technology, Poland realized
that they have answers for the aforementioned questions that can benefit not only the scientific
community, but also businesses and the general public. The story of turning their ideas into
practice unfolds in the next section.

1.2. The two pillars of Data Science 3

1.2 The two pillars of Data Science

Data Science is a process of applying scientific method to any field of interest that one can gather
data about. In contrast to natural sciences, which focus on universal laws and repeatability, Data
Science is interested mainly in rules and regularities that are exclusive to the environment the data
are collected in. Thus, it is widely used in business to optimize unique operations and to discover
opportunities in particular segments of market.

The field of Data Science is built upon two paradigms. The first of them is Machine Learning
(ML) - “a field of study that gives computers the ability to learn without being explicitly pro-
grammed” [Samb9]. It stems from the research on Artificial Intelligence and was defined in 1950s
by Arthur Samuel, an IBM computer scientist who experimented with the software that could play
checkers. Samuel wanted the computer to play the game better than he did, so instead of pro-
gramming the reactions for possible combinations of pieces, he devised an algorithm for assessing
the state of the game and consequences of available moves. The key to success was to allow the
software to play many games that generated a lot data that made the computer better and better
with each iteration. Today, Machine Learning is a wide field that deals with the problems of),
among others, classification, regression and clustering. And still, over 60 years later, the principle
remains the same: give the computer access to a large amount of information so that it figures
what should happen next. However, in most cases these insights are unavailable for humans to
analyze and directly benefit from, as they are encoded only in machine-readable form. We shall
turn to a different paradigm for help.

The second pillar of Data Science is Data Mining (DM) - “the process of discovering interest-
ing patterns and knowledge from large amounts of data” [Han05]. The aim of Data Mining is to
offer humans clear, concise and useful intelligence from the data they already collected in their
databases. It is a stark contrast to Machine Learning, where the discovered knowledge is assumed
to be hidden. The Data Mining techniques include, among others, rule induction, frequent se-
quence mining and market-basket analysis. However, the discovered patterns are useless if they
are not interpreted by humans and result in no action or change of operations. That often requires
dedicated personnel of data analysts and generates extra costs. In the end, the majority of Data
Science today is centered around Machine Learning, leaving database administrators, corporate
managers and end-users ignorant of why’s and how’s of decisions made by modern smart software.

field Data Science

Machine Learning Data Mining

Artificial Database
Intelligence Systems

machine-readable human-readable
model model

Figure 1.1: The overview of the field of Data Science

1.8. Goal and scope of the thesis 4

The contrast between the predictive power of popular Machine Learning algorithms and limited
availability of reasoning behind automated decision-making processes, inspired the researchers of
Poznan University of Technology, Poland to change the status quo. They decided to utilize the
recent advances in Computer Science in an attempt to build a new system that could achieve both
goals: prediction accuracy of ML models and clarity of DM ones. The project was named Lucid
and uses explanatory modelling, as defined in Section 1.1, to tackle the problem of limited trans-
parency. What is more, in order to handle large volumes of data, Lucid is to be implemented in
a distributed environment of Apache Spark [Foul7b] - one of the most popular cluster-computing
frameworks.

Lucid was approved for funding by the Polish National Centre for Research and Development
[fRD16], with the goal of making the end product “available to entities from business and academia”
[IoCS17]. However, before the proper development began in full speed, a prototype was required
to validate the proposed approach to explanatory modelling. The prototype is going to answer the
question of coming up with any model with symbolic regression - a method of generating random
mathematical expressions that makes no a priori assumptions about the shape or complexity of
the function. As a result, any mathematical equation or function is possible. The task of producing
the good models is going to be fulfilled with Genetic Programming (GP) — a metaheuristic, that
mimics the Darwinian evolution to create functions that best fit their environment, the collected
data. Apache Spark is going to allow to have a lot of good models to choose from. The scope of
Lucid’s prototype is going to be presented in the next section.

1.3 Goal and scope of the thesis

The hypothesis put forth in this thesis is that the efficient implementation of explanatory
modelling system based on genetic programming is possible on top of Apache Spark.
Such framework is expected to improve the quality of the results with the increase of the amount
of training data and the size of GP population, while preserving good scalability. However, fine
tuning of the GP model and optimization of the distributed deployment are beyond the scope of
this thesis.

This project serves as a bridge between the science of GP and the engineering of distributed
systems. As a result, the process of pairing the abstract algorithmic concepts with specific tools
and programming libraries forms the core task of the thesis. Each part of GP can be implemented
in a number of ways, and not always the first attempted combination is the best one. Hence,
the following chapters will include the evaluation of solutions proposed for each element of GP
paradigm. The detailed goals of the thesis include:

e analysis of the internal components of Apache Spark,

e evaluation of available data structures suitable to store the GP’s population,
e implementation of a prototype system that specializes in symbolic regression,
e experiments with hand-crafted and real-life data,

The thesis consists of six chapters, including this introduction. Genetic Programming is intro-
duced in Chapter 2. Apache Spark and its components are presented in Chapter 3. Chapter 4.
covers the implementation of the prototype and the results of the experiments are presented in
Chapter 5. The thesis concludes with evaluation of the project in Chapter 6.

Chapter 2

Genetic Programming

Technological unemployment is one of the issues studied by the MIT Initiative on the Digital
Economy [0otDE17]. The two leaders of the Initiative, Erik Brynjolfsson and Andrew McAfee,
explain how the Industrial and Digital Revolutions differ in taking advantage over human workers:
“Computers and other digital advances are doing for mental power [...| what the steam engine
and its descendants did for muscle power” [BM14]. The automation of muscle power during In-
dustrial Revolution was easy to control and predict because it was imperative — the machines and
engines did exactly and only what they were tasked with by their operators. On the other hand,
the automation of mental power in the time of Digital Revolution is becoming more and more
unpredictable as it is declarative — only the goal of computation is specified and the computer is
given the freedom to find the best way to achieve it. In order to better understand this process,
Brynjolfsson and McAfee name two aspects of mental power the computers are trying to replicate:
ability to shape the environment and ability to understand it.

The first ability, influencing the environment, is accessible to computers by means of Artificial
Intelligence (AI). Stuart Russell and Peter Norvig explain that the Al is based on rational agents
that “operate autonomously, perceive their environment, persist over a prolonged time period,
adapt to change, and create and pursue goals” [RN03, p. 4] to achieve the best possible result.
Machine Learning is a branch of Al that tackles the challenge by allowing the agents to learn from
data, as explained in Section 1.2. The insights derived from the observations of the environment
allow ML systems to respond to new, previously unseen events. In the last decade, this approach
has gained in importance and popularity both in the academic circles and in the business opera-
tions.

Nevertheless, the capacity to understand the environment, the second aspect of mental power,
remains elusive. In order to deliver models of reality that are accessible both to humans and
machines, we have to turn to a rather niche branch of ML — Genetic Programming (GP). It is a
type of evolutionary computation — a paradigm “based on the mechanics of natural selection and
natural genetics”, that combines survival of the fittest with “structured yet randomized exchange
to form a search algorithm with some of the innovative flair of human search” [Gol89, p. 1]. Just
like the evolution in nature can create species that are well adapted to their environment, GP can
devise executable models that fit the environment of observations “without requiring the user to
know or specify the form or structure of the solution in advance” [PLMO0S].

There are three main features of GP:

e It maintains a working population of candidate solutions
e Genetic operations, like mutation and crossover, are used to alter candidate solutions

« Each candidate solution is a computer program (or other executable entity)

This chapter will cover all three of the above characteristics of GP. Each feature will be ex-
plained in detail and the corresponding place of GP in the hierarchy of algorithms will be presented
along the way.

2.1. Population-based, biologically inspired metaheuristic 6

2.1 Population-based, biologically inspired metaheuristic

The synthesis of mathematical model that embody, or at least closely approximate the natural law,
is a type of optimization problem. A finite set of variables can be used to construct a countably
infinite set of mathematical formulas. The goal of the optimization is to find the formula that
matches the data best and makes generalizations that allow it to overcome measurement errors.
In general, such problems can be solved using exact, approximate and heuristic algorithms. This
thesis focuses on symbolic regression a heuristic algorithm, that will be presented in detail in sec-
tion 2.3. However, as heuristics are problem-specific, we need to cover metaheuristics first, since
they provide higher-level abstractions and are problem-independent.

Sean Luke of George Mason University, explains that key feature of metaheuristics is that they
use “some degree of randomness to find optimal (or as optimal as possible) solutions to [...] I know
it when I see it problems” [Luk13, p. 9] — the ones where it is difficult to arrive with a good model,
but being given a model, it is relatively easy to assess its quality. There are a few main families of
metaheuristics: local search, simulated annealing, tabu search, and population-based approaches.
Evolutionary computation is the most popular approach within the last group. In this section,
two features of EC will be presented. First, single-solution algorithms will be contrasted with the
population-based metaheuristics. Then, the biological inspirations of EC will be explained. The
section will conclude with an attempt to devise a hierarchy of algorithms and metaheuristics.

2.1.1 Single solution vs population

The goal of exact algorithms is to use the input data and a set of conditions to produce some
output. For example, sorting algorithms accept an array of numbers and a sorting order (ascend-
ing or descending) and return the same array but with the numbers rearranged in the desired
permutation. Quicksort algorithm [Hoa61] uses the divide-and-conquer principle to break the full
set of numbers into smaller and smaller sets that can be easily sorted through swapping. Another
example is the knapsack problem [Mat96], where a subset of elements has to be chosen that max-
imizes the total value of selected elements but satisfies the limit imposed on their weight. The
recognized algorithm for the knapsack problem is the one driven by dynamic programming [Pis97].
It starts with an empty solution and uses the bottom-up approach to construct the final one step-
by-step, expanding the initial one along the way. However, like many other classical approaches,
quicksort and knapsack algorithm iteratively improve only a single solution to the problem being
posed. There are also single-solution metaheuristics, like local search, tabu search and simulated
annealing, that randomly pick a complete, initial solution and explore its neighborhood — a set of
solutions that slightly differ from the starting point. One solution from from the neighborhood is
selected and process repeats.

