Automatic Derivation of Search Objectives for Test-Based Genetic Programming

Krzysztof Krawiec Paweł Liskowski

Computational Intelligence Group Laboratory of Intelligent Decision Support Systems Institute of Computing Science Poznan University of Technology, Poland

April 8, 2015

Evaluation Bottleneck

• Solving programming task using GP:

$$\arg\max_{s\in\mathbb{S}}f(s) \tag{1}$$

- Fitness function *aggregates* the behavior of *s* on *tests* by
 - Counting the number of passed tests (discrete domains).
 - Summing the errors on individual tests (continuous domains).

Evaluation Bottleneck

• Solving programming task using GP:

$$\arg\max_{s\in\mathbb{S}}f(s) \tag{1}$$

- Fitness function *aggregates* the behavior of *s* on *tests* by
 - Counting the number of passed tests (discrete domains).
 - Summing the errors on individual tests (continuous domains).
- Behaviorally rich evaluation process, yet limited feedback for the search algorithm.
 - Example: 6-bit multiplexer, $2^6 = 64$ tests.
 - $\bullet\,$ Number of possible 'output behaviors': $2^{64}=1.84\times10^{19}$
 - Number of possible fitness values: $2^6 + 1 = 65$
- Fitness conveys little information on s: evaluation bottleneck.

Implications of evaluation bottleneck:

- Compensation \implies indiscernibility in selection
- All tests considered equally difficult (same rewards)
- Low fitness-distance correlation.

Question

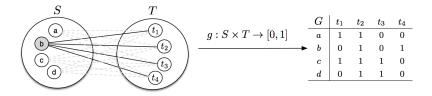
Detailed information on solutions' interactions with individual tests is available in interaction matrix.

How to exploit that information?

Test-based Genetic Programming

Program synthesis = test-based problem.

- S: set of m programs, $S \subset \mathbb{S}$
- T: set of n tests (fitness cases), $T \subset \mathbb{T}$
- g(s, t): interaction function between $s \in S$ and $t \in T$
 - passing test: g(s, t) = 1, failing test: g(s, t) = 0
- G: $m \times n$ matrix of interaction outcomes between S and T.



See: (Bucci, Pollack, de Jong, 2000 and on), (Popovici et al. 2011) Also: *behavioral GP* (Krawiec & Swan 2013; Krawiec & O'Reilly 2014)

Idea

Identify groups of tests on which the programs behave similarly.

Hypothesis

- Interaction matrix can be clustered into a few derived objectives that approximately capture the skills exhibited by the programs.
- Objectives obtained in this way can be better search drivers.

DOC: Discovery of Search Objectives by Clustering

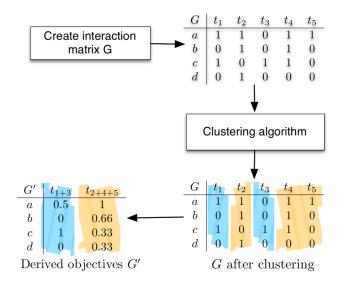
Algorithm

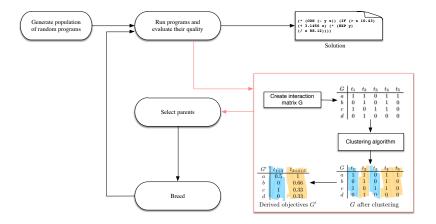
- Calculate $m \times n$ interaction matrix between S and T.
- Solution Cluster *n* tests into clusters $\{T_1, \ldots, T_k\}$.
- Define the derived objectives. For each T_j average row-wise the corresponding columns in G. The result is m × k matrix G':

$$g_{i,j}' = \frac{1}{|T_j|} \sum_{t \in T_j} g(s_i, t)$$

Use g's as derived objectives.

See also: (Liskowski & Krawiec, PPSN 2014)





- Black: convetional GP
- Red: GP with DOC

Experiment

Methods:

- GP: 'vanila' GP
- IFS: Implicit Fitness Sharing (Smith et al. 1993, McKay 2000)
- DOC: Discovery of Objectives by Clustering
 - Clustering algorithm: X-means (Pelleg et al. 2000), chooses k autonomously
 - Multiobjective selection: NSGA-II (Deb et al. 2002)
- RAND: As DOC, but tests clustered at random
 - Controls for the relevance of clustering.

