
Genetic Programming with Alternative Search
Drivers for Detection of Retinal Blood Vessels

Krzysztof Krawiec1(B) and Miko�laj Pawlak2

1 Poznan University of Technology, Poznań, Poland
krawiec@cs.put.poznan.pl

2 Poznan University of Medical Sciences, Poznań, Poland
mpawlak@ump.edu.pl

Abstract. A classification task is a test-based problem, with examples
corresponding to tests. A correct classification is equivalent to passing a
test, while incorrect to failing it. This applies also to classifying pixels in
an image, viz. image segmentation. A natural performance indicator in
such a setting is the accuracy of classification, i.e., the fraction of passed
tests. When solving a classification tasks with genetic programming, it
is thus common to employ this indicator as a fitness function. However,
recent developments in GP as well as some earlier work suggest that
the quality of evolved solutions may benefit from using other search
drivers to guide the traversal of the space of programs. In this study, we
systematically verify the usefulness of selected alternative search drivers
in the problem of detection of blood vessels in ophthalmology imaging.

Keywords: Genetic programming · Search drivers · Binary classifica-
tion · Image segmentation

1 Introduction

Genetic programming (GP) is a branch of evolutionary computation (EC) devo-
ted to synthesis of programs and other executable structures. Programs are
discrete, variable-length structures, and as such require specialized search oper-
ators. In this perspective, program synthesis tasks approached in GP are con-
sidered as a specific subclass of optimization problems.

There are however other aspects that make GP quite unique, one of them
being the class of objective functions employed therein. Typically, they assess
programs by running them on a set of tests (fitness cases). A test is a pair
composed of program input and the corresponding desired output. If a program
provided with the input returns an output that is close enough to the desired
output, it is said to pass the test; otherwise, it fails it. The objective function
aggregates the outcomes of program’s application to particular tests, usually
treating every test in the same way. For discrete domains, this may boil to
simply counting the number of passed tests. For continuous outputs, the errors
committed on particular tests are aggregated via mean square error or mean

c© Springer International Publishing Switzerland 2015
A.M. Mora and G. Squillero (Eds.): EvoApplications 2015, LNCS 9028, pp. 554–566, 2015.
DOI: 10.1007/978-3-319-16549-3 45

Genetic Programming with Alternative Search Drivers 555

absolute deviation, which corresponds to measuring the Euclidean or city-block
distance between the vector of actual outputs and the vector of desired outputs.

This conventional formulation leads to a scalar objective function and so
causes the program synthesis problem subscribe to the classical optimization
paradigm, which is often considered as an asset. We argue however that there
is also certain price to pay. The search algorithm has no access to program’s
performance on particular tests: it knows only its aggregated characteristics,
averaged over the entire training set of tests. In effect, the outcomes of par-
ticular tests may compensate, so that two programs with completely different
capabilities may receive the same fitness. Because in most of real-world problems
some tests are easier than others, this entices evolution to focus on passing the
easier tests, while neglecting the more difficult. Such overfocusing on a subset of
tests is likely to lead to premature convergence. Also, postponing learning how
to solve the harder tests may not be the best strategy for finding an optimal
solution.

The risks incurred by relying on conventional scalar evaluation measures
apply also to evolutionary image analysis. The problems solved in this domain
are by definition test-based, with tests corresponding to entire images (image
classification), objects in scenes (object recognition), and even single pixels (seg-
mentation). By often engaging large numbers of information-rich tests, they par-
ticularly call for better ways of exploiting the outcomes of interactions between
the evolving programs and tests.

Several approaches have been proposed in the past to address this issue. Typ-
ically, they boil down to replacing the conventional fitness with an alternative
search driver. The objective of this study is to systematically assess the use-
fulness of selected search drivers on the real-world image analysis task, and so
possibly arrive at certain recommendations concerning ‘good practices’ in this
domain. More specifically, after shortly presenting the background in Sect. 2, we
apply the methods reviewed in Sect. 3 to the task of segmentation of ophthal-
mological imagery (Sect. 4). In the experiment conducted in Sect. 5, we combine
each alternative search driver with discrete and continuous feature definitions,
and assess the generalization performance. Apart from this systematic analysis,
the original contribution of this work is a new variant of implicit fitness sharing
[1], capable of handling continuous program outputs.

