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Fitness Evaluation

Observation 1

GP algorithms do not let programs know which tests they solve.

Typical fitness function in GP aggregates program’s behavior on tests by

counting the number of passed tests (discrete domains).

f (p) = |{yi 6= ŷi (p)}|i (1)

summing the errors on individual tests (continuous domains).

f (p) =
∑
i

(yi − ŷi (p))
2 (2)
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Test-based Genetic Programming

Observation 2

Detailed information on particular interactions with is available in GP.

P: set of m programs,

T : set of n tests (fitness cases)

g(p, t): interaction function between p ∈ P and t ∈ T

G : m × n matrix of interaction outcomes between P and T

Test-based problems (Pollack, Bucci, de Jong, Popovici)
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Fitness Evaluation

Observation 3

Interaction outcomes for particular tests are partially dependent.

Can be used to derive alternative search objectives (search drivers):

Derivation of Search Objectives
(Krawiec & Liskowski, EuroGP 2015, ECJ 2016)

Hypothesis

An interaction outcome g(p, t) can be reconstructed from other
elements of G

We may reduce so the number of program-test interactions.

The idea

Matrix factorization to estimate some program-test interactions in G .
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SFIMX: Surrogate Fitness via Factorization of Interaction Matrix

Algorithm
1 Calculate sparse interaction matrix G between P and T

For each p ∈ P draw a random subset of α|T | tests T ′ ⊂ T
Apply p to tests in T ′

2 Factorize G into non-negative components W and H (rank ≤ k)
3 Reconstruct the interaction outcomes by calculating Ĝ = WH

α ∈ (0, 1] - desired density of partial interaction matrix

Example: P = {p1, . . . , p4}, T = {t1, . . . , t5}, α = 3
5 = 0.6
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Example

Sizes of W and H controlled by parameter k ≥ 1 (here: k = 3)
Technical realization: multiplicative update rule.
Cost of evaluation reduced 1α times.
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Experiment

GP: ‘vanila’ GP, |P| = 1000
SFIMX: |P| increased (1− α) times =⇒ same budget
full: k = |T |,
half: k = |T |

2 ,
log: k = log2|T |

RSS: Calculates fitness using α|T | random tests (same budget)

α ∈ 0.1, 0.2, . . . , 1.0

Domain Instruction set Problem Variables #tests

Boolean

Cmp6 6 64
and, nand Cmp8 8 256

or, nor Par5 5 32
Mux6 6 64
Maj6 6 64

Algebras
ai (x , y) Disc-a1. . . a5 3 27
ai (x , y) Malcev-a1. . . a5 3 15
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Experiment

Average ranks on success rate (Friedman’s p � 0.001)

sfimx gp rss
half full log

All problems 2.07 2.13 2.67 3.90 4.23
Boolean 2.4 1.7 3.3 3.2 4.4
Categorical 1.90 2.35 2.35 4.25 4.15

Best results for α = 0.3 and α = 0.4

Roughly the same performance as GP using only 10% of interactions
log variant → high compression without affecting the performance

=⇒ Interaction outcomes are indeed corrrelated.
Low k → low computational overhead of factorization
For SFIMX-log: only 6% of the total cost of 1, 000|T | interactions
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Impact of α on success rates

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

10

20

30

40

50

60

Su
cc

es
s

R
at

e

SFIMX-FULL

SFIMX-HALF

SFIMX-LOG

RSS

Success rates improve as sparsity in G increases up to α = 0.3
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Conclusions

SFIMX = well-informed and scalable surrogate fitness.
Target domains:
Problems with expensive interaction functions
Problems with large numbers of tests
Evolving controllers, two-player games, image analysis, ...

Replaces a discrete fitness function with a continuous one.

Ongoing work: continous domains

Thank You
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