



## Approximating Geometric Crossover by Semantic Backpropagation

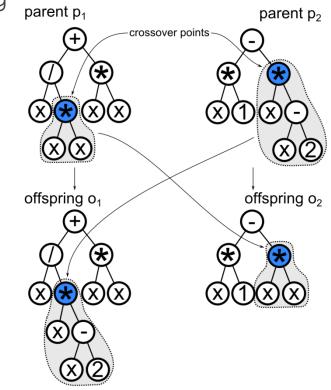
KRZYSZTOF KRAWIEC, TOMASZ PAWLAK

INSTITUTE OF COMPUTING SCIENCE, POZNAN UNIVERSITY OF TECHNOLOGY, POLAND

9.07.2013

#### Motivations

- Crossover is supposed to produce offspring that lays in-between parents
  - Average in common sense
- Canonic tree-swapping crossover
- $Is \frac{x}{x \times (x-2)} + x^2 \text{ or } x x^2 \text{ in-between} \\ \frac{x}{x^2} + x^2 \text{ and } x x(x-2)?$



#### Motivations

- Canonic Genetic Programming
  - Purely syntactic manipulations of program code

- Is offspring related to parents?
- How to measure similarity of programs?
- How to tell that an offspring lays between the parents?

# What does `between` mean for programs?

- Point may be between some other points only in a metric space
- ▶ We need a metric  $d: P \times P \rightarrow [0, +\infty)$  defined on program space *P*:
  - $\blacktriangleright \quad d(a,b) = 0 \Leftrightarrow a = b,$
  - $\blacktriangleright \quad d(a,b) = d(b,a),$
  - ►  $d(a,b) \le d(a,c) + d(b,c).$
- But... how to define a metric on pair of programs?

#### Semantics

- We induce programs from samples
- The samples are sets of numbers (in symbolic regression)
  - Set of function arguments
  - The target output value
- Let us use similar representation as semantics
  - Set of function arguments
  - The calculated output value
- Call it sampled semantics

#### Semantics: example

Consider functions 
$$f(x) = \frac{x}{x^2} + x^2$$
 and  $g(x) = \frac{x}{x - \frac{x}{4}} + x^2$ 

Sample them equidistantly in range [-1,1] using 10 samples

6

|        |        | •          |
|--------|--------|------------|
| X      | f(x)   | g(x)       |
| -1,00  | 0,00   | 2,33       |
| -0,78  | -0,68  | 1,94       |
| -0,56  | -1,49  | 1,64       |
| -0,33  | -2,89  | 1,44       |
| -0,11  | -8,99  | 1,35       |
| 0,11   | 9,01   | 1,35       |
| 0,33   | 3,11   | 1,44       |
| 0,56   | 2,11   | 1,64       |
| 0,78   | 1,89   | 1,94       |
| 1,00   | 2,00   | 2,33       |
| Again. | How Id | icleimilar |

Again: How (dis)similar is f(x) to g(x)? Just chose a metric:

- Manhattan: 32,93
- Euclidean: 14,48
- Chebyshev: 10,33

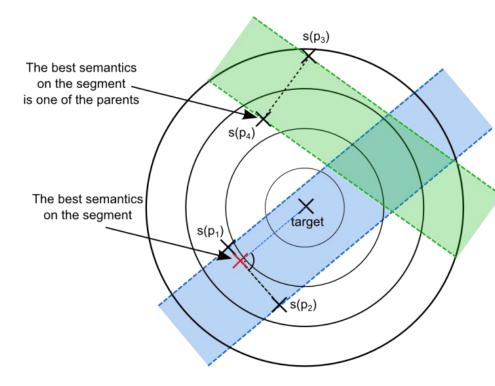
A recombination operator is a **geometric crossover** under the metric *d* if all offspring are in the *d*-metric segment between its parents.

