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Introduction

Motivation

Analogy:

‘A mapping between systems or processes’.

A mechanism for re-contextualising situations in terms of prior experience.
Pervades natural language [Lakoff and Johnson, 1980]

‘The core of cognition’ [Chalmers et al., 1992].

Computational models of analogy:

Geometric reasoner [Evans, 1964].

Structure Mapping Engine [Falkenhainer et al., 1989, Turney, 2008]
Matching techniques in Case-Based Reasoning [Aamodt and Plaza, 1994].
Heuristic-Driven Theory Projection [Schmidt et al., 2014].

Connectionist models
[Holyoak and Thagard, 1989, Hummel and Holyoak, 1997]
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Proportional Analogy

Questions of the form:
Gills are to fish as what are to mammals?

or more generally:
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Proportional Analogy

Questions of the form:
Gills are to fish as what are to mammals?

or more generally:

Can be framed using commutativity:
A — B
C——D

In contrast to traditional optimization problems:
e More than one 'right' answer possible

e Not easy to define objective quality measure

4
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The ‘Letter String Analogy’ (LSA) domain

[Hofstadter, 1995]:

If abc maps to abd, what does ijk map to?

e ‘Most naive' answer is ijd.
e Claim the ‘most compelling’ answer is ijl.

e Humans recognize the ‘successorship’ relation in both abc and ijk.
e The most compelling rule: “increment the last letter”.

Notable work in the LSA domain:
e Hofstadter and Mitchell's CopyCAT [Hofstadter, 1995].
e The algebraic approach of Dastani [Dastani et al., 2003].
e Schmid's use of E-generalization [Schmid, 2003].
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CoprPYCAT Architecture

S l i ne t Highly activated
e j — nodes can spawn CO dera Ck
° top-down codelets

e o o \

Node activation
spreads through
conceptual links

Bottom-up codelets
are continuously

added

Activation is sent|
with every new

Codelets can
create some new
follow-up codelets

Codelets are sent to
the Workspace for
structure-building
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Features of CorpYCAT

Highly domain-driven

Intended as a cognitively-plausible model of analogy-making.

Can be seen as performing ‘Artificial Chemistry’ on symbols.

Feedback mechanisms complex, but meticulously engineered

e “Each additional mechanism and interaction is well-motivated by deeper
considerations — there is very little that is ad hoc” [Holland, 1998].
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Other approaches

Dastani's Algebraic Approach [Dastani et al., 2003]

o Uses Structural Information Theory (SIT): Symmetry, Iteration and
Alternation, e.g.

e Sym(a,bb) — abba,
e Alt(a,bb) — abab,
e Iter(a,Succ,3) — abc.

o Expressions using these primitives are intended to correspond to Gestalt
preferences for human perception [Ehrenfels, 1890].
e Information Load to measure SIT's quality:
e E.g., lter(ab,id,2) preferred to Alt(a,bb)

Schmid's E-generalization [Schmid and Burghardt, 2003]
e Also based on SIT

o Uses Regular Tree Grammars — a set of production rules over SIT
expressions (a ‘tree of trees').

e Performs Anti-Unification on the tree grammars representing the analogy.
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GPCAT - A GP-based alternative to CorPYCAT

Analogies «+ GP

GPCAT combines both formal and generative techniques.

Given: Some analogy of the form A: B :: C: 7?7
1. Evolve a population of triples of SIT terms, (ta, tg, tc).

2. Generate solutions to analogy from the best-of-run individual.
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GPCAT: Fitness function

Fitness = an aggregate of:

e Agreement with the known elements of analogy (A,B,C):

e Total Levensthein distance Lev(ta, A) + Lev(tg, B) + Lev(tc, C) (min)
o Complexity:

e Total information load InfLoad(ta) + InfLoad(tg) + InfLoad(tc) (min)
e Structural consistency between the SITs for B and C:

e The total number of variables in (max)

e The number of mappings to null value (i.e. $j +— €) (min)

Anti-unification example:

Seq(Iter(a,Succ,3),g)
Seq(Iter(Group(c,c),Pred,3),h)

the AU is Seq(Iter($1,$2,3), $3), with substitutions:

og = {$1— a,%2 — Succ,$3 — g}
oc = {$1 — Group(c,c),$2 — Pred,$3 — h}

10
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GPCAT: Generating solutions to analogy problem

Given best-of-run individual:
1. Perform AU of og and oc.
2. Combinatorially perform all alignments of variables in AU result
3. The resulting letter strings are the proposed values of D.
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GPCAT - Results