Domain	Instruction set	Problem	Variables	Fitness cases	Space size
Boolean	and, nand or, nor	Cmp6 Cmp8 Par5 Mux6 Maj6	6 8 5 6 6	64 256 32 64 64	2^{64} 2^{256} 2^{32} 2^{64} 2^{64}
Categorical	$a_i(x,y)$ $a_i(x,y)$	Disc-a1 a5 Malcev-a1 a5	3 3	27 15	3 ²⁷ 3 ¹⁵

Average ranks on success rate over all 15 benchmarks:

Population size: 500					Po	pulatio	n size: 10	000
DOC	IFS	RAND	GP		DOC	IFS	RAND	GP
1.93	2.20	2.50	3.36		1.76	2.33	2.60	3.30

(Friedman's *p*-value $\ll 0.001$)

DOC ranks better than IFS. Statistical significance?

Average ranks on success rate over all 15 benchmarks:

Population size: 500					Po	pulatio	n size: 10	000
DOC	IFS	RAND	GP		DOC	IFS	RAND	GP
1.93	2.20	2.50	3.36		1.76	2.33	2.60	3.30

(Friedman's *p*-value $\ll 0.001$)

DOC ranks better than IFS. Statistical significance?

What's up, DOC?

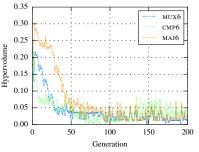
Hypothesis

Effect of **focusing** on some derived objectives.

Hypervolume of program's performance as characterized by the kderived objectives g_1, \ldots, g_k , i.e.,

$$h(p) = \prod_{j=1}^{k} g_j(p)$$

Maximized when the scores on g_j s are <u>balanced</u>.



Average hypervolume of programs

Results

• DOC-P: Hypervolume: $\prod_{j=1}^{k} g_j(p)$

• DOC-D: Weighs g_j s by the number of tests: $\prod_{j=1}^k |T_j|g_j(p)|$

Population size: 500							Popula	ation s	size: 1	000	
DOC-D	DOC-P	IFS	DOC	RAND	$_{\rm GP}$	DOC-P	DOC-D	DOC	IFS	RAND	$_{\rm GP}$
1.70	2.43	3.56	3.63	4.33	5.33	2.20	2.43	3.10	3.66	4.50	5.10

Success	<i>P</i> = 500							P = 1000						
rate	GP	IFS	RAND	DOC	$\mathrm{DOC}\text{-}\mathrm{P}$	DOC-D	GP	IFS	RAND	DOC	$\mathrm{DOC}\text{-}\mathrm{P}$	DOC-D		
Стрб	20	100	50	21	83	78	26	97	48	22	64	77		
Cmp8	0	56	0	0	21	29	0	7	0	0	4	5		
Disc1	0	0	0	7	3	13	0	0	0	10	10	7		
Disc2	0	4	0	10	14	37	0	0	0	0	21	40		
Disc3	0	0	0	18	53	62	0	0	0	56	71	77		
Disc4	0	0	0	0	0	7	0	0	0	4	0	0		
Disc5	0	0	0	0	7	3	0	0	0	0	4	4		
Maj6	22	100	60	40	83	90	52	100	71	81	96	89		
Malcev1	0	18	24	18	70	76	14	27	33	25	69	93		
Malcev2	3	3	0	7	27	30	0	0	11	17	32	27		
Malcev3	0	7	8	23	83	83	0	3	8	43	93	75		
Malcev4	0	0	4	7	10	7	0	0	0	25	20	10		
Malcev5	17	30	25	54	47	57	17	23	44	100	68	60		
Михб	77	100	83	73	100	100	90	100	96	100	100	100		
Par5	0	14	14	18	7	12	4	6	0	18	3	0		

Conclusions

Small picture:

- Derived search objectives effectively enhance conventional GP.
- DOC addresses some shortcomings of scalar evaluation:
 - Characterizes programs with multiple objectives ('skills')
 - Allows multiobjective approach to the problem.

Big picture:

- Derived objectives are examples of **search drivers**: measures designed to *guide* the search process.
 - Search drivers: relative, contextual, non-stationary
 - Objective functions: absolute, context-free, stationary
- Conventional objective functions are not necessarily good search drivers.
- Ongoing work on formalization and principled design of search drivers.

Conclusions

Small picture:

- Derived search objectives effectively enhance conventional GP.
- DOC addresses some shortcomings of scalar evaluation:
 - Characterizes programs with multiple objectives ('skills')
 - Allows multiobjective approach to the problem.

Big picture:

- Derived objectives are examples of **search drivers**: measures designed to *guide* the search process.
 - Search drivers: relative, contextual, non-stationary
 - Objective functions: absolute, context-free, stationary
- Conventional objective functions are not necessarily good search drivers.
- Ongoing work on formalization and principled design of search drivers.

Thank You