2 Background

One of the most common applications of genetic programming in image analysis
is image segmentation. In this study, we are interested in delineating a single
type of anatomical structure in an image (blood vessels), viz. separating such
structures from the background. In other words, the objective is to segment out
a single category of objects (pixels in this case). Therefore, we will pose this task
as follows: given an image, classify every pixel in that image to one of the two
decision classes: positive or negative.

It is assumed that the decision on pixel’s class can be made based on its
neighborhood. A GP classifier will thus have access on an m×m square window

556 K. Krawiec and M. Pawlak

(region of interest, ROI) for defining image features. By sliding a ROI over the
entire image and applying a GP system to it, all pixels in an image can be
classified.

The data gathered from different positions of the sliding window in a training
image naturally forms a GP task. Each ROI position in a training image gives
rise to a single test (fitness case). More formally, each test is a pair (x, y), where
x is a vector of elementary features extracted from the ROI, and y is the desired
outcome of applying a GP classifier to x. An interaction between a GP program
and a test (x, y) boils down to feeding x into the program, running the program,
and comparing its output ŷ with the desired output y.

An important characteristics of applying GP to binary image segmentation
in the above manner is that GP programs are supposed to operate as classifiers.
Because the desired output y may take on only two values, it may be tempting to
pose this task in the Boolean domain. However, program input, by being gathered
from a raster image, is by nature composed of continuous image features. To
fully exploit the data available therein, it may be more appropriate to rely on
instructions that operate in the continuous domain. In other words, posing this
problem as a regression task is more natural given the nature of the input data.

The tension between the input characteristics that votes in favor of posing
this problem as a regression task, and the desired output being a binary variable
is the central topic of the study. It is not obvious what is the ‘right’ way of
assessing the discrepancy between the desired output y and the actual output
ŷ, i.e., what is the right search driver to guide the GP search process.

3 The Methods

In this section, we review the search drivers used in the subsequent experiment
and propose a novel variant of one of them. We limit our attention exclusively
to scalar search drivers.

Let yi denote the desired output for the ith test, and ŷi denote the actual
program output. When approaching regression tasks, yi’s can be arbitrary real
values. In this study however, we are solving binary classification tasks, and we
assume that yi ∈ {−1, 1}, with −1 denoting the negative decision class and 1
corresponding to the positive class. Regardless of that, we will equip our GP
systems with an instruction set typically used for regression, and interpret the
continuous output of a GP tree as an indication of decision class. The interpreta-
tion of program output, i.e., how its divergence from the desired output impacts
program’s fitness, will vary depending on search driver. For clarity, we define all
search drivers as measures that are to be minimized.

L1. Our first search driver is the total absolute error of ŷ with respect to y:

fL1 =
∑

i

|ŷi − yi|.

Many selection methods common in GP, like tournament selection, interpret
fitness as an ordinal (non-metric) variable, and are thus insensitive to the

Genetic Programming with Alternative Search Drivers 557

absolute values. Under this assumption, L1 is equivalent to the mean absolute
deviation (MAD) and city-block distance.

L2. Analogously to L1, we define fL2, which is the total square error of ŷ with
respect to y, i.e.,

fL2 =
∑

i

(ŷi − yi)2.

Similarly to fL1, fL2 is equivalent, up to ordering, to the Euclidean distance and
means square error (MSE).

L1 and L2 are designed for continuous spaces and as such penalize for any
divergence from the desired values. Because we are interested here in solving
binary classification tasks, and −1 and 1 are the only desired output values
possible, these search drivers seem overly restrictive. Intuitively, one should allow
a program express its decision in a more general way, for instance by the sign of
the output value. This observation leads to the next search driver.

Hamming distance. The next search driver counts the number of tests for
which program output has the same sign as the desired value, i.e.,

fH =
∑

i

{
1 if yiŷi > 0
0 otherwise

.

This search driver is equivalent to the Hamming distance between the vector of
desired outputs and the binarized vector of program outputs. It is also equivalent
to classification error (meant as the complement of classification accuracy used
in machine learning).

