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Evaluation Bottleneck

Solving programming task using GP:

arg max
s∈S

f (s) (1)

Fitness function aggregates the behavior of s on tests by
Counting the number of passed tests (discrete domains).
Summing the errors on individual tests (continuous domains).

Behaviorally rich evaluation process, yet limited feedback for the
search algorithm.

Example: 6-bit multiplexer, 26 = 64 tests.
Number of possible ‘output behaviors’: 264 = 1.84 × 1019

Number of possible fitness values: 26 + 1 = 65

Fitness conveys little information on s: evaluation bottleneck.
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Implications

Implications of evaluation bottleneck:

Compensation =⇒ indiscernibility in selection

All tests considered equally difficult (same rewards)

Low fitness-distance correlation.

Question

Detailed information on solutions’ interactions with individual tests is
available in interaction matrix.
How to exploit that information?
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Test-based Genetic Programming

Program synthesis = test-based problem.

S : set of m programs, S ⊂ S
T : set of n tests (fitness cases), T ⊂ T
g(s, t): interaction function between s ∈ S and t ∈ T

passing test: g(s, t) = 1, failing test: g(s, t) = 0

G : m × n matrix of interaction outcomes between S and T .

See: (Bucci, Pollack, de Jong, 2000 and on), (Popovici et al. 2011)
Also: behavioral GP (Krawiec & Swan 2013; Krawiec & O’Reilly 2014)
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Searching for structure in G

Idea

Identify groups of tests on which the programs behave similarly.

Hypothesis

Interaction matrix can be clustered into a few derived objectives that
approximately capture the skills exhibited by the programs.

Objectives obtained in this way can be better search drivers.
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DOC: Discovery of Search Objectives by Clustering

Algorithm
1 Calculate m × n interaction matrix between S and T .
2 Cluster n tests into clusters {T1, . . . ,Tk}.
3 Define the derived objectives. For each Tj average row-wise the

corresponding columns in G . The result is m × k matrix G ′:

g ′
i,j =

1
|Tj |

∑
t∈Tj

g(si , t)

4 Use g ′
j s as derived objectives.

See also: (Liskowski & Krawiec, PPSN 2014)
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Example
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Example

Generate population 
of random programs

Run programs and 
evaluate their quality

(* (COS (- y x)) (IF (> x 10.43)
(+ 3.1456 x) (* (EXP y)
(/ x 88.12))))

Select parents

Breed

Solution

G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

Clustering algorithm

G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

G0 t1+3 t2+4+5

a 0.5 1
b 0 0.66
c 1 0.33
d 0 0.33

G after clusteringDerived objectives G0

Create interaction 
matrix G

Black: convetional GP

Red: GP with DOC
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Experiment

Methods:

GP: ‘vanila’ GP

IFS: Implicit Fitness Sharing (Smith et al. 1993, McKay 2000)
DOC: Discovery of Objectives by Clustering

Clustering algorithm: X-means (Pelleg et al. 2000), chooses k
autonomously
Multiobjective selection: NSGA-II (Deb et al. 2002)

RAND: As DOC, but tests clustered at random
Controls for the relevance of clustering.

Domain Instruction set Problem Variables Fitness cases Space size

Boolean

Cmp6 6 64 264

and, nand Cmp8 8 256 2256

or, nor Par5 5 32 232

Mux6 6 64 264

Maj6 6 64 264

Categorical
ai (x, y) Disc-a1. . . a5 3 27 327

ai (x, y) Malcev-a1. . . a5 3 15 315
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Experiment: Initial Results

Average ranks on success rate over all 15 benchmarks:

Population size: 500 Population size: 1000
doc ifs rand gp doc ifs rand gp
1.93 2.20 2.50 3.36 1.76 2.33 2.60 3.30

(Friedman’s p-value � 0.001)

DOC ranks better than IFS. Statistical significance?

What’s up, DOC?
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Overspecialization? Focusing?

Hypothesis

Effect of focusing on some derived objectives.

Hypervolume of program’s perfor-
mance as characterized by the k
derived objectives g1, . . . , gk , i.e.,

h(p) =
k∏

j=1

gj(p)

Maximized when the scores on gjs
are balanced.
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Results

DOC-P: Hypervolume:
∏k

j=1 gj(p)

DOC-D: Weighs gjs by the number of tests:
∏k

j=1 |Tj |gj(p)

Population size: 500 Population size: 1000
doc-d doc-p ifs doc rand gp doc-p doc-d doc ifs rand gp
1.70 2.43 3.56 3.63 4.33 5.33 2.20 2.43 3.10 3.66 4.50 5.10

Success |P| = 500 |P| = 1000
rate gp ifs rand doc doc-p doc-d gp ifs rand doc doc-p doc-d
Cmp6 20 100 50 21 83 78 26 97 48 22 64 77
Cmp8 0 56 0 0 21 29 0 7 0 0 4 5
Disc1 0 0 0 7 3 13 0 0 0 10 10 7
Disc2 0 4 0 10 14 37 0 0 0 0 21 40
Disc3 0 0 0 18 53 62 0 0 0 56 71 77
Disc4 0 0 0 0 0 7 0 0 0 4 0 0
Disc5 0 0 0 0 7 3 0 0 0 0 4 4
Maj6 22 100 60 40 83 90 52 100 71 81 96 89
Malcev1 0 18 24 18 70 76 14 27 33 25 69 93
Malcev2 3 3 0 7 27 30 0 0 11 17 32 27
Malcev3 0 7 8 23 83 83 0 3 8 43 93 75
Malcev4 0 0 4 7 10 7 0 0 0 25 20 10
Malcev5 17 30 25 54 47 57 17 23 44 100 68 60
Mux6 77 100 83 73 100 100 90 100 96 100 100 100
Par5 0 14 14 18 7 12 4 6 0 18 3 0
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Conclusions

Small picture:

Derived search objectives effectively enhance conventional GP.
DOC addresses some shortcomings of scalar evaluation:

Characterizes programs with multiple objectives (‘skills’)
Allows multiobjective approach to the problem.

Big picture:
Derived objectives are examples of search drivers: measures
designed to guide the search process.

Search drivers: relative, contextual, non-stationary
Objective functions: absolute, context-free, stationary

Conventional objective functions are not necessarily good search
drivers.

Ongoing work on formalization and principled design of search
drivers.

Thank You
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