
Behavioral Programming: A Broader and More Detailed
Take on Semantic GP

Krzysztof Krawiec∗
Institute of Computing Science

Poznan University of Technology
60965 Poznan, Poland

krawiec@cs.put.poznan.pl

Una-May O’Reilly
CSAIL

Massachusetts Institute of Technology
Cambridge, MA

unamay@csail.mit.edu

ABSTRACT
In evolutionary computation, the fitness of a candidate solu-
tion conveys sparse feedback. Yet in many cases, candidate
solutions can potentially yield more information. In genetic
programming (GP), one can easily examine program behav-
ior on particular fitness cases or at intermediate execution
states. However, how to exploit it to effectively guide the
search remains unclear. In this study we apply machine
learning algorithms to features describing the intermediate
behavior of the executed program. We then drive the stan-
dard evolutionary search with additional objectives reflect-
ing this intermediate behavior. The machine learning func-
tions independent of task-specific knowledge and discovers
potentially useful components of solutions (subprograms),
which we preserve in an archive and use as building blocks
when composing new candidate solutions. In an experimen-
tal assessment on a suite of benchmarks, the proposed ap-
proach proves more capable of finding optimal and/or well-
performing solutions than control methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Heuristic methods

Keywords
program synthesis; genetic programming; program seman-
tics; behavioral evaluation; search operators; archive; multi-
objective evolutionary computation

1. MOTIVATION
Most of the algorithms developed in the field of evolution-

ary computation (EC) obstinately insist on using an objec-
tive function directly associated with the given task as their

∗Research conducted during K. Krawiec’s stay at the ALFA
Group, Computer Science and Artificial Intelligence Labo-
ratory (CSAIL), MIT.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598288 .

central, if not the only, gauge of candidate solutions. If no
additional performance information is available (i.e., the ob-
jective function is a black-box), and there is no access into
the internal structure of candidate solutions, this is indeed
necessary. However, in many domains there is much more
information available about the problem solving nature of
a candidate solution as well as access to its internal struc-
ture. This is particularly true in genetic programming (GP),
where the objective function is typically an aggregate calcu-
lated over a set of fitness cases while the candidate solutions
are programs that are both syntactically and semantically
decomposable. As a consequence, nothing precludes scruti-
nizing program output for particular fitness cases, or exam-
ining program behavior on the level of particular program
components (subprograms). In such cases, relying exclu-
sively on the original objective function is a mere artifact of
researchers’ habits and conventions, rather than necessity.

This habit may be crippling because one cannot expect
difficult learning and optimization problems to be efficiently
solved by heuristic algorithms that are driven by a scalar
objective function which provides low-information feedback.
For example, consider the domain of Boolean function syn-
thesis, a common benchmark suite for GP. Given a pro-
gramming language with k binary instructions and m input
variables, there are programs composed of n instructions,
where cat(n) is the nth Catalan number. Thus, even for the
relatively simple multiplexer-11 benchmark (m = 11) and
instruction set of k = 4 binary instructions, the number of
‘minimal’ programs that can potentially solve this problem
(i.e., fetching every input variable only once) is a staggering
2.93× 1011. To believe that any heuristic search algorithm
can efficiently traverse such a big space using an objective
function with a range of only 211 = 2048 values (and thus
conveys only 11 bits of information) is very optimistic, if
not naive. The problem is general. Symbolic regression,
despite having a continous objective function, which is ar-
guably more fine grained, also falls victim. By shaving off di-
minishing fractions of error, evolution often chases the noise
in data and ends up overfitting to it.

This problem becomes even more grave when a search
quickly converges to solutions of high quality, all of which
have very similar or even identical fitness. The selective
pressure ceases to be able to differentiate them, the search
gradient is lost, and random search becomes the only way
to improve. This partially explains why, though attempts
have been made to address the above problem from a few
angles and GP is capable of solving some complex problems

935

Archive of
subprograms Objective1:

program
error

Population

Selection

Mutation

Fitness
evaluation

Crossover

Archive-
based

mutation Objective2
Objective2

Objective2

Figure 1: Conventional genetic programming work-
flow (in black) and the components added by behav-
ioral programming (in blue).

at a reasonable computational expense, it does not scale well
with problem size.

From a wider evolutionary perspective, the reliance on a
task-oriented fitness function alone is coherent with gradual-
ism, the cornerstone of classical Darwinism. However, even
if we assumed that gradualism drives biological evolution
(though it has been questioned many times), we posit that it
is not necessarily most appropriate for problem solving (in a
broad meaning of this term, i.e., including search, optimiza-
tion, and learning). Humans rarely solve problems gradu-
ally, case by case. Instead, they inductively and deductively
reason to be able to identify regularities and perform con-
ceptual leaps. They need to reason about how they achieved
their goals, not simply whether or not they achieved them.

Our general claim is thus that we should seek search drivers
based on the general problem solving ability of intermediate
behavior in order to make learning and optimization meta-
heuristics more ‘intelligent’ and, in effect, possibly more effi-
cient. We therefore propose behavioral programming, which
conceptually fits under the umbrella of semantic genetic pro-
gramming. It consults both the semantics of GP outputs
(like existing semantic GP variants) and intermediate behav-
ior, with the help of task-agnostic machine learning. In this
paper, we demonstrate the underlying conceptual frame-
work of behavioral programming by embedding an imple-
mentation of it within conventional tree-based genetic pro-
gramming (GP) in a system we call BPGP. BPGP retrieves
detailed, intra-execution information on program behavior
and uses it to (i) ‘multiobjectivize’ [8] the search space,
(ii) identify the potentially valuable pieces of code, and (iii)
reuse them later in search using an archive. Our experimen-
tal analysis shows that this ‘better-informed’ search algo-
rithm attains radically better performance when compared
to methods driven by conventional objective functions alone.