On the other hand, population-based metaheuristics do not construct one, final result, but
instead they maintain a set of complete, feasible solutions. The population is initially constructed
at random, and the quality of solutions varies from very poor to very good. The job of the algorithm
is to guide the population towards the final, adequate results. Particle Swarm Optimization (PSO)
[KE95] is one of the best-known examples of this approach. PSO maintains a population of
candidate solutions, represented as particles, that move in the virtual search space looking for
an optimal position. Their movement is influenced by the best-so-far known coordinates and the
location of neighboring particles. PSO does not guarantee to find the globally best solution, but
ensures that the very good one is found quickly and efficiently.

2.1. Population-based, biologically inspired metaheuristic 7

2.1.2 Biological inspirations

Many population-based metaheuristics, if not all of them, are bio-inspired. In this thesis, a basic
classification of them is introduced. The first group is evolutionary computation that is modeled
after the Darwinian theory of evolution and the science of genetics that developed in the 20th
century. Evolutionary computation begins with creation of the initial, random population of can-
didate solutions, known also as the first generation. The weakest individuals are eliminated in the
selection stage, directly inspired by natural selection. The remaining individuals serve as parents
for the next generation. The process continues until the evolving "species" adapts well to the

imposed requirements.
Selection]—)[Construction of new generation

POPULATION

A

Random
Generation

Figure 2.1: The basic steps of evolutionary computation

The other class of meteheuristics is inspired by the behaviour of groups of animals and the
interactions between the individuals in those groups. Hence, the name behavioral computation is
proposed. Peter Miller, the author of the book Smart Swarm, explains the principle of the method:
“a group of individuals who respond to one another and to their environment in ways that give
them the power, as a group, to cope with uncertainty, complexity and change” [Mil10]. PSO,
introduced in the previous subsection, is a type of behavioral computation as “it’s modeled not
after evolution per se, but after swarming and flocking behaviors in animals” [Luk13, p. 55].

2.1.3 Hierarchy

Algorithms and meteheuristics can be classified based on their inspirations, purpose, paradigms
or even time complexity. The classification attempt presented at Figure 2.2 is not meant to be
complete or exhaustive. It rather aims to help understand the place of GP in the context of
population-based meteheuristics and how it relates to other techniques.

Single-solution Population-based,
algorithms bio-inspired metaheuristics
quicksort dynaml(_:
programming
Evolutionary Behavioral
. . m ion m ion
Single-solution computatio computatio
metaheuristics : ;
Smated Genetic Particle Swarm
. tabu search ; P
annealing Programming Optimization

local search

Figure 2.2: Hierarchy of algorithms: single solution vs population based

2.2. FEvolutionary computation 8

2.2 Evolutionary computation

There are three main variants of evolutionary computation: Genetic Algorithm, Evolutionary
Strategies and Genetic Programming. They all differ in the way they represent candidate solu-
tions, but they all share the concept of generations and the set of genetic operations that transform
one generation to the other. This section introduces selection as a way to differentiate between
poor and well performing candidate solutions. Then, mutation, copying and crossover are pre-
sented as means of producing offspring with parents’ genetic material. The section ends with an
updated diagram of evolutionary computation.

2.2.1 Selection

The goal of natural selection is to ensure that only individuals with good traits are able to pass
on their genes to the next generation. The traits, like strength, resistance to diseases or defensive
mechanisms, are known as phenotype — the visible manifestation of genotype, the genetic informa-
tion encoded in DNA. The usefulness of each trait is determined only in the context of environment
— brown fur may be beneficial in woods and mountainous areas, but it is undesirable in polar re-
gions. In consequence, the genotype first has to be mapped to phenotype, then the quality of the
traits is assessed in the ecosystem and only then, the strong and healthy individuals are able to
live long enough to find a mate and pass on their genes. As a result, the entire population adapts
to the environment.

Natural selection is replicated in evolutionary computation in two stages: evaluation and se-
lection. In the evaluation stage, the information encoded in the genome, be it a binary string or
an abstract syntax tree, is translated into a formal object (executable expression, graph, vector,
trajectory) that is then evaluated and tested against training data or during simulations. The
score achieved during the tests is called fitness, and it summarizes the degree of adaptation to the
environment.

The most popular form of selection is tournament selection — “a number of individuals are
chosen at random from the population. These are compared with each other and the best of
them is chosen to be the parent” [PLMO08]. Tournament selection not only ensures that “a single
extraordinarily good program cannot immediately swamp the next generation with its children”
[PLMO8] but also surprisingly well recreates mating from nature. To become a parent, one does
not have to be the best in the entire population, but rather the best in the random sample of
individuals.

2.2.2 Mutation

Random mutations in genome happen regularly in nature. Usually they are undesirable, especially
when it comes to humans, as they often lead to diseases like color blindness or haemophilia. How-
ever, from the perspective of evolution, they can be justified as a way to introduce new features
and abilities to an already established population. One of the most vivid examples are polar bears,
close relatives to brown bears. In the distant past, one random mutation allowed them to loose
pigment in their fur making it translucent, but appearing white from the distance [LLF14]. The
individuals with the mutation benefited from better camouflage and improved heat circulation,
as the sun rays could penetrate their translucent fur and heat their skin, which, in fact, is black.
That gave them better chances of survival in polar regions and finding a mate. Soon, their genes,
and mutation they carried, dominated the whole species.

Mutation in the context of evolutionary computation is defined as a (possibly randomized)
function f : S = S, where S is the solution space. In contrast to nature only one parent is
required to generate mutated offspring. Sometimes, the mutation is not applied and the genes
pass on unchanged to the next generation. It is known as copying, where an individual outlives its
siblings and is still a viable parent during the next generation.

2.2. FEvolutionary computation 9

2.2.3 Crossover

Most species rely on sexual reproduction, rather than self-replication, to produce offspring. The
necessity for two parents of different sexes has been studied extensively by biologists. Richard
Dawkins, in his famous book The Selfish Gene, gives a viable explanation for origins of separate
sexes, he names, for the sake of argument, A and B:

“Time and effort devoted to fighting with rivals cannot be spent on rearing existing
offspring, and vice versa. Any animal can be expected to balance its effort between
these rival claims. The point I am about to come to is that As may settle at a different
balance from the Bs and that, once they do, there is likely to be an escalating disparity
between them” [Daw89, p. 300]

The specialization of sexes is an interesting field of study on its own. However, the power of
sexual reproduction comes from the fact that it enables genetic recombination — random mix of
genes from both parents. Individual genes do not work in isolation. More often than not, it is
their specific combination that matters. Each parent may have have a good trait on its own, but
their combination in the offspring may be much more than the sum the two.

The EC’s equivalent of genetic recombination is crossover — “the creation of a child program
by combining randomly chosen parts from two selected parent programs” [PLMO08]. It simplifies
the process as it does not require the parents to be of different sexes — any two individuals that
pass the tournament selection can be involved in crossover.

When the execution of genetic operations: mutation, copying and crossover is finished, the old
generation is removed and the new one takes its place. Figure 2.3 presents the "circle of life" within
evolutionary computation.

J—
)

)

Cross-over

\———

POPULATION

Random
Generation

Figure 2.3: Genetic operations in the context of evolutionary computation

2.8. Genetic Programming and Symbolic Regression 10

2.3 Genetic Programming and Symbolic Regression

Genetic Programming is a variant of evolutionary computation, where a population of computer
programs is evolved. Each program is usually represented as an abstract syntaz tree (AST) — a
tree equivalent of source code that maintains the semantics. The nodes of the tree may imple-
ment fundamental building blocks of any programming language: variables, constants, operations,
conditional expressions and loops. Common applications of GP include design of controllers, syn-
thesis of boolean circuits and Symbolic Regression. GP is known for its versatility as it “has been
successfully used as an automatic programming tool, a machine learning tool or an automatic
problem-solving engine” [PLMO0S].

This thesis is limited to Symbolic Regression (SR), a type of problem where candidate solutions
in GP populations are mathematical formulas that are required to map an input real-valued vector
to an output one. SR, in contrast to e.g. linear or polynomial regression, makes no assumptions
about the shape of the function and any model, no matter how complex, may be a viable solution.
Mathematical expressions can easily be expressed with a subset of building blocks of a program-
ming language. Hence the ASTs will contain only numerical variables and constants, and binary
algebraic operations that are present in all programming languages like addition, subtraction, di-
vision and multiplication (see Figure 2.4b).

o
& OO
““@@@@

) A generic tree (b) AST equivalent of 2° + &

Figure 2.4: Abstract syntax trees of depth 2

2.3.1 Genetic operations in GP

Genetic operations were introduced in section 2.2. The representation of programs as ASTs en-
forces GP-specific versions of these operations. The initialization stage may take two forms: Full
method and Grow method. In the Full method all trees are balanced and have fixed depth “by
restricting the selection of the label for points at depths less than the maximum to the function
set F', and then restricting the selection of the label for points at the maximum depth to the ter-
minal set 77 [Koz92]. The Grow method allows any subtree to terminate with leaves at any depth
within the set limit “by making the random selection of the label for points at depths less than
the maximum from [...] the union of the function set F' and the terminal set T, while restricting
the random selection of the label for points at the maximum depth to the terminal set T [Koz92].

The popular combination of these two methods is known as ramped half-and-half — “we usually
do not know (or do not wish to specify) the size and shape of the solution in advance. The ramped
half-and-half generative method produces a wide variety of trees of various sizes and shapes”
[Koz92]. Mutation can be either point, where only a single randomly chosen node is mutated or
subtree, where the whole randomly selected subtree is replaced with a new, randomly generated
one. Finally, subtree crossover is implemented as swapping of two randomly selected subtrees
between parents.