GPCar Most frequent answers (top 5 over 30 runs)
abc:abd::ijk  ijl:100 ik:7 bcd:7 abbd:7 ac:7
abc:abd::xyz xya:100  bcd:7  abbd:7 xz:0.07 ac:7
abc:abd::kji  ijl:70 cba:57 kiIn:17 bce:10 jl:7
abc:gbc::iijjkk aabbcc:53 ijl:43  ab:23 ij:23  ik:10
abc:abd::mrrjjj jkm:67 iiaaa:33 rrjjj:33 jrrjjj:17 diiaaa:17

CopYCAT Most frequent answers (percent)

abc:abd::ijk  ijl:96.9 ijd:2.7 ijk:0.2 hjk:0.1  ijj:0.1
abc:abd::xyz  xyd:81.1 wyz:11.4  yyz:6 dyz:0.7 xyz:0.4
abc:abd::kji  kjh:56.1 kjj:23.8 ji:18.6 kjd:1.1  kki:0.3
abc:abd::iijjkk iijjll: 81.0 iijjkl: 16.5 iijjdd: 0.9 iikkll: 0.9 iijkll: 0.3
abc:abd::mrrjjj mrrkkk:70.5 mrrjjk:19.7 mrrjkk:4.8 mrrjjjj:4.2 mrrjjd:0.6

e Qutcomes partially coincide with those of CopyCat.

e Parameter-tuning needed for correspondence against human bias.

o Next step: Regress GPCAT parameters so that outputs are closer to the
distribution of human answers (York Summer internship project).
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Analogical Reasoning for Program Synthesis

Analogies — GP
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Analogical Reasoning for Program Synthesis

Analogies — GP

o Where to look for analogies in program synthesis?
e Several possibilities:

e Tests
e Program traces
o ..
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Example 1: Factorial

2 2
. fact
Fitness cases:
Succ(2) *Succ(2)
fact(2) — 2
fact(3) — 6
fact 6

Pair of tests = 1/0 analogy.
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Example 2: Append

append([1,2], [1) = [1,2]
append ([1,2], [3]1) = [1,2,3]
append([1,2,3], [1) = [1,2,3]
append([a,b], [c]) = [a,b,c]
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Example 2: Append

([17 2]7 [3]) —— [1v 2, 3]

([a7 b]v [C]) = [av bv C]

Type abstraction

References
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Example 2: Append

([172\£7 [3]) —— [1v j 3] ([17 I]v []) — = [1l2]

([av b],[c])—>-[a, bv C] ([17273]7[])é[17273]

Type abstraction Neutrality
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Example 2: Append

([1,2]7 [3]) = [17 27 3] ([17 2]7 []) = [17 2] ([17 2]7 [3]) = [17 27 3]

R P R T .

([av b]v [C]) = [37 b7 C] ([17 25 3]7 []) = [17 27 3] ([17 273]7 []) = [17 27 3]

Type abstraction Neutrality Invariance
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Example 2: Append

([17 2]7 [3]) = [17 27 3] ([17 2]7 []) = [17 2] ([17 2]7 [3]) = [17 27 3]

([av b]v [C]) = [av b7 C] ([17 25 3]7 []) = [17 27 3] ([17 273]7 []) = [17 27 3]

Type abstraction Neutrality Invariance

I/O analogies capture three unrelated characteristics of the task.
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Example 2: Append

[1,2,3] can be expressed as:
Cons (1,Cons(2,Cons(3,Nil)))
Using SIT-style relations, this can be represented as
Iter(Nil,Succ,3)

Iter here expresses a catamorphism.

Hence, analogy #2 can be represented by the AU:
App(Iter(Nil, succ, $1), Nil), Iter(Nil, succ, $1))

The substitutions o1 = {$1 — 2}, 0o = {$1 — 3}, reflect the fact that
appending Nil preserves structure.
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Promoting analogies in GP: A naive approach

Intent: Make GP pay more attention to analogies between tests.
e Given: Set of tests T = {(/;, 0;)}.

o Structural Analogy (SA): a pair of tests ((h, 01),(h,02)) € T x T,
such that:

1. Hamming(h, k) =1, and
2. O1# Oy
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Promoting analogies in GP: A naive approach

Intent: Make GP pay more attention to analogies between tests.
e Given: Set of tests T = {(/;, 0;)}.

o Structural Analogy (SA): a pair of tests ((h, 01),(h,02)) € T x T,

such that:

1. Hamming(h, k) =1, and
2. O1# Oy

Examples for 6-bit comparator problem:

Structural analogy: No structural analogy:
011011 ——1 011001 ——=0

o L

011 —0 011 —0
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The method

Idea: Evaluate solutions on structural analogies instead of tests.
o A = the set of all analogies built from the given set of tests T
Al <|T|n
e Fitness = the number of passed analogies.
e A program p passes an analogy a = (t1, tz) if it passes both t; and t,.

e For n binary variables,

e Some t € T may be absent in A
e For such ts, we extend A with (t,t)

19/30
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Results

SA vs. GP: success rate (200 runs):

cmp6 discl disc2 disc3 disc4 disc5 maj5 majé maj7 mall mal2 mal3 mal4 mal5 mux6 par5
GP 65 00 00 00 00 00 810 355 25 120 3.0 135 05 525 785 0.0
SA 320 15 1.0 95 00 05 830 510 15 175 45 150 20 620 935 0.0

o SA approach clearly better.
e Same computational cost as GP.

o Alternative explanations?
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Could this be due to finer granularity of fitness?