2. BEHAVIORAL PROGRAMMING
Behavioral programming extends the workflow of conven-

tional GP adding three components (see Fig. 1): behavioral
evaluation, archiving of useful subprograms, and an archive-
based search operator. The former two execute in the fitness
evaluation phase, while the archive-based search operator is
used in the breeding phase (possibly along the conventional
search operators like mutation or crossover). We detail these
components in the following sections.

2.1 Behavioral evaluation
Behavioral evaluation, preliminary version of which has

been proposed under the name of PANGEA (Pattern-Guided
Evolutionary Algorithm) in [9], can be conveniently pre-
sented as an extension of conventional fitness evaluation.

In standard tree-based GP, the fitness function iterates
over a set of fitness cases of the form (x, y), where x is pro-
gram input (typically one or more input variable), and y is
the desired output for x. The input x is fed into the pro-
gram p (i.e., made available to its leaves), and p is executed,
which consists of traversing p’s tree nodes in an inorder se-
quence, and propagating the partial results upwards in the
tree. Upon completion, execution produces program output
ŷ. This process, repeated over all tests, results in a vector
of program outputs ŷ, which is subsequently compared to
the vector of desired outputs y (the target). This is typi-
cally done using some form of metric | |, so that p ultimately
receives fitness

f(p) = |y, ŷ|. (1)

As evolution proceeds, programs represented as trees often
experience excessive growth (a.k.a. bloat), which increases
evaluation cost and makes the search process less effective.
In response to that, program size is taken into account. In
the simplest case, this boils down to calculating program
length (size):

s(p) = |p| (2)

where |p| is simply the number of tree nodes. This measure
can be used to make decisions at various stages of the evo-
lutionary loop, e.g., for resolving ties on f in tournament
selection, or as another objective. In the latter case, the
program is characterized by a multiobjective fitness

(f(p), s(p)) (3)

where both objectives are minimized.
Behavioral evaluation does not affect the above process

(and thus has no impact on f(p) nor s(p)), but rather works
with it. Prior to running the program on a given input x,
an empty list l is created. Then, as execution traverses the
program tree, the output produced by every visited program
node is appended to l. When the program terminates, the
resulting list gathers all intermediate outcomes of execution
and so forms the trace of program p for a given test. If
the considered programs are expressions, free of conditional
statements and loops (as we assume in this paper), the nodes
of program tree are visited in the same order for every fitness
case, and the lists l have the same length n for every fitness
case. Let li denote the trace obtained for the ith test. The
traces resulting from evaluation on particular fitness cases
are gathered in a trace table of the following structure:

l1[1] l1[2] . . . l1[n] y1
l2[1] l2[2] . . . l2[n] y2

...
...

...
...

lt[1] lt[2] . . . lt[n] yt

(4)

where li[j] denotes the jth element of a list for the ith test,
and t is the number of tests.

The trace table is subsequently treated as inputs that can
be passed to a machine learning algorithm, where the last
column plays the role of the label (dependent variable), while
the preceding columns are features (independent variables).

936

If the original desired output y is categorical, yi’s are class
labels and the task is classification; if y is continuous, it is a
response variable and the task is regression.

In either case,the learning algorithm is trained on the data
of the trace table (4), which results in a model M(p) of
the data, which indirectly reveals a behavioral description
of the program’s intermediate execution. This description
can be characterized by two measures: error e(M(p)) on
the training data (goodness of fit) and complexity c(M(p))
denoting M ’s complexity.

The technical definitions of these measures may vary de-
pending on domain and application, but there is a central
motivation for adopting them as additional program char-
acteristics. If a program produces output ŷ that is far from
the desired output y (which implies an inferior score on f),
or is excessively large (inferior score on s), it may still host
subprograms that can turn out to be useful when, e.g., re-
arranged/composed in a different way, and/or used in other
programs. The machine learning process is intended to dis-
cover such subprograms among the population by analyzing
the trace data and using behavioral features (columns in ta-
ble (4)) that relate to the desired output of the program
(the dependent variable of the learning task (4)). If a pro-
gram exhibits such features, the resulting model M is likely
to achieve low error e. However, sometimes a model may
attain low error even without particularly good features at
hand, i.e., by overfitting to the training data or even by rote
learning in an extreme case. This is where model complexity
c comes into picture: its role is to promote succinct models
in the hope of evolving general subprograms..

The tuple gathering all characteristics derived from p, i.e.,

(f(p), s(p), c(M(p)), e(M(p)) (5)

is the final result of behavioral evaluation. By analogy to
bi-objective evaluation (Eq. (3)), the elements of the above
tuple are treated as search objectives, and reported to the
multiobjective evolutionary search process. Other ways of
exploiting this information are conceivable, but remain fu-
ture work.

2.2 Archiving useful subprograms
Behavioral evaluation results in two measures of the be-

havioral model M(p) derived from the evaluated program
p, which provide more information on p (compared to the
conventional single- or two-objective evaluation). However,
those measures are still only scalar values, while the model
itself captures even more information about program behav-
ior and the prospective utility of its components.

It is thus natural to seek means of directly exploiting the
information contained in the behavioral model, rather than
only characterize it quantitatively. For this we assume that
the model can explicitly reveal which trace features it uses
to make predictions (of all the features gathered from all
program tree nodes). For models represented as classifica-
tion (or regression) trees, which we employ in this paper,
we retrieve that information by traversing the decision tree
and gathering the features used by decision nodes. How-
ever, model representation is largely irrelevant, and the fact
that we deal with program trees and examine models repre-
sented as decision/regression trees is incidental (and those
two should not be confused). For many other ‘white-box’
(i.e., more or less symbolic) algorithms (e.g., decision rules,
Bayesian nets) such information is equally available, and

even the ‘blackbox’ representations (like linear regression
models or artificial neural networks) do not preclude such
possibility.

