
Scalable metaheuristics for automated program synthesis

1 Project objectives

1.1 Background

This proposal concerns automated program synthesis (APS), a research area within computational intel-
ligence where the objective of an intelligent system is to synthesize a program that meets a specification
provided as a set of examples or constraints.

The problem statement of program synthesis can be phrased more formally in the following way.
We assume that a program is a discrete structure (typically a list or nested hierarchy of lists) of
instructions from a given programming language. When applied to an input in ∈ I, a program p
produces an output p(in) ∈ O. A programming task (program synthesis task) is defined as a set of
tests (examples, cases) T ⊆ I × O , each of them being a pair of program input in ∈ I and the
corresponding desired output out ∈ O; put in machine learning terms, T forms the training set.

A synthesis algorithm solves a programming task T if it produces a program p that behaves as
required by the tests, i.e., for every test (in, out) ∈ T , p yields the desired output: p(in) = out. When
posed in this way, a programming task forms a search problem. Optionally, it can be augmented with
an objective function f which, when applied to a program, expresses the degree to which it attains
the search goal; such a programming task forms an optimization problems. In either case, the search
space is discrete, and hosts all admissible programs in the programming language. Importantly, the
synthesized program is expected to generalize beyond the training set.

An example of a simple yet nontrivial programming task is the synthesis of a sorting program. In
that case, every test in T is a pair of program input, i.e., a list to be sorted (e.g., (9,3,7,1,6)), and
the corresponding desired output, i.e., the appropriate sorted list (here: (1,3,6,7,9)). Given a set of
such tests, a program synthesis method is supposed to come up with a sorting program. This search
problem could be advanced to an optimization problem by augmenting its specification with a objective
function f . In the simplest case, f could count the number of tests passed by a program. A more
sophisticated fitness function could, for instance, measure Kendall’s correlation coefficient between the
actual program output and the desired sorted list.

1.2 Genetic programming (GP)

There are a few approaches to APS, pursued quite independently in various branches of computer sci-
ence [47, 23, 43]. Of them, in this project we employ genetic programming (GP, [24, 55]), the domain of
heuristic program synthesis inspired by the neo-Darwinian principles of natural evolution. Technically,
GP engages evolutionary computation [12, 17] to iteratively synthesize and improve a population of
candidate solutions (programs). By combining the ‘mechanics’ borrowed from the biological evolution
with the expressive power of computer programs, GP forms a powerful paradigm of computational
intelligence.

GP reaches beyond the automatic programming as it is practiced in inductive logic programming
[43], deductive program synthesis [47], or search-based software engineering [15]. For instance, GP is
not constrained to evolving programs in conventional programming languages, or even programs that
are legible for humans. GP programs can represent arbitrary data types, including not only categorical
and continuous, but also compound data structures like lists, sets, or even images (see, e.g., [26, 27]).
GP is thus substantially different from, e.g., inductive logic programming [43] which focuses on the
categorical datatypes.

The contemporary GP features a few major program representations (expression trees similar to
abstract syntax trees [23], graphs [50], sequences [7], nested lists [59]), dozens of search operators, and
a large number of evolutionary search algorithms. GP is now a rich, diversified research field, with
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well identified virtues and vices. It has been successfully applied to hundreds of tasks of scientific and
practical nature, and attained human-competitive performance on many of them [55], like designing
radio antennas [46], solving challenging problems in pure mathematics [58, 9], design of quantum
computing algorithms [2, 48], detecting bugs in existing software and repairing them [64], and automatic
software improvement [40]. The contributions of GP have been featured in the top scientific journals,
like Science [57] and Nature [44, 1]. The number of entries in the genetic programming bibliography
is close to passing the 10,000 mark [39, 38].

1.3 Problem Statement and Main Objective

Apart from trivial cases, programming tasks are challenging. There are a few of reasons for this state of
affairs. Firstly, the search space of programs is usually large (or often infinite), and grows exponentially
with the length of considered programs. Secondly, the relationship between program code (syntax)
and its effects (semantics) is very complex: a minute modification in program code can drastically
change its behavior, i.e., the output it produces (an example will be given in Section 3.3). On the
other hand, the same behavior can be implemented by many programs – as a matter of fact, there
are usually infinitely many programs that behave in exactly the same way. As a result, the so-called
fitness landscape [21], i.e., the fitness function plotted against the search space, is very rugged, features
many local optima as well as plateaus. Finally, task specification is usually incomplete, i.e., the set of
tests T does not contain all correct input-output pairs, so a synthesis method is expected to generalize
beyond the training sample (and in this sense perform induction) while avoiding overfitting.

