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ABSTRACT
We propose a new means of executing a genetic program
which improves its output quality. Our approach, called
Multiple Regression Genetic Programming (MRGP) decou-
ples and linearly combines a program’s subexpressions via
multiple regression on the target variable. The regression
yields an alternate output: the prediction of the resulting
multiple regression model. It is this output, over many fit-
ness cases, that we assess for fitness, rather than the pro-
gram’s execution output. MRGP can be used to improve the
fitness of a final evolved solution. On our experimental suite,
MRGP consistently generated solutions fitter than the result
of competent GP or multiple regression. When integrated
into GP, inline MRGP, on the basis of equivalent computa-
tional budget, outperforms competent GP while also besting
post-run MRGP. Thus MRGP’s output method is shown to
be superior to the output of program execution and it rep-
resents a practical, cost neutral, improvement to GP.

Categories and Subject Descriptors
I.2.2 [Artificial intelligence]: Automatic Programming

Keywords
Genetic Programming, Multiple Regression

1. INTRODUCTION
In principle Genetic Programming (GP), given enough

time, should be capable of simultaneously identifying and
combining useful program subexpressions to yield an overall
program that maximizes fitness. In reality, our existing GP
algorithm designs often fall short of this capability. While
there has been prior work on building block identification,
promotion and aggregation, in this contribution we take a
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new tact toward fitness maximization. We decouple program
subexpressions and combine them linearly via regression on
the target variable. Our regression yields an alternate out-
put for a GP program: the prediction of the resulting mul-
tiple regression model. It is this output, over many fitness
cases, that we assess for fitness, rather than the program’s
execution output. We call our approach Multiple Regres-
sion Genetic Programming (MRGP) because it hybridizes
GP with multiple regression.

In GP’s current paradigm, selection pressure is not explic-
itly on a program’s subexpressions but is instead on the en-
tire program. Because a program’s final output determines
its fitness, not the intermediate outputs of its subexpres-
sions, expressions are only optimized indirectly. This may
lead to suboptimal fitness maximization because an explicit
focus on the evolution of good building blocks is missing.
We posit that it is possible to improve subexpression contri-
bution to fitness without resorting to selection on the unit
of a subexpression. We propose to optimize a program prior
to selection by changing the way its output is calculated,
i.e. by optimizing the fitness contributions of its subexpres-
sions. We decouple the subexpressions from their nesting
in the program after we have saved their outputs during
execution. We then linearly combine them by means of a
multiple linear regression which regresses the target variable
on the saved outputs from every fitness case. This method
basically places optimal coefficients in front of each subex-
pression within a linear model in an attempt to improve
the overall combination of subexpressions. It thus acts as a
surrogate for direct selection on them.

Our contribution is primarily to change how a program’s
output is derived so that this new output provides a more
reliable fitness signal (one amenable to evolutionary selec-
tion and variation) and, overall, so that the ability of GP
to evolve highly fit programs improves. Specifically we pro-
pose two variants of MRGP and compare them, based upon
testing performance, to multiple regression (MR) directly on
the input variables and to a competent GP that uses multi-
objective optimization based upon accuracy and complexity.
In the post-run approach we simply use MRGP on the best
solution of a run. We experiment with regressing 5 alternate
sets of subexpressions. We find that, for a suite of 6 sym-
bolic regression problems, at least one of these optimizations
is always superior to our competent GP and MR. Given the
low cost of trying all variants and the option to also ap-
ply them to other programs at the end of a run, MRGP
appears to offer a viable post-run optimization. Its Success
confirms the basic proposal that a program can be improved
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Figure 1: The outline of regressing program subexpressions.

by targeting its subexpressions explicitly for tuning within
a linear framework. It also sets up the question of whether
inlining multiple regression of subexpressions, within GP’s
evolutionary cycle is helpful. Our experiments provide a
positive response: inline MRGP is superior even to post-
run MRGP and is cost-neutral vs competent GP. By cost-
neutral, we mean that, if we fix the optimization time, inline
MRGP is superior despite using fewer fitness evaluations.

We proceed as follows: We describe the general approach
in Section 2. In Sections 3 and 4 we respectively describe the
post-run variant and empirically examine its effectiveness.
In Sections 5 and 6 we respectively describe the inline vari-
ant and empirically examine its effectiveness. We describe
related work in Section 7 and then conclude and mention
future work in Section 8.