Hamming distance is clearly less restrictive than L1 and L2 in expecting
only the sign of program output to agree with the desired output. However, it
assumes that the threshold between the negative and positive indications is zero,
which, again, may seem quite arbitrary. An evolutionary process can hypotheti-
cally produce a program that perfectly classifies all training examples, but only
when its output is thresholded on a different level. The subsequent search driver
addresses this issue.

Pearson correlation. Another plausible search driver is the Pearson linear
correlation coefficient of the vectors of actual and desired outputs:

fP = 1 − cov(y, ŷ)
σyσŷ

.

Compared to Hamming distance, fP is advantageous in not requiring the eval-
uated program to produce positive values for the positive class and vice versa.
For that instance, a program that returns 3 for all the negative examples and 7
for all the positive ones will be (rightfully) considered as perfect by this measure
(fP = 0) In this sense, this search driver is adaptive.

On the other hand, the correlation coefficient is, similarly to L1 and L2,
sensitive to any intra-class variance in the observed program outputs ŷi. For
instance, a program that returns, as in the above example, the output value 3

558 K. Krawiec and M. Pawlak

for all negative examples, but 7 or 11 for the positive ones, will receive inferior
fitness. This is unfortunate, as this program’s predictive capability is supreme:
it is enough to threshold its output at, say, 5, to arrive at perfect decision rule.
Ideally, we would like to have a search driver that is both liberal about the
location of the boundary between the negative and positive output indications,
and on the other hand interprets program output as an ordinal, rather than
metric, variable. The subsequent search driver fulfills these expectations.

Area Under ROC curve (AUC). AUC is the total area under the Receiver
Operating Characteristics (ROC) curve, the parametric curve spanning the false
positive (FP) rate and the true positive (TP) rate. In our case, the parameter
that controls the traversal of ROC curve is simply the threshold τ imposed on
program output: if ŷi < τ , the example is classified as negative, otherwise it is
assigned to the positive class. AUC summarizes the behavior of this decision rule
of all values of τ . By definition, AUC ∈ [0, 1].

AUC is a natural way to characterize the trade-off between the FP rate and
the TP rate. It can be cheaply calculated using the Mann-Whitney U test:

fAUC =
n−n+ + n−(n− + 1)/2 − r

n−n+
,

where n− and n+ are the sizes of the negative and the positive class, respectively,
and r is the sum of ranks of sorted program outputs for the positive examples,
i.e., ŷis. AUC thus does not impose any specific threshold on program output
(like fH), and also does not assume the outputs to linearly correlate with the
desired outputs (like fP). What matters is only the ordering of the outputs
produced by a program.

All the search drivers reviewed so far share one common characteristics: they
consider all tests equally important. In practice however, some tests are often
more difficult than others. This is particularly evident in image segmentation
and diagnostic problems like the one considered here, where for instance some
pixels evidently belong to the background. The following search driver takes this
aspect into account.

Implicit fitness sharing. The last search driver considered in this study is
implicit fitness sharing (IFS), introduced by Smith et al. [2] and further explored
for genetic programming by McKay [1,3]. IFS lets evolution assess the difficulty
of particular tests and weighs the rewards granted for solving them. Given a set
of tests T, the IFS fitness of a program p in the context of a population P is
defined as:

fIFS(p) =
∑

t∈T (p)

1
|P (t)| , (1)

where T (p) is the subset of tests (pairs (x, y)) solved by p, and P (t) is the
subset of programs in P that solve test t. Thus, the 1

|P (t)| term serves here as an
indicator of t’s difficulty. Note that the denominator in the above formula never
zeroes, because if p solves a given t, then P (t) contains p.

Genetic Programming with Alternative Search Drivers 559

IFS treats tests as limited resources: programs share the rewards for solv-
ing them, where a reward can vary from 1

|P | to 1 inclusive (the latter being
the case when a program is the the only one in population that solves a test).
Higher rewards are granted for solving tests that are rarely solved by population
members (small P (t)), while importance of tests that are easy (large P (t)) is
diminished. The assessed difficulties of tests change as P evolves, which can help
escaping local minima.