ALBERTO MORAGLIO, ABSTRACT CONVEX EVOLUTIONARY SEARCH, FOGA'11

## Why do we need the geometric crossover?

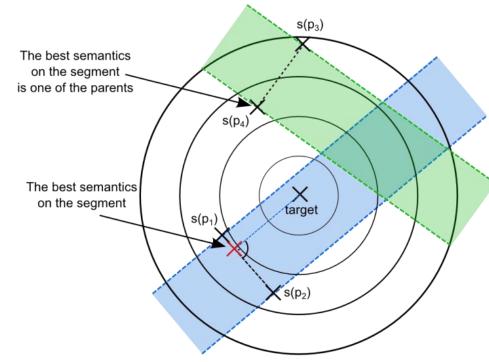
#### Consider:

- the Euclidean distance as a fitness/error function
- fitness landscape spanned over k-dimensional space of program semantics
- It must be a cone
  - The apex is the global optimum
  - Programs lie on the edges of cone



## Why do we need the geometric crossover?

- It is guaranteed that:
- An intermediate semantics between any pair of semantics must be not worse than the worst of the pair



## Approximately Geometric Semantic Crossover (AGX)

#### Given two parents:

- Calculate their semantics
- Determine a midpoint between them
- For each parent separately:
  - Randomly choose a crossover point
  - ▶ Backpropagate midpoint to the crossover point → desired semantics
  - Replace crossover point by a subprogram having semantics that minimizes error to the desired semantics

### Semantic backpropagation

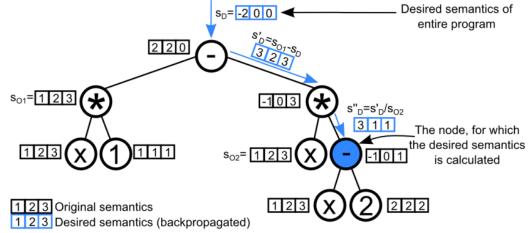
#### The objective

- Propagate the semantic target backwards through the program tree, so that it defines a subgoal for a subproblem
- Input
  - ▶ The program *p*
  - The target semantics  $s_D$
  - > The chosen node p'
- Output
  - Desired semantics  $s_D(p')$  for p'

#### 12

#### Semantic backpropagation

- Starting from the root node, for each node p on the path to p', do recursively:
  - Obtain an inverse instruction p<sup>-1</sup> to p w.r.t. child node p<sub>c</sub>, which is next on the path
  - Execute  $p^{-1}$  to compute desired semantics  $s_D(p_c)$
  - Stop if recursion reaches the chosen node  $(p_c \equiv p')$



### Semantic backpropagation: possible cases

#### Instruction is invertible

 $p: y \leftarrow x + c \implies p^{-1}: x \leftarrow c - y$ 

Instruction is ambiguously invertible

$$p: z \leftarrow x^2 \qquad \Longrightarrow p^{-1}: x \in \{-\sqrt{z}, \sqrt{z}\}$$

▶  $p: \sin(x) \implies p^{-1}: x \leftarrow \arcsin(z) + 2k\pi, k \in \mathbb{Z}$ 

Instruction is non-invertible

▶  $p: z \leftarrow e^x \implies p^{-1}: \forall_{z \in \mathbb{R}^-} x \leftarrow X$  (NaN, inconsistent)

Argument of instruction is ineffective

▶  $p: z \leftarrow 0 \times x \implies p^{-1}: x \leftarrow ?$  (don't care)

### Library of procedures

#### A static library

All possible programs built upon given set of instructions

Filtered for semantic uniqueness

#### In experiment:

- lnstructions  $\{+, -, \times, /, sin, cos, exp, log, x\}$
- Max tree height  $h \in \{3,4\}$
- ▶ Total number of programs: 212, 108520