As a result, APS methods, including GP algorithms, find it hard to scale well with task difficulty
and instance size. For example, one of the many common benchmarks in GP is the parity task [49],
where each test is an input list of bits of a fixed length accompanied with the desired output - the
corresponding parity bit. A program solving this task for lists of length 5 can be relatively easily
synthesized with a baseline, unsophisticated variant of GP. However, synthesizing a program that
realizes this functionality just for 7 is already much harder [54], and for 10 or more bits becomes
extremely difficult.

The proposed project is intended to advance the current state of knowledge in automated program
synthesis by developing a new generation of scalable GP-based program synthesis algorithms. The main
hypothesis is that this can be attained by making search process better informed about the semantics
of candidate programs, their internal behavior, and by guiding the search process in a more considerate
way. The particular aspects of this hypothesis are motivated and addressed by the particular tasks of
this proposal, detailed in Section ‘Work plan’.

2 Significance

Computer programs are believably the most general formalism available and, thanks to capacity of
conducting any Turing-complete computation, can in principle express solutions to any type of problem.
In other words, programs, whether written by a human or synthesized automatically, can be applied
to and solve problems of any nature, like learning problems, optimization problems, search problems,
problem solving (in AI sense), etc. Programs are capable of expressing algorithms that are active
and capable of processing data of arbitrary types (in contrast to conventional search and optimization
problems, where such candidate solutions are‘passive’ in the above sense). By advancing APS in this
project, we look forward to improving the availability of APS in several contexts discussed in the
following.

In the context of AI and computational intelligence, computer programs offer powerful represen-
tation of intelligent agents. In a natural way, the percepts received by an agent can be fed into a
program and the output generated by that program can determine agent’s actions. This makes it
possible to express behavior of intelligent agents in all sorts of environments and enables GP to to be
applied to a broad spectrum of problems in science and technology, from discovery of natural laws [57],
to synthesis of completely new hardware designs [18], quantum computing [2], machine learning and
pattern recognition [27].

In software engineering (SE), there is more evidence now that computer programming, once an
exclusively human domain, becomes more open to certain forms of automation. Given the growing
complexity of software, this becomes a necessity. The advent of search-based software engineering
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([15, 14]; see also http://ssbse.org/2014/), a novel branch of SE, is a clear sign of this trend. In this
context, GP and similar methods prove capable of efficient bug detection and repair [13], improvement
of functional and non-functional properties of code (e.g., like execution time, memory occupancy, or
length) [41], generating new tests [42], etc. With moderate effort, the techniques developed in this
project should be applicable not only to program synthesis meant as a process that starts from scratch,
but to aid humans cope with the growing complexity of code and other software artifacts.

The prospective outcomes of the proposed project can substantially contribute to the above disci-
plines. This in turn can have immense leverage on society as a whole, because software is pervasive,
essential to the functioning of many aspects of society, and forms a multi-billion euro industry. There
are opportunities to use automated methods in the design and maintenance of software, resulting in
great decreases in cost and effort, and increases in reliability and efficiency.

Last but not least, some of the approaches elaborated here can be extrapolated beyond program
synthesis, in particular to design better metaheuristic algorithms. For instance, providing a search
process with more detailed information on the outcomes of evaluation of a candidate solution (cf.
behavioral evaluation, Task 2 below) is a viable option in application domains where this process
involves some form of simulation. Evolutionary design (like, e.g., [18]) is an obvious example here.
Another growing application area involves climbing one level higher on the ‘abstraction ladder’ and
using advanced APS in hyperheuristics, i.e., metaheuristics that generate (or operate on) metaheuristics
(see, e.g., [53]).

The proposed project obviously cannot address all the above actual and prospective contexts and
applications. Nevertheless, by focusing on the fundamental research question concerning APS (i.e.,
how to control/drive the synthesis process to efficiently find a feasible solution?) we find it realistic to
advance the contemporary APS methods and in particular make them better scalable. We base this
claim on the encouraging preliminary results obtained in the applicant’s team [51, 34, 45, more details
in the next section] on one hand, and on the growing interest in the APS and search-based software
engineering community.

