
Running Programs Backwards
Instruction Inversion for Effective Search in Semantic Spaces

Bartosz Wieloch Krzysztof Krawiec

Institute of Computing Science
Poznan University of Technology

Poland

8.07.2013

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 1 / 16

Preliminaries

canonical tree-based genetic programming
(can be adopted to Linear GP, Cartesian GP)
subprograms (subtrees) can be independently executed
subtrees can be freely replaced by other subtrees
fitness calculation is based on a set of fitness cases

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 2 / 16

General Idea

Problem decomposition

Let us assume, that we already have almost correct
program for a given task, i.e.:

a fragment of an ideal solution (context),
but
incorrect subprogram (subtree).

We need to find the proper subprogram and replace
the incorrect one (should be easier).

×× x

x

−

#

Question 1
How to get the almost correct program?

Question 2
How to find the proper subprogram for a given context?

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 3 / 16

Question 1

Question 1
How to get the almost correct program?

Answer
We do not know... /

Surrogate
Suppose that any random context could potentially belong to some ideal
solution (sometimes true).

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 4 / 16

Question 1

Question 1
How to get the almost correct program?

Answer
We do not know... /

Surrogate
Suppose that any random context could potentially belong to some ideal
solution (sometimes true).

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 4 / 16

Question 1

Question 1
How to get the almost correct program?

Answer
We do not know... /

Surrogate
Suppose that any random context could potentially belong to some ideal
solution (sometimes true).

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 4 / 16

Question 2

Question 2
How to find the proper subprogram for a given context?

Several possibilities
Use any standard metaheuristic (e.g. GP).
Evaluate a subprogram by combining it with the context
(analyze behavior of the entire program).

Our proposition
1 Calculate the desired behavior of the sought subprogram

(this determines a new subtask).
2 Solve this subtask by an exhaustive search in the current population.

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 5 / 16

Question 2

Question 2
How to find the proper subprogram for a given context?

Several possibilities
Use any standard metaheuristic (e.g. GP).
Evaluate a subprogram by combining it with the context
(analyze behavior of the entire program).

Our proposition
1 Calculate the desired behavior of the sought subprogram

(this determines a new subtask).
2 Solve this subtask by an exhaustive search in the current population.

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 5 / 16

Question 2

Question 2
How to find the proper subprogram for a given context?

Several possibilities
Use any standard metaheuristic (e.g. GP).
Evaluate a subprogram by combining it with the context
(analyze behavior of the entire program).

Our proposition
1 Calculate the desired behavior of the sought subprogram

(this determines a new subtask).
2 Solve this subtask by an exhaustive search in the current population.

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 5 / 16

Semantics of Program

Semantics
In general: Description of what a program does, i.e. what are the
effects of execution of an entire program or its constituent
components.
In GP: a list of outputs that are actually produced by a program for
all training examples (fitness cases).

x result
-0.5 0.5
1.0 2.0
1.5 4.5
2.0 8.0

semantics=[0.5, 2.0, 4.5, 8.0]

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 6 / 16

Desired Behavior

Target semantics
Desired behavior of a whole program (given by task definition)

Desired semantics (of a context)
Desired behavior of a subprogram that will be composed with the context

Proper subprogram + context = ideal solution

Composition of the context and any subprogram with the appropriate
desired semantics will give a program with the target semantics.

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 7 / 16

Calculating the Desired Semantics

Invertible instructions, e.g.:
#− x = y =⇒ # = y + x
#× x = y =⇒ # = y/x

Example

Fitness cases:
inputs values: x = [−1, 0, 1]
target values: t = [2, 0, 0]

×× x

x

−

[−1, 0, 1]

[−1, 0, 1]

#

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 8 / 16

Calculating the Desired Semantics

Invertible instructions, e.g.:
#− x = y =⇒ # = y + x
#× x = y =⇒ # = y/x

Example

Fitness cases:
inputs values: x = [−1, 0, 1]
target values: t = [2, 0, 0]

×× x

x

−
[2,0,0]

[−1, 0, 1]

[−1, 0, 1]

#

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 8 / 16

Calculating the Desired Semantics

Invertible instructions, e.g.:
#− x = y =⇒ # = y + x
#× x = y =⇒ # = y/x

Example

Fitness cases:
inputs values: x = [−1, 0, 1]
target values: t = [2, 0, 0]

×× x

x

−
[2,0,0]

[1,0,1] [−1, 0, 1]

[−1, 0, 1]

#

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 8 / 16

Calculating the Desired Semantics

Invertible instructions, e.g.:
#− x = y =⇒ # = y + x
#× x = y =⇒ # = y/x

Example

Fitness cases:
inputs values: x = [−1, 0, 1]
target values: t = [2, 0, 0]

×× x

x

−
[2,0,0]

[1,0,1]

[-1,∗,1]

[−1, 0, 1]

[−1, 0, 1]

#

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 8 / 16

Possible Situations

For each component of desired semantics acceptable is:
1 Exactly one value.
2 Finite number of values.
3 Infinite number of values.
4 Any value (‘don’t care’) — insignificant.
5 No value — inconsistent.

