Surrogate Fitness via Factorization of Interaction Matrix

Paweł Liskowski Krzy

Krzysztof Krawiec

Computational Intelligence Group Institute of Computing Science Poznan University of Technology, Poland

March 30, 2016

Thought experiment

Thought experiment

GP algorithms do not let programs know which tests they solve.

Typical fitness function in GP aggregates program's behavior on tests by

• counting the number of passed tests (discrete domains).

$$f(p) = |\{y_i \neq \hat{y}_i(p)\}|_i$$
 (1)

• summing the errors on individual tests (continuous domains).

$$f(p) = \sum_{i} (y_i - \hat{y}_i(p))^2$$
(2)

Detailed information on particular interactions with is available in GP.

- P: set of m programs,
- T: set of n tests (fitness cases)
- g(p, t): interaction function between $p \in P$ and $t \in T$
- G: $m \times n$ matrix of interaction outcomes between P and T
- Test-based problems (Pollack, Bucci, de Jong, Popovici)

Interaction outcomes for particular tests are partially dependent.

Can be used to derive alternative search objectives (search drivers):

 Derivation of Search Objectives (Krawiec & Liskowski, EuroGP 2015, ECJ 2016)

Interaction outcomes for particular tests are partially dependent.

Can be used to derive alternative search objectives (search drivers):

 Derivation of Search Objectives (Krawiec & Liskowski, EuroGP 2015, ECJ 2016)

Hypothesis

- An interaction outcome g(p, t) can be reconstructed from other elements of G
- We may reduce so the number of program-test interactions.

The idea

Matrix factorization to estimate some program-test interactions in G.

Algorithm

Calculate sparse interaction matrix G between P and T

- For each $p \in P$ draw a random subset of $\alpha |T|$ tests $T' \subset T$
- Apply p to tests in T'
- **§** Factorize G into non-negative components W and H (rank $\leq k$)

§ Reconstruct the interaction outcomes by calculating $\hat{G} = WH$

• $\alpha \in (0,1]$ - desired density of partial interaction matrix

Example:
$$P = \{p_1, \dots, p_4\}, T = \{t_1, \dots, t_5\}, \alpha = \frac{3}{5} = 0.6$$

Example

- Sizes of W and H controlled by parameter $k \ge 1$ (here: k = 3)
- Technical realization: multiplicative update rule.
- Cost of evaluation reduced $\frac{1}{\alpha}$ times.

Experiment

- GP: 'vanila' GP, |P| = 1000
- SFIMX: |P| increased (1α) times \implies same budget

• FULL:
$$k = |T|$$
,

• HALF:
$$k = \frac{|T|}{2}$$

• LOG:
$$k = log_2 | T$$

• RSS: Calculates fitness using $\alpha |\mathcal{T}|$ random tests (same budget)

•
$$\alpha \in 0.1, 0.2, \dots, 1.0$$

Domain	Instruction set	Problem	Variables	#tests
Boolean		Стрб	6	64
	and, nand	Cmp8	8	256
	or, nor	Par5	5	32
		Михб	6	64
		Maj6	6	64
Algebras	$a_i(x,y)$	Disc-a1a5	3	27
	$a_i(x,y)$	Malcev-a1 a5	3	15

Average ranks on success rate (r neuman's $p \ll 0.001$								
	SFIMX			$_{\rm GP}$	RSS			
	HALF	FULL	LOG					
All problems	2.07	2.13	2.67	3.90	4.23			
Boolean	2.4	1.7	3.3	3.2	4.4			
Categorical	1.90	2.35	2.35	4.25	4.15			

Average ranks on success rate (Friedman's $p \ll 0.001$)

- Best results for $\alpha = 0.3$ and $\alpha = 0.4$
- Roughly the same performance as GP using only 10% of interactions
- LOG variant \rightarrow high compression without affecting the performance
 - \implies Interaction outcomes are indeed correlated.
- Low $k \rightarrow low$ computational overhead of factorization
 - For SFIMX-LOG: only 6% of the total cost of 1,000|T| interactions

Impact of α on success rates

Success rates improve as sparsity in G increases up to $\alpha = 0.3$

Conclusions

- SFIMX = well-informed and scalable surrogate fitness.
- Target domains:
 - Problems with expensive interaction functions
 - Problems with large numbers of tests
 - Evolving controllers, two-player games, image analysis, ...
- Replaces a discrete fitness function with a continuous one.
- Ongoing work: continous domains

Conclusions

- SFIMX = well-informed and scalable surrogate fitness.
- Target domains:
 - Problems with expensive interaction functions
 - Problems with large numbers of tests
 - Evolving controllers, two-player games, image analysis, ...
- Replaces a discrete fitness function with a continuous one.
- Ongoing work: continous domains

Thank You