The project tasks detailed in the next section pave new ways for tackling the contemporary chal-
lenges for APS outlined in Section 1.3. The concepts to be tested within Task 1 build on a new and
promising concept of semantic GP; the research proposed for Task 2 and Task 3 forms original and oth-
erwise unexplored directions, a preliminary drafts of which already met with positive reception [35, 33].
In Task 4, the synthesis algorithm developed within the project will be verified on a diversified suite
of problems of scientific and practical character. However, universality of the computer programming
paradigm sets no limits to implications in other application areas.

3 Work plan

The assumed work plan is intended to provide a better understanding of the shortcomings of existing
approaches, and to design, implement, and experimentally verify a new family of automated program
synthesis algorithms that scale better with task complexity. In particular, each of the research tasks
below targets a specific limitation of contemporary program synthesis methods (and in particular GP),
which we will motivate individually for every task.

3.1 Task 1: Semantic extensions of genetic programming

Motivation. Most of contemporary approaches to program synthesis strive to be generic, and in
doing so are purely syntax-based1. A typical GP search operates at the level of source code, i.e., as
abstract symbols, regardless of whether the actual computation takes place in the continuous domain
(so-called symbolic regression), Boolean domain, or concerns Turing-complete computation involving
conditional statements and loops.

As an illustration, let us shortly characterize the conventional search operators used in the most
common, tree-based variant of GP, where candidate programs are represented as expression trees [24,
55]. Within that framework, program mutation consists in replacing a randomly selected subexpression
of a program with another, randomly generated, subexpression (Fig. 1). The way in which such

1This remark applies not only to GP, but also to other paradigms of automated programming; see, for instance, the
Syntax-Guided Synthesis Competition, http://sygus.org/
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Figure 1: Conventional mutation (left) and crossover (right) for tree-based GP. Top row: parents.
Bottom row: offspring.

modifications propagate to the effects (behavior) of program execution, i.e., program output, is very
complex and depends on the code of the program as well as on the choice of location at which the
operator is applied. As a result, it might happen that the mutated program behaves in a way that
is often very different from that of its parent, i.e., returns largely different outputs for the considered
tests. This contradicts the conventional role of mutation, which is normally intended to introduce
minor changes in candidate solutions.

Analogously, crossover operator in evolutionary computation is intended to produce a candidate a
solution that ‘blends’ the features of its parents. The most commonly used crossover operator in tree-
based GP swaps two randomly selected subexpressions (subprograms) between the parent individuals.
Unfortunately, an offspring solution resulting from such an act is often not much of a ‘mixture’ of its
parents in terms of the output it produces.

It should not then come as a surprise that such a blind syntactic search cannot work well for different
problems, across various domains, nor scale well with problem size. In the end, it is the meaning of a
program that determines its fitness and, en masse, determines how successful the search is at solving the
problem. And that meaning, i.e., program semantics, is largely neglected in conventional approaches
to program synthesis.

This issue has been identified and characterized from different perspectives by referring to concepts
like locality [56, 62], meant as the degree of distortion introduced by the genotype-phenotype mapping.
Put in these terms, in GP genotypes (program code) map into phenotypes (program behavior) at low
locality, so that even a small change of code can translate into huge difference in behavior.

However, that past work largely concentrated on quantitative analysis of genotype-phenotype map-
ping, and in most cases was not constructive in leading to new search operators. Only recently more
systematic approaches to this problem have emerged, which explicitly take into account program seman-
tics, leading to the emerging area of semantic genetic programming (SGP). Contrary to conventional
GP where fitness is the only computation effect of interest, SGP brings the effects of program exe-
cution to the foreground and inspects program behavior separately for particular examples, using the
detailed information acquired in this way to improve search efficiency. The particular extensions based
on SGP concern semantic-aware search operators [3, 5, 61, 52, 63, 28, 51, 32, 31, 65, 54], population
initialization [4, 19] and selection [11]. SGP attracted great deal of attention in the GP community,
evidenced by the recent successful workshop at the Parallel Problem Solving from Nature (PPSN) con-
ference (http://www.cs.put.poznan.pl/smgp2014/) and special issue of the Genetic Programming
and Evolvable Machines journal (http://ncra.ucd.ie/GENP_SemanticMethodsinGP.pdf).