As the features used by a model correspond one-to-one to
subprograms in the evaluated tree, the knowledge of whether
they are included in the model immediately allows us to pin-
point the useful subprograms in the program tree and collect
them into a set U(p). Subsequently, we gather these use-
ful subprograms of all individuals in population in a global
archive A, a prioritized queue of a fixed length, maintained
throughout the entire evolutionary run. The priority is based
on a measure we associate with a useful subprogram, p′

called its utility, u:

u(p′) =
1

(1 + e(p))|U(p)| (6)

Useful subprograms are added to the archive until it reaches
capacity. At that point the archive is reset and re-populated
by utility-proportional selection. Subprogram utility helps
promote subprograms that contribute to good models (low
error e(p)) and from within compact models (low U(p)).

2.3 Reusing useful subprograms:
archive-supplied mutation

The ultimate goal of archiving useful subprograms is their
reuse in new candidate solutions. For compatibility with the
EC conceptual toolkit, we implement this component as a
mutation-like search operator.

Given a parent program tree p, the operator picks at ran-
dom a node in p and replaces it (and the subtree rooted in
it) with a subprogram drawn at random from the archive
A. Here, the subprograms are selected from archive in ex-
actly the same manner that determines their survival in the
archive (Section 2.3), i.e., proportional to utility (Eq. 6).
Therefore, subprograms of higher utility are more likely to
become components of other programs.

This operator, though applied to a single parent program
and in this sense mutation-like, can be considered as a form
of crossover, because it outfits the offspring with a piece of
code that has been previously retrieved from another indi-
vidual (in the current or previous generations). As a result,
the archive-supplied mutation cannot use arbitrary subpro-
grams, in particular cannot use instructions other than those
currently present in archive. For this reason, we use conven-
tional mutation side-by-side with this operator (Section 4).

3. RELATED WORK
The closest counterpart to BPGP or behavioral program-

ming in GP literature is semantic GP, where, rather than
assessing program quality aggregated over all tests (i.e., con-
ventional fitness), program output is scrutinized for every
test individually. This avenue of GP research was initiated
by McPhee et al., who studied the impact of crossover on
program semantics and semantic building blocks [14], al-
though earlier work on implicit fitness sharing paved its way
[13]. The more contemporary studies [15, 16] reason about
the geometry of semantic space. Behavioral programming
can be seen as semantic GP pushed one level of detail deeper,
i.e., not limited to program output, but to program behavior
over its entire execution. Also, from start to finish in terms
of behavior.

Other past works employ alternative search objectives,
even if not explicitly framed in that way. The concept of

937

multiobjectivization by Knowles et al. [8] was an early
forerunner of the idea that additional objectives can, para-
doxically, sometimes make the problem easier. However,
Knowles et al and similar studies assumed that the addi-
tional objectives would be proposed by the experimenter
because then task-specific sub-goals could be expressed. In
contrast, behavioral programming discovers subsolutions au-
tonomously (i.e., it induces behavioral models from program
traces without explicitly formulating what is the desired in-
termediate behavior of a program). Behavioral program-
ming can be seen thus as an intermediate approach between
conventional single-objective search and novelty search [10],
where the task-driven objective is discarded altogether.

With respect to the use of archive, behavioral program-
ming can be likened to methods that maintain repositories
of code pieces. Automatically defined functions can be seen
as such repositories of subprograms, albeit only local (i.e.
attached to an individual) and devoid of any directed main-
tenance (i.e., the content of the repository is controlled only
by evolution). A more similar approach is implemented in
run transferable libraries [18] that collect program fragments
throughout a GP run and reuse them in separate evolution-
ary runs applied to other problems. Rosca and Ballard [17]
create and use an analogous library within a single evolution-
ary run, with sophisticated mechanism for assessing subrou-
tine utility, and entropy for deciding when a new subrou-
tine should be created. Haynes [4] integrated a distributed
search of genetic programming-based systems with ‘collec-
tive memory’, albeit only for redundancy detection. Other
approaches involving some form of library include reuse of
assemblies of parts within the same individual [6] and ex-
plicit expert-driven task decomposition using layered learn-
ing [1]. None of these methods however analyze program be-
havior to make a decision about which subprograms should
be archived, and only some of them associate utility with a
subprogram.

4. EXPERIMENTAL ANALYSIS
Behavioral programming involves behavioral evaluation

(Section 2.1) and manipulation of subprograms (Sections
2.2 and 2.3). From practical perspective, it is worth ask-
ing whether and how these components affect the efficiency
of evolutionary search, and if there is any synergy between
them. To answer these questions, we conduct a thorough
cross-domain comparative assessment of various configura-
tions of BPGP, using certain configurations of conventional
GP as baselines.

4.1 The problems
Table 1 presents the 35 benchmark problems used in our

experiment, which come from three domains we characterize
by different data types: Boolean (8 benchmarks), categorical
(10 benchmarks), and regression (17 benchmarks). Table 1
summarizes the problems, listing the instruction set used for
each, and for every problem, the number of variables, tests,
and the cardinality of the search space (where countable).
Note that none of the instruction sets contains constants.