Number of tests | T| vs. number of structural analogies |A|:

cmpb discl disc2 disc3 disc4 disc5 maj5 majé maj7 mall mal2 mal3 mal4 mal5 mux6 par5

|T|] 64 27 27 27 27 27 32 64 128 15 15 15 15 15 64 32
[Al 72 42 42 42 42 42 42 89 198 24 24 24 24 24 64 80

e |A| only moderately greater than | T| (yet greater)
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Could this be due to finer granularity of fitness?

Number of tests | T| vs. number of structural analogies |A|:

cmpb discl disc2 disc3 disc4 disc5 maj5 majé maj7 mall mal2 mal3 mal4 mal5 mux6 par5

|T|] 64 27 27 27 27 27 32 64 128 15 15 15 15 15 64 32
[Al 72 42 42 42 42 42 42 89 198 24 24 24 24 24 64 80

e |A| only moderately greater than | T| (yet greater)
e Hence control configurations:

e SA-rand: SA with second tests in analogies randomly shuffled
e H1: no requirement of different output in analogies
e Hl-rand: H1 4 random shuffling
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Could this be due to finer granularity of fitness?

Number of tests | T| vs. number of structural analogies |A|:

cmpb discl disc2 disc3 disc4 disc5 maj5 majé maj7 mall mal2 mal3 mal4 mal5 mux6 par5

|T| 64 27 27 27 27 27 32 64 128 15 15 15 15 15 64 32
[Al 72 42 42 42 42 42 42 89 198 24 24 24 24 24 64 80
e |A| only moderately greater than | T| (yet greater)
e Hence control configurations:
e SA-rand: SA with second tests in analogies randomly shuffled
e H1: no requirement of different output in analogies
e Hl-rand: H1 4 random shuffling
cmp6 discl disc2 disc3 disc4 disc5 maj5 maj6 maj7 mall mal2 mal3 mal4 mal5 mux6 par5
GP 65 00 00 00 00 00 810 355 25 120 30 135 05 525 785 00
SA 3220 15 10 95 00 05 8.0 510 15 175 45 150 20 620 935 0.0
SAtand 150 00 00 75 00 05 645 350 25 95 50 120 25 380 775 00
H1 50 00 00 00 00 00 795 345 25 175 45 150 20 620 85 0.0
Hi-rand 70 00 00 05 00 00 755 375 25 100 35 75 15 455 715 0.0
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Conclusions

Analogies capture structure in problem formulation (e.g., build on tests), which:
o Captures regularities/patterns

e An induction algorithm exploits those regularities.

Consequences:
e More fine-grained information about the problem and candidate solutions
e Natural means for prioritizing and diversifying search.
o Better-informed search algorithm.

e Moving from blackbox to whitebox setting.
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Future work

e Translating the observed analogies into search drivers that help deciding
what to modify in a candidate program and how

e Learn how to transform the observed patterns/analogies into moves.

o Applying analogical reasoning to program traces (cf. PANGEA
[Krawiec and Swan, 2013])

e AU on higher-order objects.
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Anti-Unification

e Extracts the common substructure of a set of terms T.
e AU of T is a term with
e some subterms replaced with variables, and
e a substitution o (i.e. a mapping from variables to terms) for each t € T,
such that when applied to u, it makes it equal to t, i.e., usc = t.
o Expressiveness of AU depends on how equality between terms is defined:
for syntactic AU, function symbols are labels with no intrinsic meaning.

Algorithm 1 Anti-unification algorithm for two terms (Reynolds,Plotkin).

function AU(x,y)
if x =y then
return x
else if x=17(xy,...,x,) Ay =f(y1,...,yn) then
return f(AU(x1, Y1), - -5 AU(Xn, Vi)
else
return ¢
end if
end function
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Cognitive bias

Q: Do we need cognitive bias for program synthesis?
A: We actually may need it.
The arguments:
e Synthesized programs often need to be legible for humans.

e Human cognitive biases largely coincide with universal biases
[Stewart and Cohen, 1999]:
e A program preferred by a human will often be the ‘right one’ (i.e. generalize
well).
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