2. THE MRGP APPROACH

2.1 Terminology
The objective in a regression task is to find a model that

maps one or more input variables onto a single target variable
(desired output). When solving such a task using GP-based
symbolic regression, models are instantiated by programs
(expression trees in case of tree-based GP), where program
inputs (terminals, leaves) map to the input variables’ val-
ues, and program output (the expression’s value when the
root node is executed) maps to the target variable’s value.

2.2 Subexpression Multiple Linear Regression
MRGP differs from conventional GP primarily in elimi-

nating direct comparison of the final program output against
the target variable, y. Instead, we substitute a new calcu-
lation of a program’s output which is based on the linear
combination of subexpression behavior as regressed against
the target variable. We assume that all subexpressions of
a program can be tuned in linear combination with respect
to the target output. We also expect the resulting regres-
sion model to be superior over program output because it
disregards the nested order in which subexpressions are con-
sidered in program execution to arrive at the final program
output. We compare the target variable y to the output of
the regression model.

Given a dataset D (also known as a set of fitness cases)
composed of m columns of input variables and n rows of
example values and a target vector y with target values for
each example, we proceed as follows:

1. We step by step execute the program (with the con-
ventional inorder tree parse) and store the output of
each subexpression after it is executed. For tree-based
GP, this means pausing the program execution process
at each tree node (including leaves and the root node)

and storing the value calculated at that node. By do-
ing this for each training example, we obtain an n× k
matrix of subexpressions F , where k is the size of the
GP tree and n is the number of exemplars of D.

2. We map the values of F onto the desired output y using
multiple linear regression (MR), which produces an op-
timal linear combination that minimizes the prediction
error of ŷ. Multiple regression determines the vector
of coefficients β that minimizes the sum of squares of
residuals e of mapping the k subexpressions (predic-
tors) onto the desired output y:

y = F ′β + e

where F ′ is a n × (k + 1) matrix obtained from F by
prepending it with an additional column of ones, so
that the corresponding coefficient β1 implements the
intercept of the linear model.

3. To assess the quality of the regressed model, we com-
pute its output as ŷ = Fβ and compare it to the orig-
inal targets of the dataset in a conventional way, i.e.,
as (y − ŷ)T (y − ŷ) = eT e.

Fig. 1 outlines this process for tree-based GP.

2.3 Enlisting Least Angle Regression
Major challenges with multiple regression can arise be-

cause the least squares approach fails if the matrix F is not
of full rank. This may happen when the number of fea-
tures k is large with respect to the number of exemplars n
or if some of the columns of F are not linearly independent.
The former circumstance will occur whenever a GP tree size
exceeds the number of examples. Given GP tree size pa-
rameters and bloat, it should be anticipated. The former
circumstance occurs when the outputs of different subex-
pressions are correlated. This correlation arises from one of
the following scenarios:

• a subexpression appears multiple times in the GP tree.

• two or more subexpressions are syntactically differ-
ent but semantically equivalent, i.e., present the exact
same output. For instance, the subprograms X2 and
exp lnX2 produce identical outputs,

• two subexpressions are linearly dependent, e.g., (x1 +
x2) and (x1 + x2) ∗ (x1 + x1)/x1.

To deal with these challenges, we employ the Least Angle
Regression (LARS) algorithm presented by Efron et al. [4].
LARS is a stepwise process in which the variables are added
one by one to the active set while the model’s coefficients
are continuously moved toward its least-square value until

880



all the variables are included in the model. At the end of
the process, the obtained model is the full least-squares fit.
The steps involved in the LARS algorithm are listed below
as presented in [6]:

1. Standardize the predictors to have zero mean and unit
norm. Set the initial coefficients to 0, β̂1, β̂2, ..., β̂p = 0.
The error or residual is then r = y − ŷ = y.

2. Initialize the active set with the variable xi that is most
correlated with r (equivalent in this first iteration to
the target vector y).

3. Move β̂i from 0 towards its least-squares coefficient〈xi, r〉,
until another variable xj is as correlated with the cur-
rent residual as xi. Add xj to the active set.

4. Move β̂i and β̂j in the direction defined by their joint
least squares coefficient of the current residual on (xi, xj),
until some other competitor xl has as much correlation
with the current residual. Add xl to the active set.

