
Geometric Semantic Genetic Programming

Alberto Moraglio1, Krzysztof Krawiec2, and Colin G. Johnson3

1 School of Computer Science, University of Birmingham, UK
A.Moraglio@cs.bham.ac.uk

2 Institute of Computing Science, Poznan University of Technology, Poland
kkrawiec@cs.put.poznan.pl

3 School of Computing, University of Kent, UK
C.G.Johnson@kent.ac.uk

Abstract. Traditional Genetic Programming (GP) searches the space
of functions/programs by using search operators that manipulate their
syntactic representation, regardless of their actual semantics/behaviour.
Recently, semantically aware search operators have been shown to out-
perform purely syntactic operators. In this work, using a formal geomet-
ric view on search operators and representations, we bring the semantic
approach to its extreme consequences and introduce a novel form of GP
– Geometric Semantic GP (GSGP) – that searches directly the space of
the underlying semantics of the programs. This perspective provides new
insights on the relation between program syntax and semantics, search
operators and fitness landscape, and allows for principled formal design
of semantic search operators for different classes of problems. We de-
rive specific forms of GSGP for a number of classic GP domains and
experimentally demonstrate their superiority to conventional operators.

1 Introduction

Traditional genetic programming ignores the meaning of programs, as the search
operators it employs act on their syntactic representations, regardless of their se-
mantics. E.g., subtree swap crossover is used to recombine functions represented
as parse trees, regardless of trees representing boolean expressions, mathematical
functions, or computer programs. Whereas this guarantees producing syntacti-
cally well-formed expressions, why should such a blind syntactic search work
well for different problems and across domains? In the end, it is the meaning of
programs that determines how successful search is at solving the problem.

The semantics of a program can be formally defined in a number of ways.
It can be a canonical representation, so that any two programs with the same
semantics/behaviour have the same canonical representation (e.g., Binary De-
cision Diagrams (BDD) for boolean expressions). It can be a description of the
behaviour of the program using a logical formalism. This is used in formal meth-
ods to reason formally about programs. From a strict search viewpoint, it may
be argued that the semantics of a program is just its fitness. Finally, it can also
be defined as the mathematical function computed by a program, i.e., the set of
input-output pairs making up the computed function.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 21–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



22 A. Moraglio, K. Krawiec, and C.G. Johnson

In the literature, there are a number of works using the semantics of programs
to improve GP. As many individuals encode the same function, some researchers
use canonical representations of functions to enforce semantic diversity through-
out evolution, by creating semantically unique individuals in the initial popula-
tion [2,4], and by discarding offspring of crossover andmutationwhen semantically
coinciding with their parents [3,1]. Uy et al. [11] propose a measure of semantic
distance between individuals based on how their outputs differ for the same set
of inputs sampled at random. This distance is then used to bias semantically the
search operators: mutation rejects offspring that are not sufficiently semantically
similar to the parent; crossover chooses only semantically similar subtrees to swap
between parents. Also Krawiec et al. [5,6] have used a notion of semantic distance
to propose a crossover operator for GP trees that is approximately a geometric
crossover [10,8] in the semantic space (see Section 2). Interestingly, the fitness
landscape induced by this operator has perfect fitness-distance correlation. The
operator was implemented approximately by using a traditional crossover, gen-
erating a large number of offspring, and accepting only those offspring that were
“semantically intermediate” with respect to the parents.

Whereas, overall the semantically awaremethods above produced superior per-
formance to traditional methods, they are indirect : search operators are imple-
mented via acting on the syntax of the parents to produce offspring, which are
accepted only if some semantic criterion is satisfied. This has two drawbacks: (i)
these implementations are very wasteful as heavily based on trial-and-error; (ii)
they do not provide insights on how syntactic and semantic searches relate to each
other.Would it then be possible to search directly the semantic space of programs?
More precisely, would it be possible to build search operators that, acting on the
syntax of the parent programs, produce offspring that are guaranteed to respect
some semantic criterion/specification by construction? Krawiec et al. [5,6] stated
that due to the complexity of the genotype-phenotype mapping in GP, a direct
implementation of exact semantic operators is probably impossible.

The present paper brings the following contributions: (i) it formalises the
notions of semantic distance, semantic geometric operators and semantic fitness
landscapes; (ii) it proves that the fitness landscapes seen by geometric semantic
operators are always cone landscapes, which are easy to search; (iii) it shows that,
contrary to widespread belief, the genotype-phenotype map of commonly consid-
eredGPdomains is, in an important sense, very easy, not complex; (iv) it introduces
a general method to derive exact semantic geometric crossovers and mutations for
different problem domains that search directly the semantic space; (v) it derives
semantic operators for the Boolean domain, arithmetic domain, and program do-
main; (vi) it reports experimental results for a standard test-bed of GP problems.