The targets for particular Boolean problems are defined
as follows. For an v-bit comparator Cmp v, a program is re-
quired to return true if the v

2
least significant input bits en-

code a number that is smaller than the number represented
by the v

2
most significant bits. In case of the majority Maj v

problems, true should be returned if more that half of the

input variables are true. For the multiplexer Mul v, the state
of the addressed input should be returned (6-bit multiplexer
uses two inputs to address the remaining four inputs, 11-
bit multiplexer uses three inputs to address the remaining
eight inputs). In the parity Par v problems, true should be
returned only for an odd number of true inputs.

The categorical problems come from Spector et al.’s
work on evolving algebraic terms [20] and dwell in the ternary
domain: the admissible values of program inputs and out-
puts are {0, 1, 2}. The peculiarity of these problems consists
of using only one binary instruction in the programming lan-
guage, which defines the underlying algebra. For instance,
for the a1 algebra, the semantics of that instruction (a1 in
Table 1) is defined as follows:

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

For brevity, we refer the reader to [20] for the definition
of the remaining algebra problems.

For each of the five algebras considered here, we consider
two tasks (of four discussed in [20]). In discriminator term
tasks (D-* in Table 1), the goal is to synthesize an expression
(using only the one given instruction) that accepts three
inputs x, y, z and is semantically equivalent to

tA(x, y, z) =

{
x if x 6= y

z if x = y
(7)

Given three inputs and ternary domain, this gives rise to
33 = 27 fitness cases for these benchmarks.

The second task defined for each of algebras (M-* in Ta-
ble 1), consists in evolving a so-called Mal’cev term, i.e., a
ternary term that satisfies

m(x, x, y) = m(y, x, x) = y (8)

This condition specifies the desired program behavior only
for the indicated combinations of inputs. In other words,
the desired value for m(x, y, z), where x, y, and z are all
distinct, is not determined. As a result, there are only 15
fitness cases in our Mal’cev tasks, the lowest of all considered
benchmarks.

The regression problems considered here come from
[12] and include both univariate and multivariate target func-
tions. The univariate ones (Keij1, Keij4, Nguy3..7 and Sext)
use 20 tests uniformly distributed in the [−1, 1] interval, ex-
cept for the Keij4 benchmark which uses the [0, 10] interval.
The remaining problems are predominantly bivariate, and
involve 5× 5 = 25 fitness cases uniformly distributed on the
two-dimensional grid. The only exception is Keij5, which
hosts three input variables, with 4× 4× 4 = 64 fitness cases
distributed equidistantly in the cube. For other details on
these benchmarks, see [12]1.

4.2 Configurations
Conceptually, there are two main aspects in which BPGP

differs from conventional GP: the behavioral evaluation and
manipulation of subprograms. To determine how the pres-
ence of these components impacts search performance, we

1The original formulation of some of these benchmarks in
[12] assumes random drawing of fitness cases from variables’
domains. However, to assure reproducibility of results we
employ deterministic equidistant grid.

938

Table 1: The benchmarks. v – number of input vari-
ables, m– the number of tests, k – number of unique
program semantics.

Instr. set Problem v m k

B
o
o
le

a
n and,

nand, or,
nor

Cmp6 6 64 264

Cmp8 8 256 2256

Maj6 6 64 264

Maj8 8 256 2256

Mux6 6 64 264

Mux11 11 2, 048 22048

Par6 6 64 264

Par8 8 256 2256

C
a
te

g
o
ri

ca
l

a1(x, y) D-a1 3

27 327
a2(x, y) D-a2 3
a3(x, y) D-a3 3
a4(x, y) D-a4 3
a5(x, y) D-a5 3
a1(x, y) M-a1 3

15 315
a2(x, y) M-a2 3
a3(x, y) M-a3 3
a4(x, y) M-a4 3
a5(x, y) M-a5 3

R
eg

re
ss

io
n +, −, ∗,

%, sin,
cos, log,
exp, −x

Keij1,Keij4 1

20 –

Nguy3,Nguy4 1
Nguy5,Nguy6 1
Nguy7,Sext 1
Keij5, Keij11 2
Keij12, Keij13 2
Keij14, Nguy9 2
Nguy10, Nguy12 2
Keij15 3

design 3 configurations. In BPGP4 and BPGP4A there are
4 objectives, (see Formula 5 and the latter configuration
uses an archive). BP2A uses two objectives and an archive.
GP1 is the standard single-objective GP. We employ gener-
ational GP with tournament selection. For single-objective
configurations (GP1, GP1L), tournament selection with the
conventional tournament size 7 is used. For multiobjective
setups, e.g.GP2, we employ Non-Dominated Sorting Genetic
Algorithm II (NSGA-II, [2]) at the selection stage, an ipso
facto standard of multiobjective evolutionary optimization.

As BPGP can perform quite well with small population,
we set population size to 100. However, this may be incon-
venient for conventional GP, which is know to require larger
populations. To make comparison fair, we consider addi-
tional configuration GP1L that uses population size 1000.
Because the maximal number of generations is the same
in all configurations, GP1L’s computational budget (max.
number of evaluations) is ten times greater than for the other
configurations.

Search operators. We employ three search operators:
(i) subtree-replacing mutation, present in all setups and en-
gaged with probability 0.1, (ii) subtree-swapping crossover,
and (iii) archive-supplied mutation (Section 2.3). To elim-
inate the interference of other factors, operators (ii) and
(iii) proceed in the same way, except only for the source
of subprograms. While the conventional subtree mutation
plants a randomly generated subtree at the selected locus,
the archive-based operator uses for that purpose a subpro-
gram drawn at random from the archive, as described in
Section 2.3.

Table 2: Configurations. For search operators, the
numbers denote the probability at which an opera-
tor is being engaged (blanks are zeros).