5. Repeat step 4 until all k predictors have been added
to the active set.

The LARS algorithm is efficient since it takes k steps to get
to the full least squares estimates and can be adapted [2] to
solve the family of regression problems written as follows:

min
β

1

2
||Xβ − y||22 + λ1||β||1 +

1

2
λ2||β||22

where β is the vector of regression coefficients. We set λ1 = 0
and λ2 = 0 so the solution is unregularized and we ensure
the active set includes all input variables. Without loss of
generality we refer to this as multiple regression (MR).

3. POST-RUN REGRESSION OF PROGRAMS
EVOLVED BY COMPETENT GP

The post-run multiple regression strategy consists of ap-
plying MR to programs evolved by a competent implementa-
tion of GP. Our goal is to determine whether GP programs,
when ‘behaviorally re-interpreted’ in various ways by MR,
have better fitness than when interpreted in the conventional
way. Note that, in this case, GP does not receive any feed-
back from the outcomes of MR, i.e., the evolutionary process
is not driven by MRGP (contrary to the approach studied in
Section 5). We propose 5 strategies of the post-run variant
(see Figure 2):

(a) Root: root node only (in which case the MR problem
collapses to the simple univariate regression problem).

(b) Root and leaves: the leaves of the GP tree and the out-
puts of the root node are included in F .

(c) Subexpressions: the outputs of all the nodes of the tree
(including the root node and leaves) are in F .

(d) Root and variables: matrix F contains outputs of the
root and all the explanatory variables of the problem.

(e) Subexpressions and variables: F contains the outputs of
all subexpressions and all the explanatory variables.

Note that in strategies (d-e) the explanatory variables are
added to the matrix F even if they do not appear in the pro-
gram tree. This is justified for high-dimensional problems,
where GP trees would need to be very large to reference all
the variables of a problem.

4. POST-RUN MRGP EVALUATION
We now compare the performance of the post-run multiple

regression to a competent GP and multiple regression solely
on the problem’s explanatory variables.

4.1 Evaluation Problems
Table 1 summarizes the five symbolic regression prob-

lems used in this study. We chose problems of various sizes
(number of explanatory variables and training set size) and
characteristics. Energy problems (datasets ENH and ENC)
come from simulation experiments while the NOX emissions
dataset is a collection of real power plant data. For the Wine
Quality Datasets, both red and white, the input variables
are physical measurements, but the dependent variable is
the median score of human ‘sensory assessors’, expressed on
a scale from 0 (very bad) to 10 (excellent). In the case of the
NOX dataset, the train/test split was fixed beforehand. To
obtain the training and test sets of the remaining datasets,
we performed random 0.66/0.33 splits.

To provide comparability of results across the benchmarks,
their target variables are normalized to the interval [0, 1].

4.2 Competent GP
We compare MRGP and MR to our “competent” GP sys-

tem. It performs multi-objective optimization based on Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) [3] work-
ing with two minimized objectives: model error and model
complexity. In the experiment reported in this section, the
former is simply the error of the (normalized) program out-
put with respect to target (calculated using L2 metric), while
the latter is the Subtree Complexity measure introduced
in [18].

We run 10 replicas of each experiment. Therefore, a total
of 50 GP runs (5 datasets × 10 replicas) are performed to an-
alyze the suitability of the different post-run multiple regres-
sion strategies. In each run, we select the solution presenting
the lowest error and apply the five different post-run linear
regression strategies introduced in Section 3 and depicted
in Fig. 2, namely Root, Root and Leaves, Subexpressions,
Root and variables, Subexpressions and variables. Table 2
presents the settings of the essential evolutionary parame-
ters, most of which remain constant throughout the rest of
this paper (unless otherwise stated). We execute each GP
replica for 15 minutes, computing however many generations
fit into this deadline.

4.3 Regression process
The data derived from GP subexpressions, before under-

going regression by the LARS algorithm (Section 2.3), re-
quires the following preprocessing. First, if a given subex-
pression’s output list contains not-a-number (NaN) values
(resulting from, e.g., numerical over- or underflow), they are
replaced by median value of that output list. If a subexpres-
sion’s outputs are exclusively NaN values, it is discarded
altogether as an input variable to the multiple regression
(equivalently as a column of F ). Subexpressions with con-
stant outputs are also removed.