Chapter 3

Apache Spark

Writing a large-scale explanatory modelling (see section 1.1) system is a task that actually encom-
passes two distinct areas of Computer Science. The first of them is naturally the aspect of data
analysis, either in the form of Genetic Programming or any other Data Science technique that may
be of interest in the future. The second part of the task is the down-to-earth implementation of
the system in a distributed fashion, having taken into account the networking, fault-tolerance and
load-balancing between the machines in a computing cluster. The effort to implement both aspects
of such system would not only be enormous but turns out not to be necessary. At a very early
stage of Lucid’s design, a decision was made to inherit the distributed processing functionality
from an existing framework and focus development efforts on the data analysis part.

Apache Spark [Foul7b] was chosen as the base for Lucid. Spark is an open-source, cluster-
computing framework, created by Matei Zaharia, of UC Berkeley, in the late 2000s and early 2010s
[ZCF*10]. Spark addressed the criticism of earlier distributed systems by introducing new method
of storing data across many processing units and a new model of transformation-based computa-
tions, that proved to be much faster than the previous solutions. As of 2017, Apache Spark is
one of the most popular big data frameworks, used in production in many large companies and
scientific institutions [Foul7a]. Three times a year, Spark Summits gather thousands of developers,
both in the United States and Europe [Datl7a]. Even large corporations began to release their
own Spark-native libraries. Intel published BigDL: Distributed Deep Learning Library for Apache
Spark [Int17] and Microsoft released Microsoft Machine Learning for Apache Spark (MMLSpark)
[Mic17]. The goal of Lucid is to continue this trend and reach the vast community gathered around
Apache Spark, while extending its functionality with efficient implementation of selected methods
of explanatory modeling, in particular GP and rule-based models.

This chapter introduces Apache Spark. First, Scala, the implementation language of Apache
Spark, is presented. Then, the general architecture of Spark is shown, followed by the description
of distributed data collections available in Spark. The chapter concludes with an overview of
GraphX - a built-in graph processing library that is essential for the implementation of the part
of Lucid’s functionality that relies on Genetic Programming.

3.1 Scala

Scala [dL17] is a general-purpose programming language, originally developed in early 2000s by
Martin Odersky of Ecole Polytechnique Fédérale de Lausanne, Switzerland [Ode06]. Simplicity
and programmer’s productivity were the main goals for Odersky and his team. Hence, Scala com-
bines the object-oriented and functional programming paradigms and keeps the resulting source
code short and concise. The language was designed to run on top of the Java Virtual Machine
(JVM) and is thus compatible with existing Java libraries. Even though Scala originated as a
purely academic endeavor, it quickly became popular in the industry [OR14].

Matei Zaharia, the creator of Apache Spark, reveals why the cluster-computing framework
was implemented in Scala. It turns out that the team at the Berkeley’s AMPLab made the
programmers’ productivity their main priority, just like the scientists in Switzerland. They decided
to deliver simple-to-use APIs, compatibility with existing Big Data tools, and an efficient runtime

11

3.2. Fundamentals of Apache Spark 12

Figure 3.1: Exhibition floor of Spark Summit Europe. Amsterdam, 2015

environment [ZCF110] [Zah14]. Scala seemed like a natural choice. Its short syntax enabled concise
API of Spark. The interoperability with JVM technologies made the integration with Java-based
Hadoop ecosystem possible. And finally, the fact that Scala functions can be serialized, sent
across the network and executed remotely, allowed for an efficient distributed system. The success
of Apache Spark and its vision of making data-processing simple did not go unnoticed by the
creators of Scala. In 2015, Martin Odersky named Apache Spark the “ultimate Scala collections”
[Odel5].

3.2 Fundamentals of Apache Spark

Within eight years since its inception, Apache Spark became a unified engine for processing tabular
and graph data both in batch and streaming modes. The overall architecture of Spark’s components
is presented in Figure 3.2. Spark Core API forms the basis of the framework as the remaining
components are built on top of it. Spark SQL enables querying distributed datasets as though
they were a relational database. The Streaming component provides tools for processing streams
of data, and as of Spark 2.2 it is considered not only the easiest open-source streaming framework,
but also the fastest [ZHA17]. MLIib package contains Machine Learning algorithms and exposes
a unified Pipeline API. GraphX is responsible for distributed processing of graphs. It is essential
for the implementation of GP in this thesis and will be presented in detail later in this chapter.

Spark SQL + ctream MLIib GraphX
DataFrames reaming Machine Learning &)
Computation
Spark Core API
R SQL Python Scala Java

Figure 3.2: Architecture of Apache Spark as presented in [Dat17b]

The other aspect of Apache Spark that makes it appealing to developers is that it is available
in as many as five programming languages. Spark SQL, Spark Streaming and MLIib are supported
by all five: Scala and Java as native JVM languages, SQL as embedded code, Python through
pyspark package and finally R by means of SparkR and sparklyr projects. However, the API of
GraphX, the latest addition to Spark, is currently only available in Scala.

3.8. Distributed collections 13

3.3 Distributed collections

The goal of Apache Spark is to provide fast and easy API for processing data in a cluster. The
best way to do it is to distribute data across the machines and execute operations in parallel.
It is possible thanks to Resilient Distributed Datasets (RDDs) — a fundamental collection within
Apache Spark. RDDs are “based on coarse-grained transformations (e.g., map, filter and join) that
apply the same operation to many data items” [ZCD%12]. It means that typically the programmer
only needs to write a simple function that operates on a single record and it will be applied to all
records in parallel. What is more, such functional approach allows RDDs “to efficiently provide
fault tolerance by logging the transformations used to build a dataset (its lineage) rather than the
actual data” [ZCD'12]. As a consequence, in case of a hardware failure, the lost data can be easily
recomputed using original data source and the saved history of transformations.

However, RDDs are not free of drawbacks. They offer ambiguous access methods (numeric
indexes) and lack type-safety. Consequently, they are now considered low-level API and the devel-
opers are discouraged from using them directly. The alternatives include DataFrames and Datasets,
powerful expansions built on top of RDDs. DataFrames are inspired by dataframes known from R
and Python’s Pandas [panl7]. They introduce schema and basic type checking and can be queried
with SQL just like a table from a traditional relational database. Datasets, on the other hand, are
statically typed (e.g. Dataset [Person]) to provide compile-time type-safety and ease of use
typical for local collections (e.g. List [Person]). For more information, please refer to Spark
Programming Guide [Foul7c] and Spark SQL, DataFrames and Datasets Guide [Foul7d).

3.4 GraphX

Apache Spark was designed to cover a wide spectrum of workflows that involve processing of
business or research data. However, many practical use cases are based not on independent data
points but on graphs of multiple interconnected entities. The primary examples include social
networks and chemical compounds. Such graphs do not easily fit into the tabular form of RDDs or
DataFrames and their processing involves exchange of data between neighboring nodes. In order
to accommodate this new approach, a graph-focused library was needed within Apache Spark.
The good approach was not to build it from scratch, but instead use existing data structures,
such as RDDs, as an efficient back-end. Hence, GraphX [XGFS13] — a built-in, full-feature graph
processing library — was written using 12 times less lines of code than Spark Core itself [GXDT14].

Graph computations can take two forms. The first of them is a one-time transformation of
the graph with an external function, e.g. selection of a subgraph. The other is iterative exchange
of messages between the nodes, that, upon arrival, may change the properties of the destination
node. Hence, to allow the execution of the first form of computation, GraphX enables the user to
create a property graph — a “directed multigraph with user-defined objects attached to each vertex
and edge” [Foul7e]. The processing is based on transformations, like in the case of RDDs, but here
programs “describe transformations from one graph to the next either through operators which
transform vertices, edges, or both in the context of their neighborhoods (adjacent vertices and
edges)” [XGFS13]. This approach allows to store records in a way that reflects the relationships
between them and to process data in a neighborhood-aware manner.

On the other hand, message passing algorithms tend to exhibit recursive behaviour “as proper-
ties of vertices depend on properties of their neighbors which in turn depend on properties of their
neighbors” [Foul7e]. Direct implementation of such algorithms is challenging as the stop condi-
tions may be difficult to observe. Pregel [MAB™10], a model of recursive graph computations, was
proposed by Google engineers to alleviate those difficulties. With Pregel, the programmer defines
what data shall be passed between the adjacent nodes and what each node should do with the
incoming messages. The computation terminates when no messages are sent anymore. GraphX
provides an optimized variant of Pregel and it proves to be very easy to use. The built-in im-
plementation of PageRank [PBMW99], the most popular approach to scoring the importance of
nodes in a graph (e.g. web pages on the Internet), requires only 20 lines of code [GXDT14].

Chapter 4

Genetic Programming on Apache Spark

The authors of A field guide to genetic programming concluded that:

“one of the reasons behind the success of GP is that it is easy to implement own
versions, and implementing a simple GP system from scratch remains an excellent way
to make sure one really understands the mechanics of GP” [PLMO08].

This chapter describes the core of the thesis — implementation of a GP system in a distributed
environment of Apache Spark. SparkGP shall be the name of the system from now on. SparkGP is
implemented in Scala, integrates tightly with the API of Apache Spark and follows the principles
of functional programming. Immutability is achieved by means of case classes, a syntactic sugar
of Scala. Case classes ensure thread-safety and make reasoning about the code simpler thanks
to pattern matching. Data-processing workflows are easily built around the design pattern called
builder — the transformations are "chained" as a series method calls on the underlying collections.
Builder pattern treats functions as first-class citizens and accepts them as arguments to enable
remote execution.

The source code of SparkGP is organized around the main loop of Genetic Programming, as
shown in Figure 4.1. The main collection is the Population of candidate solutions. In each iteration
the solutions are evaluated (see Section 4.2) and a new population (new generation) is constructed
as a transformation of the old one (see Sections 4.4 and 4.5).