Setup GP1 GP1L GP2 BPGP4 BP2A BPGP4A

O
b
je

c
t
iv

e
s f 3 3 3 3 3 3

s 3 3 3 3
c 3 3
e 3 3

O
p
e
r
a
t
o
r
s

Mutation 0.1 0.1 0.1 0.1 0.1 0.1
Crossover 0.9 0.9 0.9 0.9
A-Mutation 0.9 0.9
Pop. size 100 1000 100 100 100 100
Tourn. size 7 7 4 4 4 4

Node selector. To lessen potential bloat, rather than
using a conventional method for drawing mutation and re-
gression loci in programs, we employ ‘home brewed’ uniform
depth node selector. This selector calculates tree depth d,
draws uniformly a random number d′ from the interval [0, d],
and returns a randomly chosen loci at depth d′ in the tree.
In this way, the probability of node selection does not grow
exponentially with node depth (as it is the case in the con-
ventional methods). Mutations and crossovers close to the
root node become more likely, and bloat is thus partially
constrained. We employ this node selection method in all
search operators. Preliminary experiments have shown that
it is beneficial for standard GP.

Behavioral model. We chose REPTree [3] as the al-
gorithm for deriving behavioral models, which we motivate
twofold. Firstly, REPTree can induce both classification as
regression trees, so it can handle problems from all three
domains we consider in this paper without any adjustments
or parametrization. Secondly, certain technical tricks make
it remarkably faster than other decision tree inducers.

Though REPTree can post-prune (simplify) the induced
decision trees, we disable this option, and make it always
grow maximal trees (i.e., it always splits a decision node if
any gain in entropy can be achieved). In this way, we expect
the size of the induced classifier reflect the complexity of the
underlying training data.

Archive. Archive capacity is set to 50. N.B. this is the
only parameter of BPGP.

Objectives. NSGA-II resolves ties between solutions in
the same tier of ranking by resorting to sparsity measure [2],
which involves calculating the Euclidean distance between
the points on the Pareto front. This requires the objectives
to range in the same interval, so that particular objectives
have on average the same impact on sparsity. To that aim,
we define the objectives (Eq. 5) as follows:

Boolean Categorical Regression
Program error f dh(y, ŷ)/t 1− 1

1+dc(y,ŷ)

Program size s 1− 1/|p|
Model complexity c 1− 1/|M |
Model error e dh(M, ŷ)/t 1− 1

1+dc(M,ŷ)

where dh and dc denote respectively Hamming and city-
block distance, t is the number of tests, |p| denotes the length
of program p (number of nodes in its tree), and|M | is the
number of nodes in REPTree M .

The objectives defined in this way are minimized and as-
sume values from interval [0, 1]. We handle numerical impre-

939

cision in regression problems by assuming that |yi − ŷi| = 0
whenever |yi − ŷi| < 10−15.

Termination. A run is terminated when an ideal solu-
tion is found (f = 0) or the maximum number of 250 gen-
erations has elapsed. We assume that the final outcome of
an evolutionary run is the individual that attained the best
fitness (lowest f) at any stage of the run. All data reported
below characterize such individuals, averaged over 30 inde-
pendent evolutionary runs for every setup and benchmark; a
total of 30 ×35 benchmarks ×6 configurations = 6300 runs
has been conducted.

Let us emphasize that, except for the elements of the setup
that have to differ across domains because of their different
natures, all benchmarks from all domains use the same pa-
rameter settings. For parameters not mentioned here we
assume their default values in the ECJ library [11].

4.3 The results
Success rate. We first assume the strong-AI perspective

and consider our benchmarks as search problems. In that
case, the objective is to find an ideal solution to the prob-
lem, and any other outcome is considered a failure. The
appropriate performance measure for this type of problems
is success rate, i.e., the percentage of runs that produced an
ideal individual.

Because of the large total number of benchmarks (35),
we present the detailed results in a separate Table 3, while
in the following we report and discuss the aggregated out-
comes. We report the outcome of the Friedman’s test for
multiple achievements of multiple subjects [7]. Compared
to ANOVA, it does not require the distributions of variables
in question to be normal (which we cannot assume for most
of the performance indicators considered here). It is then
worth pointing out that the results presented below are very
conservative in terms of statistical significance, i.e., many in-
significant differences could become significant given larger
pool of benchmarks.

Before passing to the pairwise comparisons, we report the
average ranks of the methods (the lower, the better):

BPGP4A GP1L BP2A BPGP4 GP1 GP2
2.43 3.10 3.36 3.43 3.86 4.83

The p-value for Friedman test is � 0.001, which strongly
indicates that at least one method performs significantly
different from the remaining ones. We conducted post-hoc
analysis using symmetry test [5]: bold font above marks the
methods that are outranked at 0.05 significance level by the
first method in the ranking (BPGP4A in this case).

The BPGP4A variant ranks the best, outperforming con-
ventional GP methods, including even the GP1L configura-
tion, which has ten times greater number of evaluations at
its disposal. For GP1L, the difference is statistically insignif-
icant but the difference in ranking might signal significance
if it holds over more benchmarks.

BPGP methods managed to solve (at least once in 30
evolutionary run) five problems that remained unsolved by
GP algorithms. These are (see Table 3): D-a1, D-a4, D-a5,
Keij4, and Par8. On the other hand, the only benchmark
that they could not solve while GP could is Nguy5.

Error rate. In this section we treat the benchmarks as
optimization problems. In that case, the objective is to min-
imize the error, and the appropriate performance measure
is the error (f) of the best-of-run program.

We report the results for this performance measure in an
analogous way to the previous section. The Friedman test
is conclusive, and methods’ ranks are as follows:

BPGP4A GP1L BP2A BPGP4 GP1 GP2
2.17 2.21 3.31 3.71 3.79 5.8

Again, BPGP4A ranks the best, and this time even beats
the BPGP configurations that miss one of the components:
behavioral evaluation (BP2A) and subprogram
archive (BPGP4).

