

Approximating Geometric Crossover by Semantic Backpropagation
KRZYSZTOF KRAWIEC, TOMASZ PAWLAK
INSTITUTE OF COMPUTING SCIENCE, POZNAN UNIVERSITY OF TECHNOLOGY, POLAND
9.07.2013

Motivations

- Crossover is supposed to produce offspring that lays in-between parents
- Average in common sense
- Canonic tree-swapping crossover
\Rightarrow Is $\frac{x}{x \times(x-2)}+x^{2}$ or $x-x^{2}$ in-between
$\frac{\mathrm{x}}{\mathrm{x}^{2}}+x^{2}$ and $x-x(x-2)$?
parent p_{1}
parent p_{2}

Motivations

- Canonic Genetic Programming
- Purely syntactic manipulations of program code
- Is offspring related to parents?
- How to measure similarity of programs?
- How to tell that an offspring lays between the parents?

What does `between` mean for programs?

- Point may be between some other points only in a metric space
- We need a metric $d: P \times P \rightarrow[0,+\infty)$ defined on program space P :
> $d(a, b)=0 \Leftrightarrow a=b$,
- $d(a, b)=d(b, a)$,
- $d(a, b) \leq d(a, c)+d(b, c)$.
- But... how to define a metric on pair of programs?

Semantics

- We induce programs from samples
- The samples are sets of numbers (in symbolic regression)
- Set of function arguments
- The target output value
- Let us use similar representation as semantics
- Set of function arguments
- The calculated output value
- Call it sampled semantics

Semantics: example

- Consider functions $f(x)=\frac{x}{x^{2}}+x^{2}$ and $g(x)=\frac{x}{x-\frac{x}{4}}+x^{2}$
- Sample them equidistantly in range [-1,1] using 10 samples

| x | $f(x)$ | $c(x)$ |
| ---: | ---: | ---: | ---: |
| $-1,00$ | 0,00 | 2,33 |
| $-0,78$ | $-0,68$ | 1,94 |
| $-0,56$ | $-1,49$ | 1,64 |
| $-0,33$ | $-2,89$ | 1,44 |
| $-0,11$ | $-8,99$ | 1,35 |
| 0,11 | 9,01 | 1,35 |
| 0,33 | 3,11 | 1,44 |
| 0,56 | 2,11 | 1,64 |
| 0,78 | 1,89 | 1,94 |
| 1,00 | 2,00 | 2,33 |

- Again: How (dis)similar is $f(x)$ to $g(x)$? Just chose a metric:
- Manhattan: 32,93
- Euclidean: 14,48
(Chebyshev: 10,33
${ }^{\text {4s }} \mathrm{A}$ recombination operator is a geometric crossover under the metric d if all offspring are in the d-metric segment between its parents.

ग

Why do we need the geometric crossover?

- Consider:
- the Euclidean distance as a fitness/error function
- fitness landscape spanned over k-dimensional space of program semantics
- It must be a cone
- The apex is the global optimum
- Programs lie on the edges of cone

Why do we need the geometric crossover?

- It is guaranteed that:
- An intermediate semantics between any pair of semantics must be not worse than the worst of the pair

Approximately Geometric Semantic Crossover (AGX)

- Given two parents:
- Calculate their semantics
- Determine a midpoint between them
- For each parent separately:
- Randomly choose a crossover point
- Backpropagate midpoint to the crossover point \rightarrow desired semantics
- Replace crossover point by a subprogram having semantics that minimizes error to the desired semantics

Semantic backpropagation

- The objective
- Propagate the semantic target backwards through the program tree, so that it defines a subgoal for a subproblem
- Input
- The program p
- The target semantics s_{D}
- The chosen node p^{\prime}
- Output
- Desired semantics $s_{D}\left(p^{\prime}\right)$ for p^{\prime}

Semantic backpropagation

- Starting from the root node, for each node p on the path to p^{\prime}, do recursively:
- Obtain an inverse instruction p^{-1} to p w.r.t. child node p_{c}, which is next on the path
- Execute p^{-1} to compute desired semantics $s_{D}\left(p_{c}\right)$
- Stop if recursion reaches the chosen node ($p_{c} \equiv p^{\prime}$)