Winning
Individual

|

Copying

I

Mutation

[

Cross-over

|

Fitness
Evaluation

Construction
of new generation

POPULATION

Random
Generation

Figure 4.1: The complete Genetic Programming loop

14

4.1. Population 15

Listing 4.1 presents the code responsible for the loop itself. First the fitness of the population
is evaluated (line 3) and then the stop condition is checked. If satisfied, the winning solution is
returned (line 5), otherwise a new generation is constructed and the loop continues (lines 6-7).
The annotation @tailrec in the first line ensures that the function is tail recursive and can be
optimized by the Scala compiler. However, before the loop can begin, an initial, random popu-
lation has to be generated and stored in a proper fashion. The next section describes how it is done.

Listing 4.1: Genetic Programming loop

1 Qtailrec

2 def loop (population :Population, stats:RuntimeStats): (Graph[TreeNode, String], Fitness)={
3 val (fitnessDS, bestFitness) = evaluateFitness (population, trainingData)

5 if (stopCondition (bestFitness, stats)) selectWinner (population, stats, bestFitness)

6 else loop (nextGeneration (population, fitnessDS),

7 updateRuntimeStats (population, stats, bestFitness))

8 1}

4.1 Population

Abstract syntax trees (ASTs) were introduced in Section 2.3 as a way to easily store and modify
mathematical expressions. SparkGP uses ASTs to represent individual solutions in a population.
The initial idea for their implementation was to use an existing, single-threaded GP framework
and port parts of it for distributed computations. SWIM and FUEL libraries [Kral6] were chosen
as the base of the work. These frameworks store each tree as a in-memory graph of JVM objects
connected by references. The population is exposed as a collection, eq. List [Op], where each
individual Op object is the top-level operation in a given tree and its child nodes are accessible
with op.args. This approach works well in a single-JVM environment.

However, when the population is supposed to be distributed between many machines, the List
has to be replaced with Apache Spark’s Dataset. This poses a problem, as each object within a
Dataset has to be self-contained and serializable. An attempt to create a Dataset [Op] ended
with a java.io.NotSerializableException, because each top-level node, stored directly
within the Dataset, was backed by an entire in-memory graph of objects that could not be eas-
ily serialized and sent across the network to another machine. The idea to re-use the code from
already available libraries had to be abandoned and a new approach was required.

4.1.1 Implementation in GraphX

Sachin Tendulkar, a famous Indian cricketer, once described his attitude towards obstacles and
victories: “when people throw stones at you, you turn them into milestones” [Cril0]. The same
mindset, of turning the very thing that caused an issue into a winning factor, was employed to
tackle the challenge of distributed ASTs. Dataset [Op] failed due to an implicit in-memory
graph of objects. Hence, the second approach, was based on an idea to explicitly handle graphs of
user-defined objects. It succeeded thanks to GraphX — a library provided by Apache Spark and
designed specifically for graph processing (see section 3.4).

Trees in general and Abstract Syntax Trees in particular, as a special type of graphs, can easily
be modeled within GraphX. A single AST is constructed as a group of nodes, where each node
has a specific, user-defined object attached to it. These objects determine whether the node is
a root (Root), an inner node (Expression) or a leaf (Constant or Variable). Listing 4.2
presents the complete list of Scala’s case classes used to construct companion objects for ASTs.
The nodes belonging to a single AST are connected using edges to form one coherent structure.
An example is presented on Figure 4.2. To form a population, multiple trees are stored in one
Graph as disjoint subgraphs. The process of their construction is described in the next subsection.

4.1. Population 16

Root (treeID, 0)

Expression('+, treeID, 1)
Expression('/, treeID, 2) Expression('*, treeID, 3)

Variable (x, treeID, 4) Constant (25, treeID, 5) Variable (x, treeID, 6) Variable (x, treeID, 7)

Figure 4.2: GraphX AST equivalent of 2% + 55

Listing 4.2: Case classes for node companion objects

1 trait TreeNode extends Serializable with Product {val treeID:Long; val localNodeID:Long}

3 case class Root (treelID:Long, localNodeID:Long) extends TreeNode
4 case class Expression(operation:Symbol, treeID:Long, localNodelID:Long) extends TreeNode

trait TreelLeaf extends TreeNode
case class Constant (value:Double, treeID:Long, localNodeID:Long) extends Treeleaf
case class Variable (name:String, treelID:Long, localNodeID:Long) extends Treeleaf

[CelN lo

10 case class ComputedTree (computedValue:Double, treeID:Long, localNodeID:Long) extends TreeNode

12 case class SynthesizedNode (formula:String, treeID:Long, localNodeID:Long) extends TreeNode
13 case class SynthesizedTree (formula:String, treeID:Long, localNodeID:Long) extends TreeNode

4.1.2 Initial, random population

Ramped half-and-half (see Subsection 2.3.1) is the most popular method of generating the initial,
random population in GP. However, for simplicity purposes, SparkGP uses only the Full method
to achieve this goal. Still, implementation of Grow and Ramped half-and-half methods is possible
within the setting and briefly outlined in Subsection 6.1.

The process of constructing initial population takes place in two stages. Each stage generates a
different type of information so that the graph can be constructed at the end of the process. First,
the technical and GraphX-specific data is generated (listing 4.3). Each tree is given a unique identi-
fier, and each node is given a local ID (within its tree) and a global vertex ID. Parent nodes are also
given the IDs of their direct descendants. All these information are gathered in DetailedNode
objects and passed to generateTree function.

Listing 4.3: Initial random population

1 wval treesRDD =

2 spark.range (populationSize) .rdd //treelID

3 .cartesian(generatelocallIndexes) //localNodesIDs + childrenIDs

4 .zipWithUniqueId() //vertexID

5 .map{

6 case ((treeID, (localNodeID, localChildOneID, localChildTwoID)), globalVertexID) =>{
7 DetailedNode (globalVertexID, treeID, localNodeID, localChildOneID, localChildTwoID)
8 }

9 }

10 .keyBy (_.treelD)

11 .groupByKey ()

12 .flatMapValues (generateTree)
13 .values

14 .cache ()

16 new Population (treesRDD)

4.1. Population 17

In the second stage, the function generateTree associates the nodes with randomly gen-
erated expressions, variables and constants (listing 4.4) — the instructions for building the first
generation. All nodes that have children are assigned a binary algebraic operation randomly cho-
sen from provided function set, thus realizing the Full method. Whenever a leaf is encountered, the
function randomly chooses whether to attach to it a constant or a variable and proceeds accordingly.

Listing 4.4: Random nodes

1 def generateInnerNode (node:DetailedNode, childOneGlobalNodeID:Long, childTwoGlobalNodeID:Long)
((Long, TreeNode), List[Edge[String]])={

3 def generateNode = {

4 (node.globalNodeID, Expression (pickRandomOperation, node.treelID, node.localNodelID))

5 }

6 def generateEdges= {

7 Edge (node.globalNodeID, childOneGlobalNodeID, ARGUMENT_ONE)

8 Edge (node.globalNodeID, childTwoGlobalNodeID, ARGUMENT_TWO) :: Nil

9 }

10 (generateNode, generateEdges)

11}

14 def generateConstantLeaf (leafNode:DetailedNode) = {

15 Constant (nextInt (100) .toDouble, leafNode.treelID, leafNode.localNodelD)

16}

19 def generateVariableLeaf (leafNode:DetailedNode) = {

20 val variableIndex = nextInt (VARIABLES.size)

21 val variableName = VARIABLES (variableIndex)

22 Variable (variableName, leafNode.treeID, leafNode.localNodeID)

23)

Once the initial population is constructed the loop of Genetic Programming can begin. The next
section shows how Pregel is used to evaluate the fitness of ASTs stored within the graph.

Winning

Individual [

Copying
—_—
 SEE—

Stop Mutation

Conditions
) S —
CEEEE—
Cross-over
 S—
E\f;tI:::izn Construction
POPULATION of new generation

Random
Generation

Figure 4.3: The parts of GP implemented so far (in color)

4.2. Fitness evaluation 18

4.2 Fitness evaluation

The fitness of a candidate solution was introduced in Subsection 2.2.1. It is a measure of how well
a solution is adapted to the environment. In the context of symbolic regression, fitness is defined as
an average absolute error made by a solution when confronted with training data. The evaluation
of fitness may be the single most expensive part of GP run, as each member of the population has
to be tested against every record from the training set. To speed up the computations, SparkGP
uses Pregel (see Section 3.4) to test all candidate solutions in parallel for a given record from the
training set.

The evaluation follows the bottom-up tree contraction pattern, where all nodes gradually be-
come Constant nodes (see lines 19 - 26 in Listing 4.5). It begins with the all Vvariable nodes
being replaced with Constant nodes that contain appropriate value from the training set (see
Figures 4.4 and 4.5 and lines 1 - 6). Then, all Constant nodes send their values to their parents
—the Expression nodes. Each Expression uses the incoming arguments to calculate its value
with accordance to the algebraic operation it holds, and becomes a Constant itself (see Figure
4.6 and lines 8 - 17). The processes continues until it reaches the Root node, which, upon arrival
of the final value, turns into ComputedTree (Figure 4.7 and line 22). The process repeats with
original trees for all testing examples and the fitness is calculated as the average of absolute differ-
ences between the expected values and the ones stored in ComputedTree nodes. For simplicity
purposes, the version of the algorithm presented here uses only a single value from the training
set (z = 2). In practice, a vector of numbers is used, so that the whole population can be tested
against multiple records at a time. The values of fitness for all candidate solutions are returned in
the form of a DataFrame.