2 Abstract Geometric Semantic Search

In this section, we report non-operational definitions of geometric semantic op-
erators and their properties. They are characterised algorithmically in Section 3.

A search operator CX : S×S → S is a geometric crossover w. r. t. the metric
d if for any choice of parents p1 and p2, any of their offspring o = CX(p1, p2)



Geometric Semantic Genetic Programming 23

is in the metric segment between parents. A search operator M : S → S is a
geometric ε-mutation w. r. t. the metric d if for any choice of the parent p, any
of its offspring o = M(p) is in the metric ball of radius ε centered in the parent.
Given a fitness function f : S → R, the geometric search operators induce or see
the fitness landscape (f, S, d). Many well-known recombination operators across
representations are geometric crossovers [8], e. g., all mask-based crossovers on
binary strings are geometric crossovers w. r. t. Hamming distance. Point mutation
on binary strings is geometric 1-mutation w. r. t. Hamming distance. Geometric
operators can also be derived for new spaces and representations by using in
their definitions a distance based on a target representation (e.g., edit distance).
If the distance is not directly linked to a representation, the geometric operators
are well-defined but an algorithmic description for them can be hard to derive.

Genetic programming is essentially a supervised learning method: given a
fixed set of input-output pairs T = {(x1, y1), ..., (xN , yN )} (i.e., training set or
fitness cases), a function h : X → Y belonging to a certain fixed class H –
specified by the chosen terminal and function sets – is sought (evolved) that
interpolates the known input-output pairs, i.e., ∀(xi, yi) ∈ T : h(xi) = yi. The
fitness function FT : H → R measures the error of a function h on the training
set T . Compared to other learning methods, two distinctive features of GP are
that (i) it can be applied to learn virtually any type of functions, and (ii) it is
a black-box method, as it does not need explicit knowledge of the training set,
but only of the errors on the training set.

Let I = (x1, ..., xN ) and O = (y1, ..., yN ) be the input and the output vec-
tors, respectively, associated with the training set T . Let O(h) be the vector
of the outputs of a function h when queried with the inputs I, i.e., O(h) =
(h(x1), ..., h(xN )). The function O : H → Y N can be interpreted as genotype-
phenotype mapping as it maps a representation of a function h (i.e., genotype)
to the actual outcome of the application of function h on the input vector I (i.e.,
phenotype) represented by its output vector.

Traditional measures of error of a function h on the training set T can be
interpreted as distance between the target output vector O and the output vector
O(h) measured using some suitable metric D, i.e., FT (h) = D(O,O(h)) (to
minimise). For example, when the space H of functions considered is the class of
Boolean functions, the input and output spaces are X = {0, 1}n and Y = {0, 1},
and the output vector is a binary vector of size N (i.e., Y N ). A suitable metric
D to measure the error as a distance between binary vectors is the Hamming
distance. For functions returning real values (e.g., in regression applications),
the output vectors are real vectors. In this case, suitable metrics to measure
the error are Euclidean and Manhattan distances, each of which gives rise to a
different type of fitness function.

We define semantic distance SD between two functions h1, h2 ∈ H as the dis-
tance between their corresponding output vectors w. r .t. the input vector of all
possible inputs (i.e., I = (xi) for all xi ∈ X) measured with the metric D used in
the definition of the fitness function FT , i.e., SD(h1, h2) = D(O(h1), O(h2)). The
semantic distance SD is a genotypic distance induced from a phenotypic metric



24 A. Moraglio, K. Krawiec, and C.G. Johnson

D, via the genotype-phenotype mapping O. As O is generally non-injective (i.e.,
different genotypes may have the same phenotype), SD is only a pseudometric
(i.e., distinct functions can have distance zero). This naturally induces an equiv-
alence relation on genotypes: genotypes belong to the same semantic class h iff
their semantic distance is zero. Then, SD can be interpreted as a metric on the
set of semantic classes of genotypes H.

We define semantic geometric operators as geometric crossover and mutation
specified on the space of (classes of) functions endowed with the distance SD.
E.g., semantic geometric crossover on boolean functions returns offspring boolean
functions such that the output vectors of the offspring are in the Hamming
segment between the output vectors of the parents (w. r .t. all xi ∈ X). The
effect of SD being defined on the space of classes of functions H, rather than
on the space of functions H , is that the geometric crossover is only a function
of the semantic classes of the parents h1, h2 rather than directly of the parents
h1, h2 (i.e, their specific representations), and the returned offspring can be
any function h3 belonging to the offspring class h3 (i.e., any function with the
prescribed output vector/semantics).