Example — target value: 0
××

1

−1

#

−

1 pow

2#

−

1 cos

#

0

××

sin

#

1

+

exp

#

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 9 / 16

Random Desired Operator (RDO)

1 Select random node in the parent program (determine the context).
2 Calculate desired semantics of this context.
3 Search best match in subtrees extracted from individuals in the whole

population.
4 Replace old subtree with the best matching.

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 10 / 16

Benchmark Suite — Symbolic Regression Problems

Target program (expression) Variables Range
F03 x5 + x4 + x3 + x2 + x 1 [−1; 1]
F04 x6 + x5 + x4 + x3 + x2 + x 1 [−1; 1]
F05 sin(x2) cos(x)− 1 1 [−1; 1]
F06 sin(x) + sin(x + x2) 1 [−1; 1]
F07 log(x + 1) + log(x2 + 1) 1 [0; 2]
F08

√
x 1 [0; 4]

F09 sin(x) + sin(y2) 2 [0.01; 0.99]
F10 2 sin(x) cos(y) 2 [0.01; 0.99]
F11 x y 2 [0.01; 0.99]
F12 x4 − x3 + y2/2− y 2 [0.01; 0.99]

instructions: +, −, ×, / (protected), sin, cos, exp, log (protected)
20 or 100 fitness cases
success: error for each fitness cases less than 1.11 · 10−15

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 11 / 16

Benchmark Suite — Boolean Problems

Problem Instance Bits Fitness cases

even parity
PAR4 4 16
PAR5 5 32
PAR6 6 64

multiplexer MUX6 6 64
MUX11 11 2048

majority
MAJ5 5 32
MAJ6 6 64
MAJ7 7 128

comparator CMP6 6 64
CMP8 8 256

instructions: AND, OR, NAND, and NOR.
success: perfect reproduction

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 12 / 16

Experiment

Parameter Value
Generations 100
Population size 500
Selection method Tournament
Tournament size 3
Operators X (crossover), M (mutation), RDO

Setups
X+M
X+RDO
M+RDO

Operators probability Varying from 0 to 1 with step 0.1
Number of runs 200

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 13 / 16

Results

Setup Rank Setup Rank
M+RDO 0.7 8.63 X+RDO 0.2 11.70
M+RDO 0.3 8.78 RDO 1.0 13.40
X+RDO 0.5 8.90 X+RDO 0.1 14.28
M+RDO 0.5 9.15 M+RDO 0.1 14.58
X+RDO 0.4 9.20 X 1.0 20.55
X+RDO 0.8 9.23 X+M 0.1 21.30
M+RDO 0.4 9.25 X+M 0.2 22.53
X+RDO 0.6 9.75 X+M 0.3 23.10
M+RDO 0.6 9.88 X+M 0.4 23.55
X+RDO 0.3 9.95 X+M 0.5 23.85
X+RDO 0.7 9.95 X+M 0.6 24.53
M+RDO 0.8 10.08 X+M 0.7 25.73
M+RDO 0.2 10.65 X+M 0.8 25.85
X+RDO 0.9 11.15 M 1.0 27.18
M+RDO 0.9 11.20 X+M 0.9 27.18

Setup Rank Setup Rank
M+RDO 0.7 8.83 X+RDO 0.2 12.45
M+RDO 0.6 8.98 X+RDO 0.1 12.63
M+RDO 0.5 9.00 RDO 1.0 13.18
M+RDO 0.4 9.35 M+RDO 0.1 13.25
M+RDO 0.8 9.38 X 1.0 20.70
X+RDO 0.7 9.75 X+M 0.1 20.70
M+RDO 0.3 9.78 X+M 0.2 20.85
X+RDO 0.8 10.05 X+M 0.3 22.25
X+RDO 0.6 10.18 X+M 0.4 22.53
X+RDO 0.5 10.33 X+M 0.5 23.45
X+RDO 0.4 10.35 X+M 0.6 23.93
X+RDO 0.3 10.53 X+M 0.7 25.90
M+RDO 0.9 11.08 X+M 0.8 25.95
M+RDO 0.2 11.50 X+M 0.9 26.85
X+RDO 0.9 11.73 M 1.0 29.63

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 14 / 16

Conclusions

RDO generally improves search performance.
RDO solves Boolean problems almost perfectly.
Choosing appropriate probability of RDO in not crucial.
Our approach is applicable not only to evolutionary metaheuristics.

Exploiting additional known properties of problem definition (here:
instruction inversion) may be very advantageous.

Bartosz Wieloch, Krzysztof Krawiec (PUT) Running Programs Backwards 8.07.2013 15 / 16

Thank you