Predictive accuracy. For the Boolean and categorical
problems considered in this paper, the training sets con-
tain all fitness cases, so predictive accuracy cannot be as-
sessed. However, it is possible for the regression problems.
To this aim, we calculate the error of best-of-run individu-
als on 10,000 tests drawn at random from the same domain
(hypercube) as for the training set. The ranking according
to this performance measure is:

BPGP4 BPGP4A BP2A GP1 GP1L GP2
2.65 3.35 3.47 3.47 3.59 4.47

The BPGP-based methods rank best again, but the differ-
ences in ranks are less prominent, and, as a result, the Fried-
man test is inconclusive. However, its p-value is relatively
low (0.142), which makes it likely that BPGP superiority
would become significant on a larger repertoire of problems.

Run time. Behavioral evaluation and maintenance of an
archive impose additional computational costs. To assess
their impact, we measure the total run time of every algo-
rithm (which terminates if ideal solution is found or when
the number of generation elapses). Methods ranked accord-
ing to runtime are (see detailed results in Table 3):

GP1 GP2 BPGP4 BPGP4A BP2A GP1L
1.09 3.11 3.77 3.97 4.09 4.97

Expectantly, conventional GP running with small popu-
lation is much faster than all the other methods. However,
it performs much worse on the other measures considered
above.

It is interesting to see that the BPGP-based methods are
faster than GP1L. In combination with the results on other
measures, this allows us to conclude that B4A does not only
find better solutions that GP1L, but also does it at a lower
computational expense.

Program size. The ranking of configurations according
to the size of the best-of-run program is as follows:

GP2 BPGP4 BP2A BPGP4A GP1 GP1L
1.26 2.57 2.89 3.91 4.81 5.56

GP2 wins on this measure, which may be attributed to
the fact that (i) it uses program size s as one of the objec-
tives (contrary to GP1 and GP1L), and (ii) s is the only
additional objective (other than program error f) that it
employs (as opposed to BPGP4 and BPGP4A that also use
yet another two objectives, c and e). As a result, s is a very
important objective in this configuration, and allows is to
produce very compact programs. However, given the poor
performance of GP2 on the other measures, one may argue
that the impact of this objective in this particular configu-
ration is detrimental (as opposed to BPGP4 and BPGP4A,
where it acts as only as one of four objectives).

The above ranking takes into account the best-of-run in-
dividuals of all evolutionary runs, whether successful or not.
For the successful runs only, the outcome is

940

BPGP4 GP2 BP2A BPGP4A GP1 GP1L
1.35 2.35 3.2 4.1 4.9 5.1

It turns out then that BPGP4 is able to provide ideal
solutions that are on average even smaller than those of GP2
(though the difference is not statistically significant).

4.4 Experiment summary
The experimental results clearly indicate that BPGP is

more likely to find an ideal solution than the traditional
GP methods, proves capable of solving problems that GP
struggles with, produces programs that commit smaller er-
ror and generalize better, requires moderate computational
effort, and in some configurations (BPGP4) yields smaller
ideal solutions.

Another important outcome is that combining behavioral
evaluation with an archive-based search operator (in BPGP4A)
seems to be beneficial, particularly for success rate and pro-
gram error. This corroborates the hypothesis posed earlier,
that these two components can complement each other and
lead to synergy. However, this does not mean that behav-
ioral evaluation or archive-based search operator alone have
no virtues: for instance, BPGP4 seems a viable method for
finding compact programs that generalize very well.

5. CONCLUSION
The gathered evidence suggests that behavioral program-

ming is a promising methodology for evolutionary synthe-
sis of programs. BPGP, a method that represents this ap-
proach, provides superb results for many problems from var-
ious domains, is universal by not requiring any adjustments
to a domain or problem, is almost parameterless (except for
archive size), and can employ any suitable machine learning
technique as a generator of behavioral models.

Another appeal of behavioral programming is that the
additional ‘search drivers’ are in a sense invented by the
search algorithm. By relying on ML-induced behavioral
models, behavioral programming can autonomously detect
behavioral regularities/patterns that reveal potentially use-
ful candidate solutions (via behavioral evaluation) and parts
thereof (via manipulation of subprograms). No background
knowledge or human ingenuity is necessary for that pur-
pose: the experimenter is not required to, e.g., specify, in
addition to providing an objective function, which proper-
ties/qualities of subsolutions are desirable. This makes be-
havioral programming attractive when compared to, e.g.,
some reinforcement learning methods in which the addi-
tional search drivers have to be explicitly provided [19].

One might wonder why could such search drivers be more
useful than the original objective function? In the end, it is
the objective function that comes as a part of problem for-
mulation and ultimately characterizes solution quality. Un-
fortunately, as demonstrated in countless studies on fitness-
distance correlation, in problems with complex fitness land-
scapes, with intricate neighborhood structure, plateaus, and
local optima, there is absolutely no guarantee that the ob-
jective function correlates with the amount of computational
effort it will take to solve the problem. Therefore, it is jus-
tified to suppose that other objectives (or a combination
thereof, as in this study) may lead a given search algorithm
more efficiently. As odd as it sounds, the objective function
can be sometimes precisely the worst possible search driver,
as it is the case in deceptive problems.

On a higher level of discourse, we anticipate that behav-
ioral programming is capable of joining a new paradigm for
program evolution/synthesis, that is based upon semantics,
a.k.a. behavior. The particular realization of behavioral
programming in this study, BPGP was embedded in con-
ventional tree-based genetic programming. However, noth-
ing precludes applying it to other program representations,
or in combination with other search mechanisms.