Listing 4.5: Transformation functions passed to Pregel

1 def replaceVariablesWithTestData = {

2 treeNode match {

3 case v:Variable => Constant (findCorrespondingValue (v.name), v.treeID, v.localNodeID)
4 case _ => treeNode

5 }

6 1}

8 def calculateValue (expr: Expression) = {

9 val result: Double = expr.operation match {

10 case + => receivedArguments.map (_._2) .sum

11 case * => receivedArguments.map(_._2) .product

12 case / => $(DIVIDENT) / (if (\$(DIVISOR) != 0) \$(DIVISOR) else 1)
13 case - => $(MINUEND) - $ (SUBTRAHEND)

14 case pow => math.pow ($ (BASE), $ (EXPONENT)

15 }

16 Constant (result, expr.treeID, expr.localNodeID)

17)

19 def contractTree = {

20 treeNode match {

21 case expr: Expression => calculateValue (expr)

22 case root: Root => ComputedTrees (receivedArguments (0)._2, root.treeID, root.localNodeID)
23 case constant: Constant => constant

24 case constants: Constants => constants

25 }

26)

28 if(firstIteration) replaceVariablesWithTestData
29 else contractTree

4.2. Fitness evaluation 19

Root (treeID, 0)

Expression('+, treeID, 1)
Expression('/, treeID, 2) Expression('*, treeID, 3)

Variable (x, treeID, 4) - Variable(x, treeID, 6) Variable (x, treeID, 7)

Figure 4.4: Initial state of the AST. Constant leaf highlighted

Root (treeID, 0)

Expression('+, treeID, 1)
Expression('/, treeID, 2) Expression('*, treelID, 3)

Figure 4.5: Variable leafs replaced with a value from training set

Root (treeID, 0)

Expression('+, treeID, 1)

Figure 4.6: Constant values propagated to parent nodes which become Constants themselves

4.2. Fitness evaluation 20

Root (treeID, 0)

(a) The propagation of values towards the root

b) Finally, the Root turns into ComputedTree

Figure 4.7: Final stages of tree contraction

4.8. Tournament selection 21

4.3 Tournament selection

Tournament selection is used to determine which candidate solutions become parents for the next
generation. Two tournaments are organized for each new candidate solution (see Listing 4.6).
First, a random sample of parent IDs is taken and a join with the fitness DataFrame is performed.
The winners of the tournaments are found with the the help of reduceByKey function which
compares the fitnesses achieved by competing parents.

Listing 4.6: Tournament selection

1 spark

2 .range (populationSize)

3 .flatMap { newTreelID =>

4 for{

5 tournamentID <- 0 to 1

6 candidateID <= Random.shuffle((0 until popSize) .toList) .take (tournamentSize)
7 }yield {

8 (newTreeID, tournamentID, candidatelID)

9 }

10 }

11 .toDF ("newTreelID", "tournamentID", "candidateID")

12 .join(fitness, col("candidateID")===col ("treeID"))

13 .select ("newTreeID", "tournamentID", "treeID", "value")

14 .rdd

15 .keyBy (x=>(x.getLong (0), x.getInt(1l)))

16 .reduceByKey ((x, y) => if (x.getDouble(3) < y.getDouble(3)) x else y)
17 .values

Thus the fitness evaluation and tournament selection are implemented. The result of their work
can now be passed on to search operators whose implementation will be presented in the next
section.

Winning

Individual)

Copying
—
r——

Stop Mutation

Conditions
~—
 CEEEEEEEEE—
Cross-over

—

Fitness Constructi
Evaluation onstruction
POPULATION of new generation
Random
Generation

Figure 4.8: Fitness evaluation and Selection join Population and Random Initialization

4.4. Search operators 22

4.4 Search operators

Search operators are used right after the two parents are determined. However, they do not create
complete, new solutions, i.e. ASTs as graphs within Graphx. Rather, search operators manipulate
only the companion objects (Constants, Variables and Expressions) to prepare instructions
of how the next generation should look like. The reasoning behind this approach will be explained
in section 4.5.

The algorithm chooses at random which search operator to use in order to create a new indi-
vidual (Listing 4.7). Copying is implemented as simply returning the original parentOne. The
following two sections present the details of mutation and crossover.

Listing 4.7: Random application of genetic operations

1 .reduceByKey ({

2 case (parentOne, parentTwo) =>{

3 val THRESHOLD_OF_COPY=0.2

4 val THRESHOLD_OF_MUTATION=0.4+THRESHOLD_OF_COPY

5 val THRESHOLD_OF_CROSSOVER=1.0

7 val newTreeNodes=Random.nextDouble () match ({

8 case x if x <= THRESHOLD_OF_COPY => parentOne.toArray
9 case x if x <= THRESHOLD_OF_MUTATION => mutateIndividual (parentOne.toArray)
10 case x if x <= THRESHOLD_OF_CROSSOVER => {

11 crossOver (parentOne.toArray, parentTwo.toArray)

12 }

13 }

15 newTreeNodes

16 }

17 1)

4.4.1 Mutation

The prototype of Lucid implements point mutation, where only a single randomly selected node of
AST is altered. Once the local ID of the node to be mutated is determined (Listing 4.8, line 3),
a mapping on the RDD of nodes is performed. Should the node match the mutation point, it is
replaced with an equivalent node (inner or leaf) of random nature. The remaining nodes are not
changed and the modified collection of nodes is returned.

Listing 4.8: Point mutation

1 def mutateIndividual (originalVertices:RDD[TreeNode]) :RDD[TreeNode] = {

3 val localMutationPoint = pickLocalMutationPoint

5 originalVertices

6 .map{

7 case treeNode:TreeNode if (treeNode.localNodeID == localMutationPoint) =>
replaceWithEquivalentNode (treeNode)

8 case treeNode:TreeNode => treeNode

9 }

10)

4.4. Search operators 23

4.4.2 Crossover

The version of subtree crossover implemented in SparkGP is a little simplified with respect to
the traditional tree-swapping crossover [PLMO8]. In general, two crossover points are picked inde-
pendently, one for each parent. Here, however, the crossover point is the same for both parents.
Crossover, in contrast to mutation, requires not one but two parents. Consequently, two offsprings
are possible — the first offspring that is based upon the first parent with a subtree coming from
the second parent, and the second offspring that is based upon the second parent with a subtree
coming from the first one. In order to create only a single offspring, once the crossover point is
picked, the primary parent is randomly selected and the generation of instructions for the offspring
is based upon the primary parent. It happens in two stages.

In the first stage, each node from the primary parent that lies below the crossover point is
replaced with the corresponding node from secondary parent. In the second stage, all other nodes
from primary parent, the ones not lying below the cross-over point, are selected. The instruction
for offspring is formed as a concatenation of the two collections of nodes.

Listing 4.9: Subtree cross-over

1 def createOffspring(parentOne: Array[TreeNode], parentTwo: Array[TreeNode], crossOverPoint: Int):
Array[TreeNode] = {

2 val newSubtree = for {

3 parentNode <- parentOne if PopulationUtil.isDescendantOf (parentNode.localNodeID,
crossOverPoint)

4 instruction <— parentTwo if parentNode.localNodeID == instruction.localNodeID

5 } yield {

6 instruction

7 }

8 val theRest = parentOne.filterNot (x => PopulationUtil.isDescendantOf (x.localNodelD,

crossOverPoint))

9 val finalCollection = newSubtree ++ theRest

11 finalCollection

12}

14 wval crossOverPoint: Int = pickRandomCrossOverPoint

16 if (Random.nextDouble () >= 0.5) createOffspring(parentOne, parentTwo, crossOverPoint) else
createOffspring (parentTwo, parentOne, crossOverPoint)

Winning

Individual)

A Copying
) S
D ——

Stop Mutation

Conditions
N
A r—
Cross-over
Fitness
Evaluation Construction
POPULATION of new generation

Random
Generation

Figure 4.9: Search operators advance the implementation of the GP loop

4.5. Next generation 24

4.5 Next generation

Genetic operations are usually expected to create final versions of candidate solutions for inclusion
in the next generation. In the context of this thesis, it seemed logical to follow this pattern and
create new solutions in the form of separate ASTs to be later united into one graph, one popula-
tion, at the end of the loop. However, as GraphX is designed for analytical purposes and its API
forbids to modify and extend the structure of an existing graph, each new generation required to
deconstruct the small graphs of individual solutions and build a completely new, big graph that
contained the whole population. The process was even more complex than the construction of
initial population (see subsection 4.1.2) and resulted in poor performance.

The alternative approach was proposed that not only improved computation time and memory
consumption, but also made the code shorter and easier to understand. Throughout the run of the
algorithm, only a single graph is constructed and used as a template, or scaffolding, for all gener-
ations. As the size of population remains constant and all ASTs are balanced trees of fixed depth,
the vertices and edges between them are constructed once and do not change. What do change
is the companion objects attached to those vertices. Genetic operations provide only instructions
for the next generation — a new set of companion objects — that overwrite the old ones with the
help of graph. joinVertices function (Listing 4.10, line 8).

Listing 4.10: Original graph updated with instructions for next generation

def nextGeneration (nextGenInstructions: RDD[((Long, Long), (TreeNode, Long))]): Population = {
val instructionsForUpdate: RDD[(VertexId, TreeNode)] =
translatelLocalCoordinatesToGlobal (nextGenInstructions)
new Population (updateGraph (instructionsForUpdate))
}

T W N =

private def updateGraph (instruction: RDD[(VertexId, TreeNode)]) :Graph[TreeNode, String] = ({
graph.joinVertices (instruction) {
(_, _, newOps) => newOps
} .cache ()

}

= O O 0w

==

4.6 Stop conditions

Only one stop condition, i.e. reaching the limit of generations, is implemented. It was done to
maintain predictability during the performance testing that is described in the next chapter. How-
ever, two other stop conditions are feasible. The first of them is when perfect, or near-perfect,
solution is found and the fitness falls below a certain threshold. The other popular stop condi-
tion is stagnation, where the population reached local optimum and is not able to leave it. The
telltale sign of stagnation is a lack of improvement in fitness in a number of consecutive generations.