Once the regression model is induced, we adopt the fol-
lowing policy when applying it to data (either training or
testing): if the model’s prediction is beyond the interval
[−0.5, 1.5] (i.e., 0.5 below or above the assumed [0, 1] range
of target variable), it is clamped/trimmed to that value.
This avoids contaminating the results with outlier predic-
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(a) Root (b) Root and leaves (c) Subexpressions (d) Root and Vari-
ables

(e) Subexpressions
and variables

Figure 2: Post-run multiple regression strategies for the expression logX4 +sin(X1 +exp(X5)). Outputs of blue colored nodes
are included in the multiple regression.

Acronym Description Number of attributes Number of instances Reference

Total Training Test

ENC Energy efficiency, cooling load 8 768 512 256 [17]

ENH Energy efficiency, heating load 8 768 512 256 [17]

NOX NOX 18 5227 4017 1210 [20]

WIR Wine quality assessment, red wine 11 1559 1066 533 [1]

WIW Wine quality assessment, white wine 11 4898 3265 1633 [1]

Table 1: Benchmark datasets.

Parameter Value

pop size 1000

selection NSGAII with crowded Tournament

crossover Single Point Crossover

mutation Subtree mutation

MSE Normalized tree output

Complexity Subtree Complexity

stop criterion 15 minutes

Table 2: Parameters settings of our competent GP.

tions from degenerate models which may happen to be in-
duced from, e.g., very small GP trees, or GP trees producing
many NaNs. For fairness of comparison, we adopt this inter-
pretation policy for all considered methods, including MR
and GP.

4.4 Post-Run MRGP Results
Table 3 presents the mean square error (MSE) on the test

set returned by the compared methods. The striking obser-
vation is that GP fails to outperform the baseline MR on all
benchmarks, both on train set and test set. This indicates
that evolutionary search was not effective enough at finding
useful subexpressions and assembling them into expressions,
at least within the selected computational budget.

More importantly however, almost all variants of post-run
MRGP reduce the error rate when compared to standard GP
and MR. Interestingly, the only exception is the ‘root’ case,
where MRGP typically attains error in between that of MR
and GP. Thus, we can expect that applying regression to
the root node’s outputs results in less error than when that
output is directly compared to the target. However, this
regression is not sufficient (at least for this benchmark suite)
to outperform MR; that becomes possible only when more
features, collected from various subexpressions, are used of
predictors in a MR process.

The practical upshot is that providing the post-run re-
gression process of end-of-run GP outcomes with additional
predictors derived from program subexpressions is always
worth trying. The extra computation incurred is marginal,
while there may be significant gains in prediction accuracy.
Moreover, as this experiment shows, the improvements on
the training and testing set are usually correlated: if addi-
tional predictors lower the error on the training set, then it
is very likely that they will do so also for the test set. There-
fore, a recommended practice could be to first verify whether
performing multiple regression on the subexpressions of the
best-of-run GP program improves accuracy on the training
set, and adopt it for the testing set if it does, otherwise
falling back to the pure, non-augmented GP model.

This result also prompts the question as to whether it
would be advantageous to apply MRGP to each program
during a GP run, i.e. inline with evolution. Hypothetically
evolutionary pressure on fitness arising from considering a
different output from a program might be favorable. Thus,
we next propose inline MRGP.

5. GUIDING EVOLUTIONARY SEARCH
US-ING INLINE MRGP

In the inline approach, we integrate multiple regression
into fitness evaluation in the GP flow. This substantially
changes the evolutionary dynamics: programs are not forced
anymore to produce execution outputs that are useful since
the signal used for the fitness of a given program is the
output of the model regressed as a linear combination of
its subexpressions.

In proceeding, we anticipate that evolutionarily selecting
programs solely on the basis of multiple regression error may
be ill-advised. In particular, programs of different sizes have
different quantities of subexpressions and, in turn, lead to
models of different sizes (vector β̂ varies in length from pro-
gram to program). Given more subexpressions (many of
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Table 3: Testing-set mean absolute error (MAD) of models considered in post-hoc analysis. The best result in each column
is highlighted. 0.95-confidence intervals provided in smaller font.