Acknowledgments. The authors thank the members of
the ALFA Group. Krzysztof Krawiec acknowledges finan-
cial support from Fulbright Commission and grant no. DEC-
2011/01/B/ST6/07318. Una-May O’Reilly acknowledges sup-
port from the Li Ka Shing Foundation. Both authors thank
Faustynka, Dominika and Michasia Krawiec for verifying Ta-
ble 3.

6. REFERENCES

[1] A. Bajurnow and V. Ciesielski. Layered learning for
evolving goal scoring behavior in soccer players. In
Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, pages 1828–1835,
Portland, Oregon, 20-23 June 2004. IEEE Press.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. Evolutionary Computation, IEEE
Transactions on, 6(2):182 –197, apr 2002.

[3] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[4] T. Haynes. On-line adaptation of search via knowledge
reuse. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,
M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic
Programming 1997: Proceedings of the Second Annual
Conference, pages 156–161, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann.

[5] M. Hollander and D. Wolfe. Nonparametric Statistical
Methods. A Wiley-Interscience publication. Wiley,
1999.

[6] G. S. Hornby and J. B. Pollack. Creating high-level
components with a generative representation for
body-brain evolution. Artif. Life, 8(3):223–246, 2002.

[7] G. Kanji. 100 Statistical Tests. SAGE Publications,
1999.

[8] J. D. Knowles, R. A. Watson, and D. Corne. Reducing
local optima in single-objective problems by
multi-objectivization. In EMO ’01: Proceedings of the
First International Conference on Evolutionary
Multi-Criterion Optimization, pages 269–283, London,
UK, 2001. Springer-Verlag.

[9] K. Krawiec and J. Swan. Pattern-guided genetic
programming. In C. Blum, et al., editors, GECCO ’13:
Proceeding of the fifteenth annual conference on
Genetic and evolutionary computation conference,
pages 949–956, Amsterdam, The Netherlands, 6-10
July 2013. ACM.

[10] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone.
Evolutionary Computation, 19(2):189–223, Summer
2011.

941

Table 3: Detailed characteristics of best-of-run individuals, averaged over 30 evolutionary runs. Bold marks
the best result for each benchmark and performance indicator (not necessarily statistically significant).

Success rate (×100) Average error Average run time [seconds] Average program size [nodes]
GP1 GP1L GP2 BP2A BP4A BP4 GP1 GP1L GP2 BP2A BP4A BP4 GP1 GP1L GP2 BP2A BP4A BP4 GP1 GP1L GP2 BP2A BP4A BP4

Cmp06 43 77 0 100 100 97 .015 .007 .089 .000 .000 .001 48 418 140 68 15 64 351 392 15 80 156 52
Cmp08 3 57 0 60 100 20 .020 .005 .139 .019 .000 .025 233 2587 279 825 220 933 466 643 11 108 242 70
D.A1 0 0 0 13 47 0 .216 .212 .222 .131 .026 .074 2 19 50 128 136 117 8 21 1 35 134 48
D.A2 0 10 0 7 70 7 .190 .181 .222 .128 .014 .059 5 53 49 128 95 124 71 74 1 33 202 58
D.A3 20 53 0 47 97 47 .085 .062 .222 .052 .001 .021 14 131 49 97 36 94 192 233 1 69 152 47
D.A4 0 0 0 0 23 0 .222 .222 .222 .211 .060 .109 1 6 49 104 180 142 1 1 1 6 196 83
D.A5 0 0 0 7 80 20 .222 .222 .222 .191 .011 .056 1 7 50 110 96 126 1 1 1 13 168 68
Keij1 0 0 0 0 0 0 .125 .073 .257 .275 .234 .278 26 567 99 129 151 116 189 447 34 36 60 51
Keij11 7 7 3 10 33 20 .659 .604 .882 .212 .110 .322 14 243 104 160 151 118 90 177 36 29 27 34
Keij12 0 0 0 0 0 0 .802 .661 .966 .932 .929 .902 31 504 103 140 173 135 181 296 37 65 112 78
Keij13 10 10 17 7 0 30 .231 .125 .607 .245 .346 .214 28 505 88 139 166 92 161 280 26 37 38 34
Keij14 0 0 0 0 0 0 .708 .657 .855 .683 .683 .774 19 339 86 122 143 113 100 207 20 32 35 37
Keij15 0 0 0 0 0 0 .721 .597 .846 .576 .613 .697 24 412 128 193 213 156 141 295 45 64 59 57
Keij4 0 0 0 3 0 0 .358 .249 .508 .281 .265 .272 29 585 93 144 160 127 187 390 46 62 85 68
Keij5 0 0 0 0 0 0 .362 .246 .759 .479 .583 .569 43 783 200 376 468 316 129 243 26 40 49 46
M.A1 83 83 0 40 83 43 .013 .011 .242 .040 .011 .038 4 36 66 82 41 61 181 173 14 53 142 40
M.A2 50 63 0 50 97 30 .053 .038 .187 .047 .002 .064 9 70 75 64 21 74 184 181 18 61 160 44
M.A3 83 90 3 77 97 33 .011 .007 .262 .016 .002 .044 8 49 59 47 27 66 240 253 13 67 104 38
M.A4 27 37 0 23 100 43 .102 .073 .269 .129 .000 .044 14 147 68 92 9 65 255 240 13 40 115 43
M.A5 77 100 13 93 100 90 .018 .000 .171 .007 .000 .007 4 21 65 28 14 29 132 146 19 57 74 37
Maj06 83 90 3 90 100 90 .003 .002 .048 .002 .000 .002 21 145 203 71 36 132 361 365 35 149 280 79
Maj08 23 53 0 47 93 0 .013 .005 .051 .010 .001 .032 329 3170 1156 1769 2019 1834 687 938 94 295 563 145
Mux06 100 100 17 100 100 87 .000 .000 .090 .000 .000 .011 3 3 132 13 10 38 169 169 19 68 117 39
Mux11 53 97 3 93 100 10 .020 .001 .200 .005 .000 .056 1391 3809 6757 9713 9780 13362 481 496 32 193 303 70
Nguy10 50 53 30 60 43 57 .050 .026 .171 .054 .079 .105 8 120 82 88 121 76 47 98 22 25 27 22
Nguy12 0 0 0 0 0 0 .301 .262 .436 .335 .314 .289 17 246 86 123 164 132 90 152 13 41 51 49
Nguy3 23 23 23 3 0 13 .101 .035 .255 .127 .136 .286 15 310 76 133 145 89 122 245 22 49 52 25
Nguy4 7 7 3 3 10 13 .130 .045 .328 .172 .138 .219 17 404 92 122 123 91 119 350 27 52 47 37
Nguy5 3 3 3 0 0 0 .019 .007 .062 .032 .026 .021 15 340 95 115 132 107 104 291 19 25 19 20
Nguy6 43 43 50 83 93 80 .034 .020 .105 .005 .002 .024 9 213 64 46 39 53 71 183 18 19 17 15
Nguy7 7 7 0 3 0 3 .052 .023 .156 .037 .040 .134 16 315 101 125 142 104 110 255 25 70 87 29
Nguy9 47 50 33 73 87 100 .147 .117 .082 .027 .002 .000 8 104 73 77 78 14 50 85 9 10 15 7
Par06 0 13 0 23 100 13 .155 .075 .429 .133 .000 .137 118 2065 188 466 233 404 677 1018 24 128 356 108
Par08 0 0 0 0 40 0 .309 .207 .486 .374 .115 .326 365 7359 648 2081 3792 2845 696 1343 23 138 581 168
Sext 3 3 0 0 0 3 .029 .019 .089 .031 .041 .048 22 436 105 137 151 118 164 372 34 36 37 45