Listing 4.11: Stop conditions

1 def stopCondition (bestFitness:Fitness, stats:RuntimeStats) :Boolean={
2 def generationsLimitReached = {

3 stats.generationsLeft ==

4 }

6 generationsLimitReached

}

4.7 Summary 25

Throughout the generations, the algorithm keeps track of the best so far created candidate solution.
Once the stop condition is met, the best so far solution is compared with the fittest from the last
generation and the better of the two is returned. To facilitate the presentation of the best result,
it is synthesized to Latex math source code. For example, the raw output may look like this:

N[((x) \times (45.0)+(34.0) \times (42.0)) \times ((x+x) \times (x+40.0))\]

and when pasted to Latex document it looks the following way:

((z) x (45.0) + (34.0) x (42.0)) x ((z + z) x (z + 40.0))

4.7 Summary

The implementation of Genetic Programming in a distributed environment proved to be a chal-
lenge in terms of finding new ways to realize well-established concepts. However, the source code
of SparkGP is concise (about 1200 LOC) and easy to extend thanks to the features of Scala pro-
gramming language. The main loop of GP is encoded in the GPLoop class, that can be extended
with the Scala’s traits (Listing 4.12). Should other versions of selection, mutation or crossover be
implemented in the future, they can be easily mixed-in to the existing framework.

Listing 4.12: Construction of configurable loop of GP

1 wval gp = new GPLoop ($ (populationSize), $(treeDepth), $(inputCols), $(labelCol))
2 with TournamentSelection

3 with PointMutation

4 with OnePointCrossOver

Chapter 5

Experiment

The completed GP framework has to be tested whether it works properly and exhibits the expected
performance. The tests were conducted to see how the efficiency of SparkGP and quality of its
results are affected by two factors: the size of the GP population and the size of the training set.
Three benchmarks were used for testing: Quartic function, Pagie-1 and Dow Chemical dataset. The
following section presents the configuration of the testing environment that was used throughout all
the tests. The details and evaluation of local and distributed experiments are covered in Sections
5.2 and 5.3, respectively.

5.1 Common settings

The selection of benchmarks was based on the evaluation of testing approaches specific to symbolic
regression published in [WMCT13]. Table 5.1 presents the details of the selected datasets. The
first of them is the Quartic function, usually used to verify basic capabilities of symbolic regression
systems. However, Quartic function is often believed to be non-representative of real-life prob-
lems [WMC*13]. Hence, the following two benchmarks were also used: Pagie-1, a more complex
function of two variables, and Dow Chemical, a dataset of 57 variables measured during chemical
experiments. These two are considered to be more difficult and to better assess the quality of a
GP system. As presented in Listing 4.5 in Section 4.2, 5 binary arithmetic operations were chosen
to drive the symbolic regression efforts in SparkGP: addition, subtraction, multiplication, division
and exponentiation.

Name Variables Formula Generator Size
Quartic 1 44?4 E[-312, 312, 1.0] 624
Pagie-1 2 T E[-5, 5, 0.4] 625
Dow Chemical 57 properties of chemical reactions - 747

Table 5.1: Benchmarks used in testing of SparkGP; E[a, b, ¢] stands for a series of points evenly
spaced between a and b (inclusive) with an interval of ¢

26

5.1. Common settings 27

Genetic Programming, being a metaheuristic, can not only be adapted to a range of specific
applications, but also can be configured with a multitude of parameters. As these tests focus on
general performance and producing the results of best quality possible is beyond the scope of the
thesis, SparkGP was not fine-tuned and the values of parameters were chosen arbitrarily (Table
5.2).

Parameter Value
Number of runs 10
Depth of AST 4
Size of tournament 7
Limit of generations 8
Probability of a variable as a terminal 0.50
Probability of a constant as a terminal 0.50
Probability of choosing a particular variable 1 / (number of variables)
Constants — uniformly distributed integers from range -50 to 49
Probability of copying 0.2
Probability of mutation 0.4
Probability of crossover 0.4

Table 5.2: Values of parameters of GP used in testing of SparkGP

Two parameters were observed during the tests. The processing time was measured with 1
second precision. The quality of solutions was evaluated as the Root Mean Square Error (RMSE)
of regression. The RMSE was calculated as a square root of the average of the squares of regression
errors. The remaining two sections in this chapter contain box plots that visualize the values of
processing time and RMSE. The bar inside each box stands for the median within the sample;
hinges of the box denote the 1st and 3rd quartile. The whiskers extend to the most distant values in
the sample that are within the limit of 1.5 times inter-quartile range above or below the respective
hinges. The outliers are plotted separately as dots.

5.2. Local computations 28

5.2 Local computations

The first batch of tests were conducted in a local, non-distributed system in the single-threaded
mode on the Intel i7, 3.3 Ghz processor. Their goal was to test SparkGP in a simple environment
and get an idea about its performance characteristics before deployment to a cluster.

In the first test, for each benchmark the computation time and RMSE were measured for five
different sizes of population: 100, 200, 500, 750 and 1000 solutions. The results are presented on
Figures 5.1 and 5.2. Only in the case of the easiest framework, the Quartic function, the bigger
population means better RMSE. For Pagie-1 and Dow Chemical dataset, the changes in the size
of the population render no observable trend. The probable explanation is the limit of 8 genera-
tions applied during the tests. In the case of Quartic function, 8 generations were enough for the
population to efficiently converge. For more complex benchmarks, Pagie-1 and Dow Chemical, the
limit of 8 generations was too low and processing was terminated before a reasonable candidate
solution was created.

On the other hand, the framework seems to scale really well. The tenfold increase in the size
of population lead to an increase in computation time that did not exceed the factor of 3 for
all benchmarks. However, this may be due to a relatively small datasets being processed and a
significant overhead imposed by Apache Spark and GraphX. As the size of the population grows,
the overhead becomes less and less significant leading to a sublinear computation time.

The second test was performed to check how the variable size of the training set affects the
performance — Figure 5.3. The population size was kept constant at 500. The original sizes of
training sets for Quartic function, Pagie-1 and Dow Chemical were 624, 625 and 747 records re-
spectively. The size of each set was increased by factors of 1.5, 2.0, 2.5 and 3.0 by multiple reuse
of records from the original dataset. As the duplicated records brought no new information for the
GP and the limit of 8 generations was still in place, the RMSE remained equally unpredictable as
in the previous test. On the other hand, the time complexity seems to be sublinear — tree times
bigger training set resulted in the computation time growing only by a factor of 2. Again, even
though the linear relationship is expected, the sublinear one might be the result of overheads of
diminishing importance.

In order to get an idea of how the generated solutions look like, one of the fittest functions cre-
ated for the Quartic benchmark is presented in equation 5.1. In such form, the solution is difficult
to reason about, so it has to be manually simplified — equation 5.2. The denominator simplifies
to 0, but as SparkGP protects against division by zero by replacing it with 1, the whole equation
reduces to the nominator. The generated function captures the two most important elements of
Quartic function: 2% and z*. As a result, the regression errors are relatively small and the function
gets a very good value of fitness.

(=) x () x ((x) = (0.0))) + (((z) x (x)) x ((z) x (x))) (5.1)
(((z) x (0.0)) x ((19.0) x (z))) x (((z) x (z)) x ((36.0) x (—12.0))) '
2+t (5.2)

5.2. Local computations

RMSE

RMSE

RMSE

29

1e+08
.
.
1e+06
250 500 750 1000
Population size
(a) Quartic function
.
.

0.7
0.6
0.54
0.4 |

250 500 750 1000

Population size
(b) Pagie-1
2.04
1.5
1.04
L3
081 $
e *
250 500 750 1000

Figure 5.1:

Population size

(c) Dow Chemical dataset

RMSE on test set versus the size of population

5.2. Local computations

Running time [s]

Running time [s]

Running time [s]

30

125+
100+ |
75+
50
T T r y
250 500 750 1000
Population size
(a) Quartic function
140+
.
120+
1
100+
80+
60+ .
40+
T T r y
250 500 750 1000
Population size
(b) Pagie-1
150
125+
100+ .
.
50

==

T
250

T r y
500 750 1000
Population size

(c) Dow Chemical dataset

Figure 5.2: Computation time versus the size of population

5.2. Local computations

Running time [s]

Running time [s]

Running time [s]

31

1501

1201

904

604

500

1000 1500 2000
Training set size

(a) Quartic function

150+

1254

1004

754

—=

500

1000 1500 2000
Training set size

(b) Pagie-1

2501

2004

150

100~

; :
1000 1500 2000
Training set size

(c) Dow Chemical dataset

Figure 5.3: Computation time versus the size of training set

5.8. Distributed computations 32

5.3 Distributed computations

SparkGP was built not as a standalone application, but on top of Apache Spark to enable compu-
tations both in local and cluster modes, without the need to alter the source code. The preliminary
experiments in the local mode were conducted to verify the correctness of the program and to build
a foundation for the design of the distributed experiments.

The goal of the tests in the distributed environment was to see how the migration from a single
node to a cluster affects the performance and quality of GP runs. However, it turned out that
SparkGP suffers from shuffling — an excessive exchange of data between the nodes. Early runs
showed that the run for exactly the same parameters takes 2 minutes in local mode, 11 minutes
in a cluster composed of 1 master and 2 worker nodes and more than 30 minutes in a cluster
of 4 workers. The observed traffic was in the order of terabytes — an obvious anomaly that re-
quires investigation and further optimizations. In such situation, the tests with variable cluster
size were deemed impractical and too expensive on clusters provided by Amazon Web Services.
Consequently, the distributed tests mirror the ones performed in previous section, but this time a
cluster of two worker nodes and one master node was used.

We considered five values of the population size: 1000, 2000, 4000, 8000 and 12000. The results
are presented on Figures 5.4 and 5.5. Similar to the local mode, RMSE tends to improve for Quar-
tic function and remains more or less constant for Pagie-1 and Dow Chemical benchmarks. An
increase in the limit of the generations to about 50, a standard value in GP experiments, was con-
sidered. However, it would extend the processing time over 6 times and that was not cost-effective
in a rented cluster. The limit of 8 generations remained. On the other hand, the computation
time seems to be logarithmic: as the population is increased by a factor of 12.5 the processing
time increases not even by a factor of 2.0. The overhead imposed by Apache Spark for small
populations is even more significant when compared to local mode. However, in the distributed
mode the overhead diminishes faster than in local mode.

