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Abstract
We propose an evolutionary framework that
uses the set of instructions provided with a ge-
netic programming (GP) problem to automat-
ically build a repertoire of related problems
and subsequently employs them to improve
the performance of search. The novel idea is to
use the synthesized related problems to simul-
taneously exert multiple selection pressures on
the evolving population(s). For that frame-
work, we design two different methods.When
applied to six symbolic regression problems of
different difficulty, both methods perform bet-
ter than the standard GP, though sometimes fail
to prove superior to a certain control setup.

Idea
The main idea is to automatically or semi-
automatically generate related problems and
use them to speed up the process of solving the
original problem.

1. Transform in some specific way the original
problem to a set of related ones.

2. Run evolution on all problems in parallel,
allowing some exchange of genetic material
between them.

3. If a solution to one of the related problems
is found, use inverse transformation to get
solution to the original problem.
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Generating related problems
• Input (original) problem is given as a set of

fitness cases C = {(xi, yi)} which implicitly
defines the fitness function.

• A related problem is defined by a set of fit-
ness cases Ct = {(xi, t(xi, yi))} calculated
on the pairs from original set C.

• A transformer t is an expression built from
the same instructions as the evolved solu-
tions with an additional terminal y return-
ing the desired original value for a given fit-
ness case.

• A transformer has to be invertible.
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Niching Algorithm (NA)
1. For each population Pj , evaluate every indi-

vidual s ∈ Pj on each problem Ci. Let fi(s)
denote the fitness of an individual s evalu-
ated on problem Ci (Ci is either the original
problem or any derived one).

2. For each problem Ci:

(a) Create a list Ai of alien individuals
from all remaining populations Pj (j 6=
i), i.e. Ai =

⋃
j 6=i Pj

(b) Independently sort Pi and Ai accord-
ing to fi

(c) Replace the worst α |P i| individuals
from Pi with the best individuals from
Ai, α ∈ [0, 1]

(d) Assign to every individual s from the
new population Pi the appropriate fit-
ness fi(s)

Fitness Ranking algorithm (FR)
1. Let P denote the current population and
P ′ ← ∅ the working set.

2. Evaluate every individual on each problem
Ci. Let fi(s) denote the fitness of an individ-
ual s evaluated on problem Ci (Ci is either
the original problem or any derived one).

3. For each problem Ci create a ranking Ri of
all individuals sorted by fi(s), i.e., an or-
dered list of pairs (individual, rank)

4. For i = 0, . . . , |T | do:

(a) Choose the best individual s from
ranking Ri, replace its fitness with its
rank in Ri, and add it to P ′: P ′ ←
P ′ ∪ {s}

(b) Remove s from all rankings (so that all
rankings have always the same num-
ber of individuals in each step)

5. If there are still individuals in the rankings
then go back to Step 4.

6. Set P ← P ′

Experiments
Test problems: six univariate symbolic regres-
sion benchmarks (three polynomials and three
rational functions):
• Sextic: x6 − 2x4 + x2

• Septic: x7 − 2x6 + x5 − x4 + x3 − 2x2 + x

• Nonic: x9+x8+x7+x6+x5+x4+x3+x2+x
• R1: (x+ 1)3/(x2 − x+ 1)

• R2: (x5 − 3x3 + 1)/(x2 + 1)

• R3: (x6 + x5)/(x4 + x3 + x2 + x+ 1)

Set of used invertible transformers
T = {x ∗ y, x/y, y/x, x+ y, x− y, y − x, 1/y}
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Parameter Value
fitness cases 20, x ∈ [−1, 1)
functions only +,−, ∗, /
individuals 1024
crossover 0.9
mutation 0.1
generations max 300

Conducted experiments:
GP1 standard GP, all 1024 individuals evolve

in a single population
GP8 standard GP, but individuals evolved in 8

populations of size 128
NA niching algorithm with different α values
FR fitness ranking algorithm

Results
Averaged success ratio from 300 runs: Frequencies of ideals found using particular

transformers, averaged over all NA experiments
and all values of α:

Problem Transformer
y x ∗ y x/y y/x x+ y x− y y − x 1/y

Sextic 36.7 19.9 2.1 34.2 4.6 5.8 3.6 2.1
Septic 25.4 9.9 1.4 21.3 14.0 14.6 12.1 0.7
Nonic 13.9 9.3 1.2 16.3 8.1 7.6 40.6 1.7

R1 13.0 9.0 32.1 4.9 1.5 2.5 2.1 33.7
R2 29.5 13.4 1.7 17.7 18.6 5.6 10.3 2.3
R3 11.9 8.6 37.8 16.6 3.1 2.5 2.7 16.2

Conclusions
• NA performs best for difficult rational prob-

lems (R1, R2, and R3), especially for high α.
• FR generally performs worse than NA but is

parameter-free.
• GP8 is the best method for easiest polynomial

problems (Sextic, Septic, and Nonic)

• Single-population approach (GP1) is almost
always the worst.

General conclusion: solving in parallel the origi-
nal problem and the automatically generated re-
lated problems, with exchange of some genetic
material between them, typically increases the
success rate.
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