In particular, our recent study [51] formally defines semantics of candidate programs and casts them
on a multidimensional semantic space, which spans the dimensions defined by particular tests. This
enables design of semantics-aware search operators and evaluation metrics that enjoy, among others,
certain geometric properties of the resulting semantic spaces. Preliminary results with this so-called
geometric SGP demonstrate dramatic improvement of success rate on a wide spectrum of benchmarks
and attractive theoretical potential (guarantees of search progress).

Task description. Within this task, we plan to develop computationally efficient semantic-aware
extensions of GP within the SGP framework, more specifically:

• Geometric semantic search operators, which exploit the geometric properties of semantic space
while keeping program size within acceptable limit (which is the major challenge for the geometric
semantic operators proposed to date). Our preliminary studies [54] suggests that this can be
achieved by partial reversal of program execution.

4



Training set

f

e

...

-

Program
input

Desired
output

Program error

x y

Actual
program
output

p(x)

s1(x) s2(x)

ML classifier
c

Classifier error

Classifier complexity
(size)

Program execution

Program
trace

Figure 2: Behavioral evaluation of programs in genetic programming. A trace of an executing program
is fed into a machine learning classifier. The classifier learns from multiple such traces of the same
program and attempts to predict the desired output (as specified by the given programming task).
The properties of the trained classifier (classification error and complexity) reflect the usefulness of the
information revealed in the execution traces. Indirectly, they also indicate the quality of subprograms
contained in the evaluated program (details in [35, 29]).

• Geometric initialization operators, which initialize the sample of programs (population) in a way
that improves the convergence of search process to the optimal solution (or, put in other words,
increases the likelihood of solving the programming task within the assumed computational
budget). The key idea we propose to follow here is the concept of convex hull of semantics
of programs in the population. Once the desired semantics is included in that hull, there is
guarantee that the optimal solution can be constructed from those programs via crossover.

• Geometric, semantics-based mate selection, which pairs parents programs in a semantic-aware
way, i.e., so as to increase the likelihood of the offspring program improving over the parents.

3.2 Task 2: Methods for behavioral evaluation of programs

Motivation. Conventionally in GP, program quality (fitness) depends only on the final effect of
program execution, which it achieves after termination. The intermediate effects of program execution
have no direct impact on its fitness. For instance, in the tree-based GP, only the value returned by the
root node of program tree directly determines its fitness. The subtrees influence the program outcome
only to the extent determined by the instructions located above them in the tree.

At first sight, this seems commonsensical: in the end, it is only the final outcome of program’s
computation that determines whether a programming task has been solved or not (or how well a pro-
gram approximates the desired output). This remains however in stark contrast to the process of
programming as exercised by humans. When faced with a nontrivial task, programmers split it into
subtasks and attempt to solve them independently or semi-independently. This strategy proves ef-
fective, because human programmers often know in advance which intermediate execution states are
desired. Consider for instance a programming task of synthesizing an algorithm that calculates the
median of an list of numbers. In such a task, a desired intermediate state is the input list sorted in
ascending or descending order2.

The ability to decompose tasks allows human programmers to excel on tasks that automatic pro-
gramming methods still struggle to solve. It is then highly desirable to equip the GP algorithms with
an analogous capability, which we postulated in our previous studies [37, 25, 36]. Recently, we pro-
posed behavioral evaluation [35, 29], an extension of conventional fitness function, which uses machine
learning techniques to detect potentially valuable subprograms in program code by analyzing its ex-
ecution traces when applied to the training tests (where by execution trace we mean the sequence of

2More efficient algorithms for median calculation exist, but for the sake of argument we stick here to the conventional
approach that sorts the entire list.
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Figure 3: The workflow of a GP algorithm extended with behavioral evaluation and an archive of
subprograms. The subprograms identified as promising by behavioral evaluation (cf. Fig. 2) are
gathered in an archive, a repository of code fragments maintained throughout the entire process of
evolutionary run. The code fragments are subsequently reused in the new candidate programs by
search operators (archive-based mutation).