In the second test, the size of population was kept constant (4000 candidate solutions) and the
size of training sets was increased by factors of 1.5, 2.0, 2.5 and 3.0 by means of duplicating the
records from the original datasets. Here, the processing time looks to be linear — when the size of
the training set grows by a factor of 3.0, the time increases by a factor of about 2.3 for Quartic
function and Pagie-1 and by a factor of about 3.1 for Dow Chemical benchmark. The shift from
sublinear to apparently linear relationship can be attributed to the fact that the analyzed datasets
probably reached the values optimal for the cluster size, and the network and CPU cycles were
properly utilized.

RMSE

RMSE

5.8. Distributed computations 33
1e+09 4 .
|
.
1e+06 A
.
1e+03
.
y T ; T r
2500 5000 7500 10000 12500
Population size
(a) Quartic function
le+17+
]
le+12
1e+07 4
1e+02 A
== ey s
y r T T r
2500 5000 7500 10000 12500
Population size
(b) Pagie-1
.
0.6
0.4
0.2
T y r T r
2500 5000 7500 10000 12500

Population size

(c) Dow Chemical dataset

Figure 5.4: RMSE on test set versus the size of population

5.3. Distributed computations

34

11001

1000 4 ‘

900 A

Running time [s]

800 1 |

700 A

600 -

2500 5000 7500 10000
Population size

(a) Quartic function

T
12500

900

800

Running time [s]

700 1

600 A

2500 5000 7500 10000
Population size

(b) Pagie-1

T
12500

11004

1000 1

900 1

Running time [s]

-

800 1

2500 5000 7500 10000
Population size

(c) Dow Chemical dataset

Figure 5.5: Computation time versus the size of population

T
12500

5.3. Distributed computations

35

1500 :‘!:I
Z .
(4]
£
3 ——
£
c
c
35
m .
10004 =——
500 1000 1500 2000
Training set size
(a) Quartic function
— 1500 —
K2H
(4]
£
= |:t:|
£
c
c
=]
X
10007 e
500 1000 1500 2000
Training set size
(b) Pagie-1
2500- $
__ 2000 $
0,
(0]
£
g’ L]
= —
€ 1500
=]
X
[————]
1000
E———
1000 1500 2000

Training set size

(c) Dow Chemical dataset

Figure 5.6: Computation time versus the size of training set

Chapter 6

Summary

SparkGP demonstrates that implementation of an explanatory modelling system
based on Genetic Programming is possible on top of Apache Spark. The system scales
well with the size of the working population (logarithmically) and the the size of the training set
(linearly). On the down side, overall performance is not satisfactory, especially in comparison to
other standalone GP libraries. Also, the challenge of shuffling shows that the development of such
framework is not a trivial task and will require more investigation in the future.

Nevertheless, the detailed goals of this thesis, introduced in Section 1.3, have been achieved.
The components of Apache Spark have been analyzed and the GraphX, instead of DataFrames, was
chosen as the base for the GP population. The symbolic regression system has been implemented
and tested against synthetic and real-life data. This chapter contains the last two sections of the
thesis. In the first of them, the ideas for future development of SparkGP and Lucid are presented.
The very last section contains final remarks and serves as a closure to the social issues established
in the Introduction.

6.1 Future development

The source code of SparkGP has been written as a starting point for Lucid — the research and
development project that will continue for the following two years. As a result, SparkGP is limited
to basic functionality, as some ideas were either deemed too complex to begin with or abandoned
due to time constraints. However, multiple solutions were thoroughly discussed throughout the
prototyping stage and they can be implemented in the future. This section presents the most
important technical and scientific extensions to the project for the Lucid’s development team to
consider.

Extended symbolic regression

Currently, the symbolic regression module is limited to five binary arithmetic operations: addition,
subtraction, multiplication, division and exponentiation. Such configuration is sufficient for early
demonstrations and performance tests but seriously limits the ability to model complex relation-
ships between variables. The possible extensions include other binary operations like n-th roots
and logarithms. Trigonometric functions, as unary operations, can be implemented by ignoring
the second argument of the AST’s node.

More variants of GP

The implementation of Full method makes a strong assumption that all inner nodes of the AST
are Expressions and only leaves can contain terminals, i.e. Constants and Variables. The
alternative Grow method (see Subsection 2.3.1) may turn any node into a terminal with a proba-
bility equal to the depth of the node divided by the depth of the tree. Hence, there will never be
a terminal in the root and all leaves are guaranteed to be terminals. When a terminal is chosen
for one of the nodes in the middle of the tree, all nodes below it should also be generated but shall
become "inactive', thus acting similar to recessive genes. This is because the depth is constant for
all ASTs (see Section 4.5). Should the terminal in question be mutated to an Expression later
on, the entire subtree becomes active. A combination of the Full and Grow methods will result in

36

6.1. Future development 37

Ramped Half-And-Half initialization. Subtree mutation and and other versions of crossover can
easily be added as traits for easy composition with the existing loop of GP.

O O
<o & @O O

@@@@@@@@

(a) Original AST, equivalent to 13 4 2) Mutated AST, equivalent to & + z

Figure 6.1: Activation of subtree in the Grow method

Integration with MLIlib Pipelines

Apache Spark is known not only for its efficiency but also for its MLIib package that provides
consistent interface to a variety of Machine Learning algorithms. The third-party developers
are encouraged to write new algorithms in a Spark-native way and integrate them with MLIlib’s
Pipelines — an API inspired by scikit-learn that unifies all stages of data preprocessing, knowl-
edge extraction and hyper-parameter tuning. A Pipeline consists of Transformers, modules
that transform a single record a time, e.g a classification model that adds a prediction field based
on other fields, and Estimators, e.g. implementation of a classifier, that use the entire dataset
to produce Transformers. In this context a SymbolicRegression would be an Estimator
that produces SymbolicRegressionModel, a Transformer, that is then applied to user’s
data.

However, even though the Estimator and Transformer classes of Apache Spark are public
and it is possible to extend them, still, as of July 2017, the Params traits used to configure these
two stages are marked spark-private and unavailable to external developers. What is more, there
is no official documentation for developers of third-party libraries. Once these two obstacles are
resolved, the team of Lucid should proceed to integrate the library with the Pipeline API. The
SymbolicRegressionModel should contain a compiled version of the winning solution of the
GP run. The compilation to bytecode will be possible thanks to quasiquotes - a feature built-in to
Scala that enables treating Strings as source code for dynamic compilation at runtime.

Hybrid approach

Genetic Programming is a useful technique when one does not know the form or the complexity
of the desired function. On the other hand, when the right shape of the function is found, GP
struggles to fine-tune the constants present in the solution, as all changes made are random. A
solution has been proposed and used in the past [RPT06] to apply a combination of GP and
gradient descent algorithm. GP is used to generate functions of different shapes and forms, and
for each version the gradient descent is applied to fine-tune the values of constants. Should the
need for very precise prediction arise, SparkGP can be extended with such a feature.

Island model

Island model of GP introduces the concept of islands - isolated subpopulations that evolve inde-
pendently. Only once in a while a solution is allowed to migrate between the islands, potentially
providing novel pieces of code to the subpopulation it has been accepted to. The migrations occur
according to the topology of connections between islands. The goal of the island model of GP
[CHMRA7] is to avoid a situation where the entire population converges to a single local optimum
and all solutions are very similar.

6.2. Final thoughts 38

Island model is especially interesting for distributed implementations of GP, as each node in
a cluster may host a single subpopulation and exchange solutions with other nodes only when
the conditions of migration are satisfied. This not only increases chances of exploring dissimilar
regions of search space but also greatly reduces the communication overhead in the cluster. Island
model will be an interesting endeavor once Lucid reaches a stable version.

6.2 Final thoughts

The research conducted throughout this thesis demonstrated that efficient synthesis of human-
readable models of reality is possible. Explanatory modelling, a part of scientific method, can
be automated by means of Machine Learning and Genetic Programming. Does it mean that
the profession of a scientist is going to vanish as the computers take over the field? No. Even
though conducting experiments, taking measurements and discovery of natural laws are getting
more and more computerized and automated, the scientists are here to stay, but their role will
change. Sapiens: A Brief History of Humankind, a book by Yuval Noah Harari, an Israeli historian,
explains that the field of science is not limited to experiments:

“Science needs more than just research to make progress. It depends on the mutual
reinforcement of science, politics and economics. Political and economic institutions
provide the resources without which scientific research is almost impossible. In return,
scientific research provides new powers that are used, among other things, to obtain
new resources, some of which are reinvested in research” [Har15, Chapter 14: Discovery
of Ignorance]

Science does not exists in isolation. It is dependent on funding from governments and is ex-
pected to benefit society in order to secure future funding. We do not have to look far for an
example — Lucid resides within the described feedback loop of science. It would not exist without
funding from The National Center for Research and Development, a government body, and its
goal is to put theoretical research of Computer Science into practice so that other scientists and
businesses may use it for their own gain. The prospering businesses mean more taxes and that
means bigger government budget. The loop closes.

Consequently, it is my belief that, as the experiments become increasingly automated, the
scientists will engage more in work that the computers probably will never be able to perform —
lecturing, promotion of science, and dialogue with society and governments about which areas of
science should we focus on, invest in and develop.

Bibliography

[ama17]
[BM14]
[Bre01]
[CER17)

[CHMRS7]

[Cril0]

[Dat17a]

[Dat17b)

[Daw89]
[dL17)

[Foul7a]
[FoulTb]
[FoulTc]
[Foul7d]
[FoulTe]

[fRD16]

[Gol89]

[GXD™"14]

Amazon Go. Frequently Asked Questions. https://www.amazon.com/b?node=16008589011,
2017.

Erik Brynjolfsson and Andrew McAfee. The second machine age: Work, progress, and
prosperity in a time of brilliant technologies. WW Norton & Company, 2014.

Leo Breiman. Statistical Modeling: The Two Cultures (with comments and a rejoinder by
the author). Statist. Sci., 16(3):199-231, 08 2001.

CERN. Processing: What to record?
https://home.cern/about/computing/processing-what-record, 2017.