By assessing programs in the context of the current population, fitness shar-
ing can be perceived as a simple form of coevolution, where individuals compete
for tests and their fate depends on the performance of other individuals (though
there are no direct, face-to-face interactions between them). From yet another
perspective, fitness sharing is a diversity maintenance technique: an individual
that solves a low number of tests can still survive if its competence is rare. In
this way, IFS helps reducing crowding and premature convergence; it shares this
characteristics with explicit fitness sharing proposed in [4], where population
diversity is enforced by monitoring the distances between individuals.

IFS requires defining what does it mean that a program passes a test. The
repertoire of search drivers presented above clearly demonstrates that there are
may ways in which this can be done when a continuously-valued program has to
be interpreted as a binary classifier.

We propose the following procedure to determine which tests in a given
training set T have been passed by which programs in the current population
P . Assume there are n tests in T , and let T− ⊂ T denote the negative examples
in T , and let T+ ⊂ T denote the positive examples in T . Let n− = |T−| and
n+ = |T+|.
1. For every program p ∈ P :

1.1. Sort the outputs ŷi produced by p for tests ti ∈ T in an ascending order.
1.2. Let T−

p ⊂ T denote the subset of tests corresponding to the first n−

elements of the sorted list, and let T+
p ⊂ T the be the subset of the remaining

n+ tests. Define the subset of tests T (p) solved by p as

T (p) = T− ∩ T−
p ∪ T+ ∩ T+

p (2)

2. For every test t, define the set of programs that pass t as

P (t) = {p ∈ P : t ∈ T (p)}. (3)

3. Use T (p)’s and P (t)’s to evaluate the individuals in P according to Eq. (1).

Let us explain the rationale behind this algorithm. We assume that a perfect
program would for all n− negative examples produce smaller output values than
for any of the n+ positive examples. By sorting the program outputs in step 1.1
and partitioning them into the subset of first n− elements and the remaining
n+ elements, we assess how close the program is to such behavior. The more
negative examples end up in the former subset and the more positive examples
in the latter, the better program’s performance (cf. Eq. 2). On the other hand,

560 K. Krawiec and M. Pawlak

how many programs fail a test in this sense is a natural measure of its difficulty
(Eq. 3). Redefining T (p) and P (t) in this way allows us to retain the original
formula of IFS (Eq. 1).

Similarly to AUC, by referring only to the ordering of outputs, the above
algorithm will adapt to any boundary between the decision classes that a pro-
gram comes up with.

Apart from IFS, other methods have been proposed that reward solutions
for having rare characteristics. An example is co-solvability [5] that focuses on
individual’s ability to properly handle pairs of fitness cases, and as such can
be considered a ‘second-order’ IFS. Such pairs are treated as elementary compe-
tences (skills) for which solutions can be awarded. Lasarczyk et al. [6] proposed a
method for selection of fitness cases based on a concept similar to co-solvability.
The method maintains a weighted graph that spans fitness cases, where the
weight of an edge reflects the historical frequency of a pair of tests being solved
simultaneously. Fitness cases are then selected based on a sophisticated analysis
of that graph.

4 Clinical Problem and Image Segmentation Task

The condition of the human vascular system is an important diagnostic factor in
a large number of medical conditions like atherosclerosis or diabetes, to mention
the common ones. No wonder thus that almost every modality of medical imaging
features an operation mode that visualizes veins and/or arteries, like X-ray/CT
angiography or Doppler ultrasonography.

A body organ that is particularly sensitive to pathologies of the vascular
system is the eye. A malfunctioning of blood vessels in the retina has severe
impact on the quality of vision. Contemporary, the most common cause of such
anomalies is diabetes, which in 2012 had 9.3 % incidence in the US1 and continues
to be on the rise. As a result, the diabetic retinopathy affects over a quarter of
adults with diabetes, and is currently the most common cause of blindness in
the Western world.