semantic states traversed by an executing program when applied to a specific input data). This con-
cept is outlined in Fig. 2. By this virtue, behavioral evaluation can promote a program that features
prospectively useful code fragments, even if such a program does not perform very well as a whole (note
that semantic GP considered in Task 1 considers only final program outcomes). Early experimental
results show that behavioral evaluation measures provide better correlation with the actual distance
from the optimal program that conventional fitness [30]. In our recent publication [29], awarded with
the Best Paper Award at the Genetic and Evolutionary Computation (GECCO) conference in July
2014, we extended this idea with an archive of subprograms (cf. Fig. 3). This lead to further dra-
matic improvements and solving several problem instances that conventional GP algorithms hardly
ever solve.

Task description. In this task, we plan to build upon and employ the idea of behavioral evaluation
to perform implicit decomposition of a programming task and use it as a means to achieve better
scalability of program synthesis. More specifically we intend to:

• Investigate other (than machine learning-based) methods for detecting regularities in program
traces that reveal valuable intermediate program behaviors. This may include, among others,
information theory-based measures.

• Design methods that explicitly detect analogies between program behavior on particular tests,
and use them to modify programs in a directed way. The tentative idea is to employ commutative
diagrams for this purpose.

• Generalize the concept of behavioral evaluation to Turing-complete programs, and verify the
feasibility of this concept on the more difficult tasks of program synthesis. The challenge here
is the fact that detecting potentially valuable subprograms becomes hard when programs are
allowed to use conditional statements and loops, and as such requires a substantially different
approach.

3.3 Task 3: Alternative search drivers

Motivation. The conventional objective functions designed to evaluate candidate programs in auto-
mated program synthesis (fitness functions in GP) feature low fitness-distance correlation [60] (where
distance is the number of search steps required to reach the optimal solution-program). This implies
in practice that they are not necessarily good at guiding the search process towards the useful parts
of search space.
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As an illustration of this issue, let us reconsider the automated synthesis of a sorting program
mentioned at the end of Section 1.1. For a given input list, an ideal program is expected to return
the corresponding list sorted in ascending order. An exemplary test for this problem could be thus
composed of program input (9,3,7,1,6) and desired output (1,3,6,7,9). Assume now that evolutionary
search happens to produce a program that sorts the array in a reverse order, i.e., returns (9,7,6,3,1)
for this particular fitness case. In terms of error, measured for instance by Kendall rank correlation
coefficient, this program performs particularly bad and will be penalized. Nevertheless, it is likely that
a very small modification, possibly a single replacement of the arithmetic comparison operator ‘<’
with operator ‘>’ somewhere in the program code, will render it optimal. In other words, a very small
modification (technically, a single GP mutation) may turn an utterly bad candidate solution into an
ideal one. Two programs distanced by just one search step may exhibit a completely different behavior.
In this sense, many program synthesis problems are deceptive, by analogy to famous deceptive problems
considered in generic evolutionary computation, like trap functions, NK-landscapes, or Hierarchical If-
and-only-if (HIFF) problems.

This example clearly illustrates that the objective function, despite reflecting the objective quality
of candidate solutions, is not necessarily the best ‘driver’ to guide the search. Blind reliance of program
error as the only objective to be followed during search process can be detrimental. Other means of
guiding search should be sought for. In the above example of sorting program, an alternative search
driver could for instance reward the candidate programs for any ordering of list elements, whether
ascending or descending; in this way, the abovementioned ‘close miss’ program would be potentially
promoted and likely mutated into an optimal program. Ideally, an alternative search driver would not
be designed by hand, but discovered by an APS algorithm online, while solving the problem.

Task description. To address this problem, we propose the concept of search driver, meant as an
imperfect substitute for objective function that correlates reasonably well with the distance yet reflects
only selected aspects of the quality of candidate solution. In the context of GP, where candidate
solutions are evaluated on multiple tests, a natural example of a search driver is an evaluation measure
that captures program’s performance only on a subset of tests. A search driver can be also ‘subjective’
in the sense of reflecting program’s performance only relatively to the other programs in the population,
in a way characteristic for coevolutionary algorithms [8].