Method ENC ENH NOX WIR WIW
MR 0.0612 — 0.0541 — 0.0773 — 0.1012 — 0.0992 —

GP 0.0909 0.0358 0.1278 0.1109 0.0832 0.0034 0.1084 0.0131 0.1048 0.0050

leaves+root 0.0515 0.0079 0.0320 0.0108 0.0799 0.0039 0.0999 0.0019 0.1001 0.0009

leaves+FEFs 0.0584 0.0523 0.0497 0.0613 0.0802 0.0044 0.1049 0.0039 0.0990 0.0012

root 0.0809 0.0291 0.0727 0.0504 0.0834 0.0035 0.1045 0.0058 0.1028 0.0019

vars+root 0.0513 0.0077 0.0320 0.0108 0.0759 0.0011 0.0989 0.0017 0.0985 0.0006

vars+FEFs 0.0585 0.0523 0.0488 0.0580 0.0755 0.0021 0.1036 0.0043 0.0977 0.0011

them potentially uncorrelated), regression is likely to regress
a better fitting model with lower overall error. This may bias
the search towards programs that yield more subexpressions,
i.e. larger trees, and hence contribute to program bloat.

To combat the anticipated bloat, similarly to the post-
run approach, we rely on two-objective selection based on
NSGA-II algorithm. In this case, the first objective is the
error of the regression model induced from the outputs col-
lected from tree subexpressions, and the second objective
is model complexity. However, it is far from obvious how
to measure the complexity of the compound model that in-
volves both symbolic GP execution and numeric MR trans-
form. To address that, we consider four different complexity
measures.

GP Tree complexity (TC). This measure is simply
the number of subexpressions, which coincides with program
tree size, a criterion often used in GP to prefer smaller pro-
grams and lessen program bloat.

Sum of t-statistics (Sum-t). One may argue assessing
model complexity by simply counting the number of subex-
pressions (or columns of F ) is too crude. First, k is discrete,
so ties between programs are likely, particularly for small
programs. Secondly, and more importantly, k is insensitive
to the impact of specific subexpressions. One may expect
that among the subexpressions within a program, the out-
puts of only some of them will serve as useful predictors for
the target output. In an extreme case, regression may build
a perfect model using a single subexpression and neglecting
all the remaining ones. Thus, two equally sized program
trees may give rise to models that involve different numbers
of significant parameters.

Following this observation, we define our second complex-
ity measure as:

c(β̂) =

k∑
i=2

| β̂i

SE(β̂i)
| (1)

where SE(β̂i) is the standard error of the sample coefficient

β̂i. The β̂i
SE(β̂i)

term in Formula (1) is the t-statistic that

reflects the significance of β̂i. The greater its absolute value,
the more it is likely that the corresponding predictor is a
significant element of the model. Thus, c(β̂) penalizes the
models that use large number of significant predictors. Note
that the summation in Eq. (1) starts from i = 2, so models

are not penalized for using intercepts. Including β̂1 in the
complexity measure would promote MR models that use no
intercept, and compensate for its absence by engaging other
predictors.

Minimum Description Length (MDL). In [16], Stine,
following the work by Elias [5] and Rissanen [13], proposes a

complexity measure of regression models that takes into ac-
count the significance of particular model parameters. Based
on those findings, we define the complexity of a multiple re-
gression model as the total description length of its param-
eters, i.e.,

c(β̂) =

k∑
i=2

lu(
β̂i

SE(β̂i)
) (2)

where lu(x) is an idealized length of the universal code of
number x [5, 13]:

lu(x) = 2 + log2 |x|+ 2 log2 log2 |x|

where we set log2(x) ≡ 0 for |x| < 1.
Derivation of this measure is beyond the scope of this

paper; it is however worth noting that the t-statistic of β̂i
is also present in this metric, thus penalizing models with
many significant predictors. Moreover, because lu(t) is con-
cave, a model that involves a single variable is favored over
a model that uses two variables that are ’half as significant’,
i.e., lu(t) < 2lu( t

2
).

Saturated Minimum Description Length (SMDL).
This measure is an extension of MDL in which the encoding
length for large t-statistics are saturated. The motivation is
that models that use very useful predictors (high t) should
not be excessively penalized. The Saturated Minimum De-
scription Length is computed as follows:

c(β̂) =

k∑
i=2

slu(
β̂i

SE(β̂i)
) (3)

where

slu(x) =

{
lu(x) |x| < 2.626

lu(2.626) otherwise

where 2.626 is a critical value of t-statistics for significance
level 0.01.