There are several medical imaging techniques that allow assessing the state
of retinal vascular system, including fundus imaging, fluoresceine angiography,
and optical coherence tomography (OCT, [7]). In this study, we consider the
first of them, which is arguably technically most straightforward: fundus images
are simply pictures of the back of the eye taken in visible band using a camera
fitted with appropriate optics. Our source of data is the DRIVE database [8]2,
the result of a screening study conducted in the Netherlands on 400 subjects
aged 25–90. The database contains a sample of 40 subjects from that group, 7
of which show mild signs of early diabetic retinopathy, and the remaining ones
represent the clinical norm. Each image is a color raster taken with a 3CCD
camera, where the anatomical structures occupy the central circular area with
a radius of approximately 540 pixels.
1 http://www.diabetes.org/diabetes-basics/statistics/.
2 http://www.isi.uu.nl/Research/Databases/DRIVE/.

http://www.diabetes.org/diabetes-basics/statistics/
http://www.isi.uu.nl/Research/Databases/DRIVE/

Genetic Programming with Alternative Search Drivers 561

The database is divided into a training set and a test set, both composed of
20 images taken from different patients. For every image, manual segmentation
of retinal vessels is provided (the original database contains two segmentations
for the test set, but only the ‘gold standard’ one is used in this experiment).
Figure 1 presents an exemplary training image and the corresponding manual
segmentation.

Fig. 1. An exemplary training image from the DRIVE database (left) and the corre-
sponding manual segmentation (right).

5 Experimental Verification

In the experiment, we verify how useful are the particular GP search drivers
presented in Sect. 3 for learning segmentation of blood vessels in the DRIVE
database of fundus images (Sect. 4). In particular, we want to find out if the
continuous variant of IFS proposed here brings any benefits. In parallel, we will
determine whether the answers to these research questions depend to any extent
on the characteristics of image features fed into programs.

Methods. The compared methods differ only in the search drivers presented in
Sect. 3, which we employ as fitness function. Otherwise, all setups implement gen-
erational evolutionary algorithm and tree-based GP [9,10], with the initial popu-
lation filled with the ramped half-and-half operator, subtree-replacing mutation
engaged with probability 0.1, subtree-swapping crossover with probability 0.9,
and tournament selection with tournament size 7.

Evolutionary runs last for 200 generations and work with population of 1000
programs. The instruction set comprises arithmetic (+, −, ∗ and protected divi-
sion) and transcendental functions: exp,sig(x) = 1/(1 + e−x), lg|x|, and normal
distribution n(x) = N(0,1)(x). The terminals include the instructions that fetch
image features, and constants drawn uniformly from the interval [−1, 1]. The
incidence of constants in randomly generated trees is set to 0.1.

The final outcome of an evolutionary run is the best-of-run individual, i.e.,
the best individual found in any generation of the run.

562 K. Krawiec and M. Pawlak

Training set. We formulate the problem for GP as a classification task on the
level of individual pixels. For a given pixel, the task for a GP classifier is to
predict whether it represents a blood vessels or not. In this sense, each pixel
forms a test (cf. Sect. 2).

Each of the 20 training images contains approximately 230 000 labeled pixels,
far too many to be used for evolutionary training within a reasonable time-
frame. Therefore, we select the training examples via sampling: from each train-
ing image, we draw at random 50 positive examples (pixels representing blood
vessels) and 50 negative examples (pixels representing the background). Thus,
the training set comprises 20 × (50 + 50) = 2000 fitness cases. The negative
class is thus undersampled with respect to the positive one, and so GP works
with balanced decision classes which should facilitate training. Originally, the
decision classes are strongly imbalanced, with the positive class accounting for
only about 12.7 percent of pixels [8].

Image features. As suggested earlier, this study focuses on the capability of
different variants of GP to learn from the elementary image features, rather than
on the features themselves. Therefore, we rely on relatively simple elementary
image features inspired by BRIEF, Binary Robust Independent Elementary Fea-
tures [11]. Originally, a single BRIEF feature is a binary indicator that tests the
relationship between the values of two randomly chosen pixels p1 and p2 in the
window I (ROI), i.e., whether I(p1) > I(p2). To this aim, the originally color
images are first converted to the monochrome scale.

We hybridize the BRIEF features with GP in the following way. Firstly, we
delegate the choice of pixels to be compared to the evolutionary process, rather
than drawing a sample of such pairs (which was originally done in [11]). To that
aim, we include in the instruction set a terminal d(p1, p2) that compares the
brightness values of the pixels p1 and p2, which leads to a binary outcome:

db(p1, p2) =

{
1 I(p1) > I(p2)
0 otherwise

.

The locations of p1 and p2 are defined in the reference frame of the current
ROI of the detector. Given a rectangular ROI I of m × m pixels, there are
m2(m2 − 1)/2 unique pairs of pixels. We use m = 7, which implies 1176 binary
BRIEF features – input variables for a GP classifier.