By analogy with classifier ensembles in machine learning, we posit that in the difficult program
synthesis tasks, a search guided by multiple such ‘weak’ search drivers can be more efficient than the
search guided by conventional objective function. In a recent work [45], we demonstrated that this can
be indeed true when evolving a game strategy for the famous Iterated Prisoner’s Dilemma problem
[10]. A submission currently in review verified this positively also in the area of GP (work submitted
to EvoStar’15 conference).

The concept of search driver may sound similar to surrogate fitness function [6, 16]. However,
surrogate fitness function is usually designed manually by a human expert to mitigate the high com-
putational cost of the original fitness function, and intended to mimic the original fitness as close as
possible. Search driver, on the other hand, is usually automatically derived from the problem (or from
the outcomes of search algorithm’s interactions with the problem), and is not assumed to approxi-
mate the original fitness function. Other related concepts are multiobjectivization of problems [22] and
automatic extraction of objectives in test-based problems [20].

In this project task, we would like to:

• Formalize the concept of search driver. In general, we allow search drivers to be partial, i.e.,
applicable only in parts of search space. In this way, we enable division of competence across the
search space.

• Define features that a search driver has to exhibit to be effective at guiding a search process.

• Delineate the class of problems that can be efficiently solved using search drivers.

• Devise a method for automatic learning of such search drivers from the interactions between
candidate solutions and tests, which proceeds on-line with the iterative program synthesis.
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3.4 Task 4: Experimental verification

Motivation. By focusing on the fundamental issues of program synthesis and formulating problems
in generic manner, the proposed project will pursue basic research. Nevertheless, the algorithms and
methods proposed here cannot be gauged otherwise than by applying them to some test problems of
scientific and/or practical importance.

Task description. In this task, we will demonstrate the concepts and algorithms developed in
Tasks 1–3 on the following types of problems:

• symbolic regression tasks, where the objective is to synthesize a formula that realizes a mapping
from one or more continuous input variables to a continuous dependent variable,

• classification tasks, where an evolved program is expected to classify the inputs to one of the
predefined decision classes (as in conventional machine learning); this includes the special case
of synthesis of Boolean functions,

• synthesis of programs implementing operations on lists, like concatenation, reversal, sorting,

• selected problems in search-based software engineering, , in particular improvement of non-
functional program properties (like execution time or memory occupancy).

Another material outcome of this tasks, in combination with the remaining ones, will be a library
of evolutionary algorithms for program synthesis, licensed according to Open Source standards. The
prototype of that library, written in the powerful object-oriented and functional programming language
Scala3, is already under preparation.

4 Methodology

The topics formulated in Tasks 1, 2, and 3 will be executed by following the methodology typical
for research in metaheuristics and machine learning. New algorithms will be devised, targeted at the
weaknesses of the contemporary methods (as identified in Tasks 1–3). The algorithms will be subject
to computer implementation and testing according to good practices of software engineering. Only
then will they be verified on the existing suites of problems, mentioned in the description of Task
4. The primary source of benchmarks will be the GP-benchmark initiative of the community of GP
researchers (http://gpbenchmarks.org/). Where possible, formal background will be developed and
hybrids of the above concepts will be considered.

The algorithms developed here will be objectively assessed using well-defined performance indica-
tors, such as success rate, time-to-success, and program error. Stochastic algorithms will obviously
require multiple runs to provide for statistical significance. The obtained values will undergo rigorous
analysis using appropriate statistical tests and procedures. In every experiment, an appropriate control
setup (baseline) will be provided to ease the assessment of the effect size of the extension in question.

The results will be thoroughly scrutinized and disseminated via presentations at respected confer-
ences (ACM GECCO, EvoStar, PPSN) and publications in indexed scientific journals (IEEE Trans.
Evol. Comp., Genetic Programming and Evolvable Machines, Evolutionary Computation Journal). A
website describing the project and reporting its major results will be set up and maintained during
project lifetime and possibly for a couple of years after its completion.

The Institute of Computing Science and the Faculty of Computing host appropriate computer
infrastructure required to conduct the research planned in this project. In particular, several computer
laboratories are integrated into a unified framework of distributed computing via SLURM (Simple
Linux Utility for Resource Management [66]). Our previous experience suggests that this infrastructure
is sufficient for conducting the research plan envisioned in this proposal. For this reason, we do not
plan purchasing hardware equipment in this project.

3http://www.scala-lang.org/
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