J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. Richards. Punctuated Equilibria: A
Parallel Genetic Algorithm. In Proceedings of the Second International Conference on
Genetic Algorithms on Genetic Algorithms and Their Application, pages 148—154, Hillsdale,
NJ, USA, 1987. L. Erlbaum Associates Inc.

Cricages. “When people throw stones at you, you turn them into milestones” : Sachin.
http://www.cricages.com/sachin-zone/when-people-throw-stones-at-you-you-turn-them-into-
milestones-sachin/,

2010.

Databricks. 10th Spark Summit Sets Another Record of Attendance.
https://databricks.com/blog/2017/06/09/10th-spark-summit-sets-another-record-
attendance.html,

2017.

Databricks. Apache Spark Ecosystem, 2017. [Online; accessed June 12, 2017;
https://databricks.com/spark/about].

R. Dawkins. The Selfish Gene. Oxford paperbacks. Oxford University Press, 1989.

Ecole Polytechnique Fédérale de Lausanne. The Scala Programming Language.
www.scala-lang.org, 2017.

The Apache Software Foundation. Apache Spark™ - Companies and Organizations.
http://spark.apache.org/powered-by.html, 2017.

The Apache Software Foundation. Apache Spark™ - Lightning-Fast Cluster Computing.
https://spark.apache.org/, 2017.

The Apache Software Foundation. Apache Spark™ - Spark Programming Guide.
https://spark.apache.org/docs/latest/programming-guide.html, 2017.

The Apache Software Foundation. Apache Spark™ - Spark SQL, DataFrames and Datasets
Guide. https://spark.apache.org/docs/latest/sql-programming-guide.html, 2017.

The Apache Software Foundation. GraphX Programming Guide, 2017. [Online; accessed
June 21, 2017; https://spark.apache.org/docs/latest /graphx-programming-guide.html].

The National Centre for Research and Development. Wspdlne Przedsiewziecie TANGO -
wyniki oceny wnioskéw pelnych ztozonych w II konkursie.
http://www.ncbr.gov.pl/gfx/ncbir/userfiles/__public/programy_ krajowe/tango/tango_ 2/
lista_ rankingowa__pozytywnie_ ocenionych__wnioskow__tango2_na_www.pdf, 2016.

David E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Professional, 1 edition, January 1989.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin,
and Ion Stoica. GraphX: Graph Processing in a Distributed Dataflow Framework. In
Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 599-613, Berkeley, CA, USA, 2014. USENIX Association.

39

[Han05]

[Har15]
[Hoa61]
[Int17)

[ToCS17]

[Isal4]
[KE95]
[Koz92]

[Kral6]

[LLF*14]

[Luk13]

[MAB*10]

[Mat96]
[Mic17]

[Mil10]

[Ode06]

[Odel5]

[OR14]

[0tDE17]
[panl7]
[PBMW99]

[Pis97]

40

Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

Y.N. Harari. Sapiens: A Brief History of Humankind. HarperCollins, 2015.
C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321—, July 1961.

Intel. BigDL: Distributed Deep Learning Library for Apache Spark.
https://github.com/intel-analytics/BigDL, 2017.

Poznan University of Technology Institute of Computing Science. Surveying explanatory
modeling in business and R&D.
https://drive.google.com/file/d /0BxzNL3e9TelI TRWNOTzZOVINTWIU /view, 2017.

Walter Isaacson. The innovators. How a group of hackers, geniuses and geeks created the
digital revolution. Simon & Schuster, London, 2014.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.
Proceedings., IEEE International Conference on, volume 4, pages 1942-1948 vol.4, Nov 1995.

John R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

Krzysztof Krawiec. Behavioral Program Synthesis with Genetic Programming, volume 618 of
Studies in Computational Intelligence. Springer International Publishing, 2016.
http://www.cs.put.poznan.pl/kkrawiec/bps.

Shiping Liu, ElineD. Lorenzen, Matteo Fumagalli, Bo Li, Kelley Harris, Zijun Xiong, Long
Zhou, ThorfinnSand Korneliussen, Mehmet Somel, Courtney Babbitt, Greg Wray, Jianwen
Li, Weiming He, Zhuo Wang, Wenjing Fu, Xueyan Xiang, ClaireC. Morgan, Aoife Doherty,
MaryJ. O’Connell, JamesO. MclInerney, ErikW. Born, Love Dalén, Rune Dietz, Ludovic
Orlando, Christian Sonne, Guojie Zhang, Rasmus Nielsen, Eske Willerslev, and Jun Wang.
Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar
Bears. Cell, 157(4):785 — 794, 2014.

Sean Luke. FEssentials of Metaheuristics . Lulu, second edition, 2013. Available for free at
http://cs.gmu.edu/~sean/book/metaheuristics/.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-scale Graph Processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD 10, pages 135-146, New York, NY, USA, 2010. ACM.

G. B. Mathews. On the Partition of Numbers. Proceedings of the London Mathematical
Society, s1-28(1):486-490, 1896.

Microsoft. Microsoft Machine Learning for Apache Spark.
https://github.com/Azure/mmlspark, 2017.

P. Miller. The Smart Swarm: How to Work Efficiently, Communicate Effectively, and Make
Better Decisions Using the Secrets of Flocks, Schools, and Colonies. Penguin Publishing
Group, 2010.

Martin Odersky. A Brief History of Scala.
http://www.artima.com/weblogs/viewpost.jsp?thread=163733, 2006.

Martin Odersky. BDSBTB 2015: Martin Odersky, Spark — the Ultimate Scala Collections,
2015. [Online; accessed January 19, 2016;
https://www.youtube.com/watch?v=NW5h8d_ ZyOs].

Martin Odersky and Tiark Rompf. Unifying Functional and Object-oriented Programming
with Scala. Commun. ACM, 57(4):76-86, April 2014.

MIT Initiative on the Digital Economy. ABOUT US. http://ide.mit.edu/about-us, 2017.
Python Data Analysis Library. http://pandas.pydata.org/, 2017.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-0120.

David Pisinger. A Minimal Algorithm for the 0—1 Knapsack Problem. Operations Research,
45(5):758-767, 1997.

[PLMOS]

[RNO3]

[RPT06]

[Sam59]
[Sim17]
[SL0Y]

[SVC17)

[WMCT13]

[XGFS13]

[Zah14]

[ZCD*12]

[ZCF*10)

[ZHA17]

41

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003.

Maria E Requena-Pérez et al. Combined use of genetic algorithms and gradient descent
optmization methods for accurate inverse permittivity measurement. IEEFE Transactions on
Microwave Theory and Techniques, 54(2):615-624, 2006.

A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res.
Dev., 3(3):210-229, July 1959.

Andrew G. Simpson. 4 Million Driving Jobs at Risk from Autonomous Vehicles: Report.
http://www.insurancejournal.com/news/national /2017/03/27/445638.htm, 2017.

Michael Schmidt and Hod Lipson. Distilling Free-Form Natural Laws from Experimental
Data. Science, 324(5923):81-85, 2009.

Michael Shavel, Sebastian Vanderzeil, and Emma Currier. Retail Automation: Stranded
Workers? Opportunities and risks for labor and automation.
https://irrcinstitute.org/news/6-to-7-5-million-u-s-retail-jobs-at-risk-due-to-automation/,
2017.

David R. White, James McDermott, Mauro Castelli, Luca Manzoni, Brian W. Goldman,
Gabriel Kronberger, Wojciech Jaskowski, Una-May O’Reilly, and Sean Luke. Better GP
Benchmarks: Community Survey Results and Proposals. Genetic Programming and
FEvolvable Machines, 14:3-29, 2013.

Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. GraphX: A
Resilient Distributed Graph System on Spark. In First International Workshop on Graph
Data Management Experiences and Systems, GRADES ’13, pages 2:1-2:6, New York, NY,
USA, 2013. ACM.

Matei Zaharia. Apache Spark User List: Why Scala?
http://apache-spark-user-list.1001560.n3.nabble.com/Why-Scala-td6536.html, 2014.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI’12,
pages 2-2, Berkeley, CA, USA, 2012. USENIX Association.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster Computing with Working Sets. HotCloud, 10(10-10):95, 2010.

Matei Zaharia, Tim Hunter, and Michael Armbrust. Expanding Apache Spark Use Cases in
2.2 and Beyond, 2017. [Online; accessed June 12, 2017;
https://www.youtube.com/watch?v=qAZ5XUz32yM].

© 2017 Jakub Guner

Poznan University of Technology
Faculty of Computer Science
Institute of Computer Science

Typeset using INTEX in Computer Modern.

BibTEX:

@mastersthesis{ key,
author = "Jakub Guner ",
title = "{Research into

implementation of explanatory modelling

based on genetic programming

in a distributed environment of Apache Spark}",
school = "Poznan University of Technology",
address "pozna{\’n}, Poland",
year = "2017",

	1 Introduction
	1.1 Scientific method
	1.2 The two pillars of Data Science
	1.3 Goal and scope of the thesis

	2 Genetic Programming
	2.1 Population-based, biologically inspired metaheuristic
	2.1.1 Single solution vs population
	2.1.2 Biological inspirations
	2.1.3 Hierarchy

	2.2 Evolutionary computation
	2.2.1 Selection
	2.2.2 Mutation
	2.2.3 Crossover

	2.3 Genetic Programming and Symbolic Regression
	2.3.1 Genetic operations in GP

	3 Apache Spark
	3.1 Scala
	3.2 Fundamentals of Apache Spark
	3.3 Distributed collections
	3.4 GraphX

	4 Genetic Programming on Apache Spark
	4.1 Population
	4.1.1 Implementation in GraphX
	4.1.2 Initial, random population

	4.2 Fitness evaluation
	4.3 Tournament selection
	4.4 Search operators
	4.4.1 Mutation
	4.4.2 Crossover

	4.5 Next generation
	4.6 Stop conditions
	4.7 Summary

	5 Experiment
	5.1 Common settings
	5.2 Local computations
	5.3 Distributed computations

	6 Summary
	6.1 Future development
	6.2 Final thoughts

	Bibliography

