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Outline

The topic

Data-driven discovery of plausible models that link global temperature with
natural and anthropogenic forcings (drivers).

The objectives

To obtain models for
forecasting,
explanation (hindcasting).

To verify usefulness of genetic programming (GP) for that task.
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Features of the climate system

Climate as a complex system

Involves a large number of highly interconnected components that influence
each other in a complex manner (e.g., nonlinear, nonmonotonous).

Known external drivers controlling the Earth’s climate:
Solar activity,
The distance between the Sun and the Earth

also: slowly varying Earth’s orbital patterns,

Volcanic eruptions,
Properties of the atmosphere (greenhouse gases, dust and aerosols),
Properties of the Earth’s surface

albedo of the surface,
availability of water on and under the land surface.
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Features of the climate system

Several modes of oscillation (inertia) in the Ocean-Atmosphere system:
El Niño-Southern Oscillation (ENSO),
North Atlantic Oscillation (NAO),
Atlantic Multidecadal Oscillation (AMO),
Pacific Decadal Oscillation (PDO), etc.

Internal feedbacks, e.g:
Warming => decrease of ice and snow areas => decreasing albedo =>
less heat reflected into space => further warming
Thawing of permafrost => emission of methane => further warming

Unknowns?
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Contemporary climate modeling

Features:
Derived from fundamental physical laws,
Subject to physical approximations,
Subject to extra approximation due to spatiotemporal discretization.
Typical size:

One to a few degrees in longitude and latitude,
10 to 20 vertical layers in the atmosphere,
30 or more layers in the oceans,
> 106 grid points.
Gigantic computational effort.

Drawbacks:
Some physical processes occur at smaller (sub-grid) scales and cannot
be properly modeled.

Require integration over larger scale (so-called parameterization)

Extensive tuning required.
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Limitations of contemporary climate models

Black: observed global mean near-surface temperatures.
Yellow: 14 different climate models.
Red: The mean of all models.
Vertical grey lines: major volcanic eruptions.

(By permission from IPCC, see (Randall et al. 2007)).
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Limitations

Problems:
limited computer power (even if vast),
limited scientific understanding,
lack of availability of detailed observations of some physical processes.

The consequence: Climate change information is highly uncertain.
“known unknowns” and “unknown unknowns” (Trenberth 2010).

Climate models are not yet up to “prime time”, particularly in some
application areas.
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The approach

The idea
Data-driven approach to model climate phenomena, employed to distill
free-form natural laws from experimental data.

Inspiration: Recent advances in Genetic Programming (GP):
GP can automatically find and correct bugs in commercially-released
software (Arcuri & Yao 2008, Forrest 2010).
GP can be used to ‘automate’ science, helping the researchers to find
the hidden complex models of the observed phenomena (Schmidt &
Lipson 2009).
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The approach

Discovering the multiple inputs-single output (MISO) dependency between:
global mean temperature (dependent variable)
and several climate factors (independent variables)

expressed as monthly data series.

Technically:
An evolutionary algorithm (genetic programming, GP) evolves a
population of programs (expressions),
Each program is a specific model of dependency between independent
variables and the dependent variable.
Models represented as expression trees.
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The dependent variable

University of East Anglia global mean temperature (UEA):
Aggregates the temperature over 5°× 5° grid boxes over land (air
temperature) and oceans (sea surface temperature, SST),
Relative to the mean from 1961-1990
Starts in 1850

Stanislawska, Krawiec, Kundzewicz Modeling Global Temperature Changes using Genetic Programming – A Case Study 10 / 22



The independent variables

Sun Spots Number (SSN, since 1749).
Atlantic Multidecadal Oscillation (AMO, since 1856): The mean sea
surface temperature (SST) of North Atlantic (latitude 0° -70° N,
detrended to remove the influence of global warming).
North Atlantic Oscillation (NAO, since 1865): An index calculated from
the measurements of air pressure at two locations: Ponta Delgada,
Azores, and Stykkisholmur/Reykjavik in Iceland.
El Niño/Southern Oscillation (ENSO, since 1845): Temperature
fluctuations expressed by the average SST anomaly of the region
20° N-20° S minus 90° N-20° N and 20° S-90° S.
Concentrations of greenhouse gases:

CO2

N2O,
CH4

Volcanic Explosivity Index (VEI, since 1851): An index marking major
volcanic explosions.
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The data

The considered time period: 1900-2009 (110× 12 = 1320 data points)
training period: 1900-1999 (1200 data points)
testing period: 2000-2009 (120 data points).

Preprocessing:
normalization

zero-preserving normalization for bipolar variables (AMO, NAO, ENSO)

VEI models the decreasing impact of eruption over time
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The independent variables
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The independent variables
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Evaluation (fitness calculation)

One-step ahead forecasting (training period only):
At the time step (month) t , the model forecasts the temperature at time
step t + 1 based on historical data (≤ t).

No access to historical temperature.

Errors aggregated by mean absolute error (MAE).

The terminal nodes in expression trees return either
the current value of an independent variable (at time step t),
an aggregate of historical values (e.g., weighted averages of historical
values).
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Definition of GP terminals

Terminal name Terminal semantics

NAO, AMO, ENSO, The value at time point t
SSN, VEI,
CO2, N2O, CH4

AMOn, NAOn, The value at time point (t − n),
ENSOn, VEIn, with n ∈ [0, 11] determined randomly
SSNn at the moment of node creation.
AMOm,n, NAOm,n, The mean value in time period [t −m, t − n]

ENSOm,n, VEIm,n, with m, n ∈ [1, 12], m < n determined
SSNm,n randomly at the moment of node creation.
NAOw An aggregate value of the NAO index for the preceding

winter (Dec-Mar of current or previous year)
C A constant drawn uniformly from interval [−1, 1]

at the moment of node creation.
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Evolutionary parameters

Number of generations: 100,
Population size: 10000 individuals,
Probability of crossover: 0.9,
Probability of mutation: 0.1,
Maximum tree depth 17,
Tournament selection 7.

Implementation based on ECJ software package.
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Results

Train and test, MAE
 0.0855  0.0917

 0.0745  0.2682

Comparison of MAE error committed by the evolved models on the training
set (top) and test set (bottom).

Each color corresponds to a single model produced by an independent
GP run.
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Results: The entire period

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1900  1920  1940  1960  1980  2000

MAE

Real
Best-train
Best-test

Grey: The actual UEA global mean temperature record
Green: The forecast produced by the best-on-training-set model
Blue: The forecast produced by the best-on-test-set model
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Results: Last 10 years of training period and test
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Conclusions

GP is capable of inducing models that mimic the aggregate behavior of
selected aspect of the complex climate system,

without resorting to historical temperature itself,
unbiased by the preferences of human experimenter.

Future work:
Evolving models representing differential equations.

The data-driven approach allows making interpretations that are
potentially useful in climatology.

Interpretation?
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Thank you.
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http://www.cs.put.poznan.pl/kkrawiec
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