Transforming two continuous pixel values into a binary indicator incurs sub-
stantial information loss. To preserve more information while still abstracting
from the absolute pixel values, we consider also a continuous variant of BRIEF:

dc(p1, p2) = I(p1) − I(p2).

Objective performance indicator. The compared methods use different fit-
ness definitions as search drivers, which cannot be directly compared. To objec-
tively compare the resulting classifiers, we employ the Area Under ROC curve
indicator (AUC) detailed in Sect. 3. This performance indicator provides the full
account (albeit aggregated to a single scalar) of the trade-off between the false
positive rate and the true positive rate.

Genetic Programming with Alternative Search Drivers 563

6 Results

Table 1 presents the average AUC of the best-of-run programs applied to the
test set, averaged over 20 evolutionary runs. The estimation of AUC on the test
set proceeds as for the training set, however this time 200 pixels are selected
from each class for each of the 20 testing images, so the test set comprises
2 × 200 × 20 = 8000 pixels.

Table 1. Test-set AUC of particular search drivers, aggregated over 20 evolutionary
runs: average (left, with 0.95 confidence intervals) and median (right).

Average Median

Binary (db) Continuous (dc) Binary (db) Continuous (dc)

L1 0.389 ± 0.008 0.547 ± 0.046 0.381 0.511

L2 0.717 ± 0.014 0.836 ± 0.008 0.720 0.836

Hamming 0.619 ± 0.075 0.811 ± 0.011 0.744 0.808

Pearson 0.799 ± 0.006 0.849 ± 0.010 0.802 0.853

GP-AUC 0.802 ± 0.004 0.902 ± 0.007 0.803 0.903

IFS 0.775 ± 0.006 0.904 ± 0.006 0.777 0.906

The superiority of the continuous features is unquestionable. For all search
drivers, the AUC of the programs that access image by means of binary BRIEF
features is substantially worse. For some methods (L1, Hamming) the gap on this
performance indicator is dramatic. This applies to both training and testing set.
Apparently, the instruction set used here does not interact well with the BRIEF
features. When it comes to the usefulness of the particular search drivers, some
observations are also evident. The worst performing search driver is L1: it does
not perform well in any configuration. Compared to that, L2 achieves a much
better level. The Hamming measure fares in between.

The top achievers are clearly the methods that abstract from the exact values
of outputs produced by programs and take into account only their ordering, i.e.
GP-AUC and IFS, followed by the Pearson correlation coefficient.

The similar performance of GP-AUC and IFS is not incidental. By comparing
their descriptions in Sect. 3, it is easy to notice that they have much in common;
in particular they both treat interpret output as an ordinal variable.

The differences between GP-AUC and IFS seem negligible, especially for the
better performing continuous features. One cannot definitely claim any of them
significantly better. Does it mean that the adaptation of IFS to the continuously-
valued programs proposed in Sect. 3 does not bring any benefits?

It turns out it is not necessarily the case. In Table 2 we present the average
sizes of the programs in the last populations of evolutionary runs and the best-of-
run programs. The programs produced by IFS are substantially smaller than the
ones evolved by GP-AUC, in spite of achieving roughly the same performance.

564 K. Krawiec and M. Pawlak

Table 2. Average size of the programs in the last populations of evolutionary runs
(left) and of the best-of-run programs (right).

Average size in population Average size of best-of-run

Binary (db) Continuous (dc) Binary (db) Continuous (dc)

L1 1.0 12.0 1.0 14.6

L2 12.6 52.5 16.1 57.3

Hamming 20.0 36.5 21.6 40.5

Pearson 56.0 30.7 60.5 35.1

GP-AUC 46.2 31.9 50.7 34.0

IFS 31.3 19.1 40.4 25.5

Fig. 2. A test image from the DRIVE database (test), the corresponding manual seg-
mentation (middle), and the segmentation generated by the best program (GP-AUC,
right). The rightmost image is not binary, because program output is not thresholded
to visualize the continuous response of the detector.

The differences are observable in the averages taken over last populations, as
well as in the average size of the best-of-run programs. The precise cause of
this phenomenon is unclear; at this point we may only state that paying more
attention to hard tests and less to the easy ones reduces code bloat.