6. EXPERIMENT WITH INLINE MRGP
The experiment reported below has two primary goals: (i)

to analyze whether inline MRGP attains better predictive
accuracy than MR, conventional GP, and post-run MRGP,
and (ii) to compare the suitability of different complexity
measures to drive the inline MRGP process.

The inline MRGP implements a multi-objective approach
based on NSGA-II. In this case, the targeted objectives
are multiple regression error (see Section 2.2) and one of
the complexity measures introduced in the previous section,
namely TC, Sum-t, MDL, or SMDL. Therefore, we consider
four different MRGP configurations:
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(a) MRGP-TC: MR error and TC complexity

(b) MRGP-SumT: MR error and Sum-t complexity

(c) MRGP-MDL: MR error and MDL complexity

(d) MRGP-SMDL: MR error and SMDL complexity

We compare these four configurations to MR, conventional
GP, and to an additional method called Root Regression
GP (RRGP). RRGP represents the simplest inline MRGP
strategy and consists of regressing only the program’s output
onto the target variable. In this sense, it is the inline version
of the ‘root’ variant of post-run GP (cf. Table 3). In contrast
to GP’s conventional approach where program output yp
is directly compared to the target y, RRGP runs simple
linear regression on yp (and intercept) and assume that the
resulting predicted values ŷ constitute the final output. This
approach finds the best linear mapping between yp and y and
is thus closely linked to using correlation coefficient to assess
program quality, which has been used in the past [11, 15].
Note however that it is not equivalent to scaling of yp and y
to the same interval, a technique often practiced in symbolic
regression.

Table 4 presents the settings of the essential evolution-
ary parameters of inline MRGP. MRGP presents a higher
cost per fitness evaluation than conventional GP. As a re-
sult, given that we will execute with a fixed time budget,
a lower number of generations will be executed. However,
we anticipate that multiple regression provides a finer dis-
crimination between subexpressions modifying the explo-
ration/exploitation balance involved in GP search. To inves-
tigate how this balance impacts the inline MRGP process,
we consider two population sizes, namely 100 and 1000.

In summary, a total of 400 MRGP runs (4 configs × 5
datasets × 10 replicas × 2 population sizes) were performed
to investigate the search dynamics involved in MRGP. We
assume that the final outcome of an evolutionary run is the
lowest-error model found in the last generation of a run.

6.1 The results
Table 5 compares the mean absolute deviation (MAD) er-

ror on the test set, for the models evolved using the above
variants of MRGP. We present there also the MAD of con-
ventional linear regression applied to the original features
(MR) and standard GP (GP).

The hybrid methods quite consistently outperform MR,
and often do so by a large margin. This is not surpris-
ing, given the rich repertoire of nonlinear transformations
available to GP which MR, being a linear technique, cannot
model. The relative size of the gap between the evolutionary
techniques and MR is problem dependent: it is rather small
for the test sets of WIR and WIW, substantial for NOX, and

Parameter Value

pop size 100,1000

selection NSGAII with crowded Tournament

crossover Single Point Crossover

mutation Subtree mutation

MSE Multiple regression error

Complexity Subtree Complexity

stop criterion 15 minutes

Table 4: Parameters settings of the inline MRGP strategy.

dramatic for ENC and ENH. As expected, some problems
may require more sophisticated models, while others not.

Concerning the different MRGP variants with a popula-
tion size of 1000, TC, SumT and MDL outperform MR and
GP on four out of five benchmarks, while on WIR they are
worse. On the other hand, MRGP-SMDL presents a signifi-
cantly higher average error for the ENC and ENH problems.
Moreover, this last approach has also great variance between
runs.

Similar remarks apply to the runs performed with a pop-
ulation size of 100 individuals. In fact, no significant differ-
ences can be noticed with respect to the setup considering a
larger population. The TC, SumT, and MDL variants still
outperform MR and GP, while SMDL fails to provide sat-
isfactory results for the ENC and ENH problems. MRGP
thus shows to be robust since its results seem insensitive to
population size.