[11] S. Luke. ECJ evolutionary computation system, 2002.
(http://cs.gmu.edu/eclab/projects/ecj/).

[12] J. McDermott, D. R. White, S. Luke, L. Manzoni,
M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec,
R. Harper, K. De Jong, and U.-M. O’Reilly. Genetic
programming needs better benchmarks. In T. Soule, et
al., editors, GECCO ’12: Proceedings of the fourteenth
international conference on Genetic and evolutionary
computation conference, pages 791–798, Philadelphia,
Pennsylvania, USA, 7-11 July 2012. ACM.

[13] R. I. B. McKay. Fitness sharing in genetic
programming. In D. Whitley, D. Goldberg,
E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages
435–442, Las Vegas, Nevada, USA, 10-12 July 2000.
Morgan Kaufmann.

[14] N. F. McPhee, B. Ohs, and T. Hutchison. Semantic
building blocks in genetic programming. In M. O’Neill,
L. Vanneschi, S. Gustafson, A. I. Esparcia Alcazar,
I. De Falco, A. Della Cioppa, and E. Tarantino,
editors, Proceedings of the 11th European Conference
on Genetic Programming, EuroGP 2008, volume 4971
of Lecture Notes in Computer Science, pages 134–145,
Naples, 26-28 Mar. 2008. Springer.

[15] A. Moraglio, K. Krawiec, and C. G. Johnson.
Geometric semantic genetic programming. In C. A.
Coello Coello, V. Cutello, K. Deb, S. Forrest,
G. Nicosia, and M. Pavone, editors, Parallel Problem
Solving from Nature, PPSN XII (part 1), volume 7491
of Lecture Notes in Computer Science, pages 21–31,
Taormina, Italy, Sept. 1-5 2012. Springer.

[16] A. Moraglio and A. Mambrini. Runtime analysis of
mutation-based geometric semantic genetic
programming for basis functions regression. In
C. Blum, et al., editors, GECCO ’13: Proceeding of
the fifteenth annual conference on Genetic and
evolutionary computation conference, pages 989–996,
Amsterdam, The Netherlands, 6-10 July 2013. ACM.

[17] J. P. Rosca and D. H. Ballard. Discovery of
subroutines in genetic programming. In P. J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 9, pages 177–201. MIT Press,
Cambridge, MA, USA, 1996.

[18] C. Ryan, M. Keijzer, and M. Cattolico. Favorable
biasing of function sets using run transferable
libraries. In U.-M. O’Reilly, T. Yu, R. L. Riolo, and
B. Worzel, editors, Genetic Programming Theory and
Practice II, chapter 7, pages 103–120. Springer, Ann
Arbor, 13-15 May 2004.

[19] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg.
Intrinsically motivated reinforcement learning: An
evolutionary perspective. IEEE Trans. on Auton.
Ment. Dev., 2(2):70–82, June 2010.

[20] L. Spector, D. M. Clark, I. Lindsay, B. Barr, and
J. Klein. Genetic programming for finite algebras. In
M. Keijzer, et al., editors, GECCO ’08: Proceedings of
the 10th annual conference on Genetic and
evolutionary computation, pages 1291–1298, Atlanta,
GA, USA, 12-16 July 2008. ACM.

942

	Motivation
	Behavioral programming
	Behavioral evaluation
	Archiving useful subprograms
	Reusing useful subprograms: archive-supplied mutation

	Related work
	Experimental analysis
	The problems
	Configurations
	The results
	Experiment summary

	Conclusion
	References