Semantic backpropagation: possible cases

- Instruction is invertible
$\Rightarrow p: y \leftarrow x+c \Rightarrow p^{-1}: x \leftarrow c-y$
- Instruction is ambiguously invertible
$\Rightarrow p: z \leftarrow x^{2} \quad \Rightarrow p^{-1}: x \in\{-\sqrt{z}, \sqrt{z}\}$
$\Rightarrow p: \sin (x) \quad \Rightarrow p^{-1}: x \leftarrow \arcsin (z)+2 k \pi, k \in \mathbb{Z}$
- Instruction is non-invertible
- $p: z \leftarrow e^{x} \quad \Rightarrow p^{-1}: \forall_{z \in \mathbb{R}^{-}} x \leftarrow X$ (NaN, inconsistent)
- Argument of instruction is ineffective
- $p: z \leftarrow 0 \times x \Rightarrow p^{-1}: x \leftarrow$? (don'† care)

Library of procedures

- A static library
- All possible programs built upon given set of instructions
- Filtered for semantic uniqueness
- In experiment:
- Instructions $\{+,-, \times, /, \sin , \cos , \exp , \log , x\}$
- Max tree height $h \in\{3,4\}$
- Total number of programs: 212,108520

The experiment

- Competition:

- GPX: standard tree-swapping crossover
- LGX: locally geometric semantic crossover*

Problem	Definition (formula)	Training set	Test set
Nonic	$x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x$	$\mathrm{E}[-1,1,20]$	$\mathrm{U}[-1,1,20]$
R1	$(x+1)^{3} /\left(x^{2}-x+1\right)$	$\mathrm{E}[-1,1,20]$	$\mathrm{U}[-1,1,20]$
R2	$\left(x^{5}-3 x^{3}+1\right) /\left(x^{2}+1\right)$	$\mathrm{E}[-1,1,20]$	$\mathrm{U}[-1,1,20]$
Nguyen-7	$\log (x+1)+\left(x^{2}+1\right)$	$\mathrm{E}[0,2,20]$	$\mathrm{U}[0,2,20]$
Keizer-1	$0.3 x \sin (2 \pi x)$	$\mathrm{E}[-1,1,20]$	$\mathrm{U}[-1,1,20]$
Keijzer-4	$x^{3} e^{-x} \cos (x) \sin (x)\left(\sin ^{2}(x) \cos (x)-1\right)$	$\mathrm{E}[0,10,20]$	$\mathrm{U}[0,10,20]$

$\mathrm{E}[\mathrm{a}, \mathrm{b}, \mathrm{n}]$ - n points chosen equidistantly from range [a,b] $\mathrm{U}[\mathrm{a}, \mathrm{b}, \mathrm{n}]$ - n points chosen randomly with uniform distribution from range [a,b]

* K. Krawiec, T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines, 14(1):31-63, 2013.

$\rightarrow \mathrm{AGX}_{3} \longrightarrow \mathrm{AGX}_{4} \cdots \cdots \mathrm{GPX}---\mathrm{LGX}_{3}---\mathrm{LGX}_{4}$

Test-set performance

Average error committed by best-of-run individual on test set.

Problem	AGX	AGX	GPX	LGX	LGX
Nonic	0.359	$\mathbf{0 . 0 9 3}$	0.130	0.201	0.191
R1	0.224	$\mathbf{0 . 0 5 0}$	0.261	0.167	0.103
R2	10^{7}	$\mathbf{0 . 0 2 8}$	0.316	0.621	0.042
Nguyen-7	0.051	0.005	0.044	0.018	$\mathbf{0 . 0 0 4}$
Keijzer-1	0.190	$\mathbf{0 . 0 3 9}$	0.134	0.091	0.041
Kejzer-4	3.113	10^{13}	$\mathbf{0 . 4 9 2}$	2.008	2.854

Geometry of operators

Depth of crossover	Fraction of geometric offspring		
	AGX	LGX	GPX
1	. 0155	. 1676	. 0035
2	. 0151	. 0100	. 0031
3	. 0136	. 0031	. 0018
4	. 0105	. 0016	. 0020
5	. 0055	. 0014	. 0011
6	. 0028	. 0009	. 0007
7	. 0017	. 0006	. 0005
8	. 0012	. 0004	. 0003
9	. 0010	. 0007	. 0003
10	. 0006	. 0005	. 0003
11	. 0005	. 0002	. 0003
12	. 0004	. 0001	. 0003
13	. 0003	. 0002	. 0002
14	. 0002	. 0000	. 0005
15	. 0000	. 0000	. 0002
16	. 0000	. 0000	. 0005
17	. 0000	. 0000	. 0000
Overall	. 0057	. 0035	. 0008

Future work

- Test other libraries
- Add support for constants
- Compare with Random Desired Operator*
*K. Krawiec, B. Wieloch. Running Programs Backwards, GECCO 2013.

Thank you

Questions?