Overall, there is no clear winner among the MRGP vari-
ants. However, MGRP-SumT seems most reliable. It of-
ten produces the smallest or the close-to-smallest error, and
for many benchmarks its error varies the least across evolu-
tionary runs (see the confidence intervals shown in smaller
font). Also, for the challenging WIR benchmark, where all
GP-based methods (except RRGP) behave badly, MGRP-
SumT is worse than MR only by ∼10% for population size
1000 and even by a smaller margin for population size 100.
On the other hand, on ENC it halves the test-set error of
MR, and on ENH it yields a test-set error four times smaller
than MR. Apparently, the fine-grained model complexity as-
sessment implemented by this method proves effective as a
second objective of the search. Nevertheless, MRGP-TC
also often attains quite good results, despite its discrete na-
ture (Section 5). The possible reason for this is computa-
tional overhead: calculating program size (MRGP-TC) is
much faster than computing t-statistics (MRGP-SumT), so
the former method has the chance to evaluate more individ-
uals and execute more generations.

Except for the WIR benchmark, MRGP variants are al-
most always better than RRGP. This corroborates the ra-
tionale for intra-execution behavioral evaluation: the regres-
sion process provided with insight into internal program
behavior (MRGP), rather than only into program output
(RRGP), has the chance to build better predicting models
and thus helps guide the evolutionary search process more
efficiently.

The general observation resulting from this experiment
follows from comparison of the results of post-run analy-
sis (Table 3) with the inline approach (Tables 5). With a
few exceptions, the inline approach provides lower regres-
sion error. Given that the same execution time budget was
available to all methods, we may conclude that using par-
tial program outcomes for fitness evaluation is most often
beneficial. Postponing the usage of partial outcomes till the
end of evolutionary runs (as the post-run approach does)
still brings some improvements compared to conventional
approaches (Table 3), but not as substantial as for the in-
line approach. Apparently the redefined selection pressure
is capable of guiding the evolutionary search toward better
performing candidate solutions, despite making fewer fitness
evaluations due to computational overhead introduced by
multiple regression. In fact, for a fixed time budget, MRGP
yields better results than conventional GP, even if less gen-
erations are executed or a reduced population is considered.
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Table 5: Test-set mean absolute error (MAD) of models evolved using standard GP, RRGP, and four variants of MRGP,
averaged over 10 evolutionary runs, for population sizes 1000 and 100. MR marks the result for multiple regression of original
problem variables. Two best results in each column are highlighted. 0.95-confidence intervals provided in smaller font.

Population size Method ENC ENH NOX WIR WIW Avg. rank

MR 0.0612 — 0.0541 — 0.0773 — 0.1012 — 0.0992 — 6.7

1000 GP 0.0909 0.0358 0.1278 0.1109 0.0832 0.0034 0.1084 0.0131 0.1048 0.0050 9.2

RRGP 0.0497 0.0358 0.0193 0.0111 0.0826 0.0037 0.1012 0.0017 0.1094 0.0187 6.5

1000

MRGP-TC 0.0536 0.0288 0.0115 0.0005 0.0710 0.0015 0.1172 0.0046 0.0958 0.0008 4.4

MRGP-SumT 0.0300 0.0037 0.0123 0.0010 0.0704 0.0023 0.1115 0.0026 0.0959 0.0005 3.0

MRGP-MDL 0.0365 0.0098 0.0982 0.1247 0.0724 0.0018 0.1120 0.0037 0.0960 0.0009 6.4

MRGP-SMDL 0.2549 0.2453 0.2028 0.1931 0.0732 0.0012 0.1347 0.0425 0.0961 0.0004 9.1

100

MRGP-TC 0.0325 0.0082 0.0128 0.0028 0.0692 0.0018 0.1085 0.0059 0.0961 0.0004 3.7

MRGP-SumT 0.0307 0.0023 0.0237 0.0245 0.0718 0.0015 0.1076 0.0030 0.0963 0.0007 4.6

MRGP-MDL 0.0739 0.0526 0.0140 0.0044 0.0705 0.0009 0.1030 0.0025 0.0964 0.0009 5.0

MRGP-SMDL 0.1176 0.1434 0.0868 0.1222 0.0720 0.0012 0.1080 0.0037 0.0968 0.0011 7.4

7. RELATED WORK
In the past literature, there were relatively many attempts

to hybridize linear regression with GP. An early example is
STROGANOFF by Iba et al. [7], where multiple regression
was used to tune the internal parameters of GP programs
(the weights of inputs of particular program instructions).
However, program fitness was defined in a conventional way,
no attempt was made to map the behavior of entire program
onto target, and model complexity was not considered there.