## The experiment



#### Competition:

- GPX: standard tree-swapping crossover
- LGX: locally geometric semantic crossover\*

| Problem   | Definition (formula)                                 | Training set | Test set     |
|-----------|------------------------------------------------------|--------------|--------------|
| Nonic     | $x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x$  | E[-1, 1, 20] | U[-1, 1, 20] |
| R1        | $(x+1)^3/(x^2-x+1)$                                  | E[-1, 1, 20] | U[-1, 1, 20] |
| R2        | $(x^5 - 3x^3 + 1)/(x^2 + 1)$                         | E[-1, 1, 20] | U[-1, 1, 20] |
| Nguyen-7  | $log(x + 1) + (x^2 + 1)$                             | E[0, 2, 20]  | U[0, 2, 20]  |
| Keijzer-1 | $0.3x\sin(2\pi x)$                                   | E[-1, 1, 20] | U[-1, 1, 20] |
| Keijzer-4 | $x^3 e^{-x} \cos(x) \sin(x) (\sin^2(x) \cos(x) - 1)$ | E[0, 10, 20] | U[0, 10, 20] |

E[a,b,n] – n points chosen equidistantly from range [a,b]

U[a,b,n] – n points chosen randomly with uniform distribution from range [a,b]

\* K. Krawiec, T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines, 14(1):31-63, 2013.

0.8 0.8 1 R2NonicR10.8 0.60.6 Eitness 0.4 0.40.40.40.20.20.2 $0 \stackrel{\mathsf{L}}{0}$ 0 ⊾ 0 L 0 250 50 50 100 150200 100 15020050250100 1502002500.40.151.5Keijzer - 4Nguyen - 7Keijzer - 10.30.11 Fitness 0.20.050.50.10 6 0 L 0 0 L 0 50 50 50 100 150200 250100 150 200 250100150200250 $AGX_3 \longrightarrow AGX_4 \longrightarrow GPX ---- LGX_3 ---- LGX_4$ 

## Test-set performance

Average error committed by best-of-run individual on test set.

| Problem   | AGX3  | AGX4             | GPX   | LGX3  | LGX4  |
|-----------|-------|------------------|-------|-------|-------|
| Nonic     | 0.359 | 0.093            | 0.130 | 0.201 | 0.191 |
| R1        | 0.224 | 0.050            | 0.261 | 0.167 | 0.103 |
| R2        | 107   | 0.028            | 0.316 | 0.621 | 0.042 |
| Nguyen-7  | 0.051 | 0.005            | 0.044 | 0.018 | 0.004 |
| Keijzer-1 | 0.190 | 0.039            | 0.134 | 0.091 | 0.041 |
| Kejzer-4  | 3.113 | 10 <sup>13</sup> | 0.492 | 2.008 | 2.854 |

18

## Geometry of operators

| Depth of  | Fraction of geometric offspring |       |       |  |
|-----------|---------------------------------|-------|-------|--|
| crossover | AGX                             | LGX   | GPX   |  |
| 1         | .0155                           | .1676 | .0035 |  |
| 2         | .0151                           | .0100 | .0031 |  |
| 3         | .0136                           | .0031 | .0018 |  |
| 4         | .0105                           | .0016 | .0020 |  |
| 5         | .0055                           | .0014 | .0011 |  |
| 6         | .0028                           | .0009 | .0007 |  |
| 7         | .0017                           | .0006 | .0005 |  |
| 8         | .0012                           | .0004 | .0003 |  |
| 9         | .0010                           | .0007 | .0003 |  |
| 10        | .0006                           | .0005 | .0003 |  |
| 11        | .0005                           | .0002 | .0003 |  |
| 12        | .0004                           | .0001 | .0003 |  |
| 13        | .0003                           | .0002 | .0002 |  |
| 14        | .0002                           | .0000 | .0005 |  |
| 15        | .0000                           | .0000 | .0002 |  |
| 16        | .0000                           | .0000 | .0005 |  |
| 17        | .0000                           | .0000 | .0000 |  |
| Overall   | .0057                           | .0035 | .0008 |  |

#### Future work

- Test other libraries
- Add support for constants
- Compare with Random Desired Operator\*

19

\* K. Krawiec, B. Wieloch. Running Programs Backwards, GECCO 2013.



#### Thank you

Questions?