Table 2 explains the surprising fact of L1 not surpassing 0.5 AUC in the
binary configuration (Table 1): the average size of programs in that configuration
is 1, which suggests that the specific way in which this search driver interprets
the continuous program output precluded it from providing an effective search
gradient, and search gets stuck with programs fetching single image features.

Figure 2 presents the segmentation obtained by applying the best detector
from the GP-AUC runs and applying it an image from the testing set.

7 Conclusions

From the viewpoint of evolutionary image analysis, this work brings more evidence
for the usefulness of BRIEF-like random features. Simplicity notwithstanding,

Genetic Programming with Alternative Search Drivers 565

they offer reasonably good performance at the low expense of testing a few
pixels in the ROI. In absolute terms, the best test-set AUC obtained here is
0.925 (one of the runs of GP-AUC, followed by the best of GP-IFS runs with
AUC of 0.923), not far from 0.952 reported by Staal et al. in [8].

The overall conclusion of this study is that the choice of search driver is
essential for the performance of evolutionary program synthesis. Although, given
enough time, evolutionary algorithm should in principle be able to produce a
continuously-valued program that closely matches the discrete desired outputs,
it may be more reasonable to rely on the alternative search drivers. The exper-
imental outcomes clearly indicate the AUC or the extension of IFS proposed
here when solving binary classification tasks. We anticipate analogous results
for similar medical and non-medical detection tasks.

In a broader perspective, with this work we reveal the potential dwelling in
the alternative search drivers, especially those like IFS, which scrutinize program
behavior on every test and do not reward programs equally for passing them.
Here, we proposed and examined only a very simple approach of this kind; there
are no principle reasons for extending this to, e.g., semantic GP [12].

Acknowledgments. This study has been supported by the National Centre for Rese-
arch and Development grant # PBS1/A9/20/2013 and National Science Centre grant
NCN grant 2011/01/DNZ4/05801.

References

1. McKay, R.I.B.: Fitness sharing in genetic programming. In: Whitley, D., Goldberg,
D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000), Las Vegas,
Nevada, USA, pp. 435–442. Morgan Kaufmann, 10–12 July 2000

2. Smith, R.E., Forrest, S., Perelson, A.S.: Searching for diverse, cooperative popula-
tions with genetic algorithms. Evol. Comput. 1(2), 127–149 (1993)

3. McKay, R.I.B.: Committee learning of partial functions in fitness-shared genetic
programming. In: Industrial Electronics Society, 2000. IECON 2000. 26th Annual
Conference of the IEEE Third Asia-Pacific Conference on Simulated Evolution and
Learning 2000, Nagoya, Japan, vol. 4, pp. 2861–2866. IEEE Press, 22–28 October
2000

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-wesley, Reading (1989)

5. Krawiec, K., Lichocki, P.: Using co-solvability to model and exploit synergetic
effects in evolution. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN XI, Part II. LNCS, vol. 6239, pp. 492–501. Springer, Heidelberg (2010)

6. Lasarczyk, C.W.G., Dittrich, P., Banzhaf, W.: Dynamic subset selection based on
a fitness case topology. Evol. Comput. 12(2), 223–242 (2004). (Summer 2004)

7. Sikorski, B., Bukowska, D., Ruminski, D., Gorczynska, I., Szkulmowski, M.,
Krawiec, K., Malukiewicz, G., Wojtkowski, M.: Visualization of 3d retinal micro-
capillary network using oct. Acta Ophthalmol. 91 (2013)

8. Staal, J., Abrà moff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.:
Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med.
Imaging 23(4), 501–509 (2004)

566 K. Krawiec and M. Pawlak

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

10. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
http://lulu.com and http://www.gp-field-guide.org.uk (2008) (With contributions
by J. R. Koza)

11. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent
elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

12. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

http://lulu.com
http://www.gp-field-guide.org.uk

	Genetic Programming with Alternative Search Drivers for Detection of Retinal Blood Vessels
	1 Introduction
	2 Background
	3 The Methods
	4 Clinical Problem and Image Segmentation Task
	5 Experimental Verification
	6 Results
	7 Conclusions
	References