McKay et al. [12] used continuum regression (a general-
ization of multiple regression, principal component regres-
sion, and partial least squares) in combination with GP to
build nonlinear models. The regression algorithm iterates
over latent variables, and for each of them invokes an inde-
pendent GP run aimed at matching that variable (this may
be likened to, e.g., cascade correlation learning algorithms
developed for neural networks).

Keijzer proposed to use univariate (simple) symbolic re-
gression to map program output onto the desired output, in
every act of fitness evaluation independently. Apart from
demonstrating the usefulness of this approach in practice
[9], Keijzer provided also theoretical evidence that evaluat-
ing GP individuals in this manner leads to programs that
are on average better than programs evolved using conven-
tional GP [10]. Similarly to McKay et al.’s work, only the
program output is used as a predictor variable in regression.
This method is equivalent to RRGP considered in Section 6.

The approach proposed by Sobester et al. in [14] is similar
to [9] in also using regression within fitness evaluation. In
particular, GP was used there to evolve ‘intervening vari-
ables’ for linear regression. Interestingly, for multivariate
problems a basis function was evolved for every dimension
independently, by means of cooperative coevolution. How-
ever, only final program outcomes were taken into account.
Also, model complexity was not considered.

By linearly combining program components, MRGP be-
comes distantly related to approaches that optimize con-
stants in programs. One of the earliest examples is here
the work by Jiang and Wright [8], who used the Levenberg-
Marquardt algorithm for this purpose. The same algorithm
is used for that purpose in a purely deterministic search
method proposed in [19]. However, such algorithms implic-
itly assume that the structural form of a GP program being
tuned is correct, and that its performance can be improved
by adjusting the constants. MRGP, as argued in Introduc-

tion, is based on fundamentally different premises, viz. that
the arrangement of program components can be inappro-
priate, and thus deteriorate program fitness, and that the
hidden yet valuable program components can be detected
by a MR analysis.

In the context of past studies, MRGP remains novel in (i)
exploiting multiple features generated by program subex-
pressions, (ii) taking into account model complexity, and
(iii) using state-of-the-art stage-wise least-angle regression
to avoid rank deficiency problem harassing conventional mul-
tiple regression.

8. SUMMARY AND FUTURE WORK
We have introduced Multiple Regression Genetic Program-

ming, a new means of executing a genetic program that
provides a practical and cost-neutral improvement to GP.
MRGP hybridizes GP with multiple regression by decou-
pling program’s subexpressions and linearly combining them
via regressing their outputs on the target variable. The use
of Least Angle Regression, a stepwise linear regression algo-
rithm, was important for the success of the approach, since
it deals with the ways using GP subexpression outputs in
this manner could trip up regression.

When applied in a post-run fashion, MRGP always im-
proves the output of the programs obtained with a compe-
tent GP system and, as a consequence, often outperforms
MR. In this mode, multiple regression only needs to be ap-
plied once, to the best-of-run individual. We consider these
to be strong arguments to systematically employ MRGP af-
ter every GP run.

MRGP turns out to be even more beneficial when per-
formed inline, i.e., when the feedback provided by the mul-
tiple regression process drives the evolutionary process. In
this case, the search algorithm is provided with more robust
and more reliable information on the value of individual’s
genetic code, which captures a complete decomposition of
the program’s behavior, rather than only its output. Com-
pared to post-run MRGP, it introduces a higher cost for each
fitness evaluation but when evaluated on an equal execution
duration it yields substantial improvement of predictive ac-
curacy. In this sense, both these usage scenarios (post-run
and inline) complement each other.

We have analyzed the impact of considering different com-
plexity measures corresponding both the complexity of ge-
netic programs and that of the retrieved linear models. In-
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line MRGP has shown to be robust to this parameter, out-
performing MR, GP, and post-run MRGP.

As a future work, we plan to extend the post-run MRGP
approach so that the final linear model combines features
retrieved from multiple models. With this approach, we ex-
pect to obtain a wider variety of features, many of them
possibly uncorrelated, and increase the accuracy of the fi-
nal regressed linear model. Apart from that, we would like
to consider use of regularized linear regression, which would
automatically promote simpler linear models and thus pos-
sibly impose qualitatively different selection pressure on the
population of evolving programs.
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