The semantic fitness landscape seen by an evolutionary algorithm with seman-
tic geometric operators has a nice shape by construction: from the definition of
semantic distance, the fitness of a solution is its distance in the search space
to the optimum (cone landscape).1 This observation is remarkably general, as it
holds for any domain of application of GP (e.g., Boolean, Arithmetic, Program),
any specific problem within a domain (e.g., Parity and Multiplexer problems
in the Boolean domain) and for any choice of metric for the error function.
Furthermore, there is some formal evidence [9] that EAs with geometric oper-
ators can optimise cone landscapes efficiently very generally for virtually any
metric.

GP search with geometric operators w. r .t. the semantic distance SD on the
space of function classes H is formally equivalent to EA search with geometric
operators w. r .t. the distance D on the space of output vectors. This is because:
(i) semantic classes of functions are in bijective correspondence with output
vectors, as “functions with the same output vector” is the defining property of
a semantic class of function; (ii) semantic geometric operators on functions are
isomorphic to geometric operators on output vectors, as SD is induced from
D via the genotype-phenotype mapping (see diagram (1)).2 E.g., for Boolean
functions, semantic GP search is equivalent to GA search on binary strings on
OneMax of dimension N .

1 The landscape includes also a form of neutrality. As the training set covers a fraction
of all possible input-output pairs of a function, only that part of the output vector
of a function affects its fitness, the remaining large part is “inactive”. This does not
affect crossover, but it may make mutation ineffective.

2 Despite this formal equivalence, actually encoding a function in a EA using its output
vector instead of, say, a parse tree, is futile: in the end we want to find a function
represented in an intensive form that can represent concisely “interesting” functions
and that allows for meaningful generalisation of the training set.



Geometric Semantic Genetic Programming 25

3 Construction of Geometric Semantic Operators

The commutative diagram below illustrates the relationship between the seman-
tic geometric crossover GXSD on genotypes (e.g., trees) on the top, and the
geometric crossover (GXD) operating on the phenotypes (i.e., output vectors)
induced by the genotype-phenotype mapping O, at the bottom. It holds that for
any T 1, T 2 and T 3 = GXSD(T 1, T 2) then O(T 3) = GXD(O(T 1), O(T 2)).

T 1 × T 2
GXSD−−−−−−−−−−→ T 3

⏐
⏐
�O

⏐
⏐
�O

⏐
⏐
�O

O1 × O2
GXD−−−−−−−−−−→ O3

(1)

The problem of finding an algorithmic characterization of semantic geometric
crossover can be stated as follows: given a family of functionsH , find a recombina-
tion operatorGXSD (unknown) acting on elements ofH that induces via the geno-
type phenotypemappingO a geometric crossoverGXD (known) on output vectors.
E.g., for the case of boolean functions with fitness measure based on Hamming dis-
tance, output vectors are binary strings and GXD is a mask-based crossover. We
want to derive a recombination operator acting on Boolean functions that corre-
sponds to a mask-based crossover on their output vectors. Note that there is a dif-
ferent type of semantic geometric crossover for each choice of spaceH and distance
D. Consequently, there are different semantic crossovers for different GP domains.
We will give a recipe to derive specific semantic crossovers for new domains.

Definition 1. Given two parent functions T 1, T 2 : {0, 1}n → {0, 1}, the recom-
bination SGXB returns the offspring boolean function T 3 = (T 1∧TR)∨(TR∧T 2)
where TR is a randomly generated boolean function (see Fig. 1).

Theorem 1. SGXB is a semantic geometric crossover for the space of boolean
functions with fitness function based on Hamming distance, for any training set
and any boolean problem.

Proof. The offspring function is T 3 = (T 1∧ TR)∨ (TR ∧ T 2). Expanding it for
any input i: T 3(i) = (T 1(i) ∧ TR(i)) ∨ (TR(i) ∧ T 2(i)). So, for any entry i of
the output vectors: O(T 3)(i) = (O(T 1)(i)∧O(TR)(i))∨ (O(TR)(i)∧O(T 2)(i)).
In the last expression, the Boolean expression at each position i is a multiplexer
function which, depending on the bit-value of O(TR)(i) (piloting bit), assigns
either O(T 1)(i) or O(T 2)(i) to O(T 3)(i). Then, the output vector O(TR) acts as
a crossover mask on the parent output vectors O(T 1) and O(T 2) to produce the
offspring output vector O(T 3). This is a geometric crossover on output vectors
w. r. t. the Hamming distance.

Let us now consider the Real Functions domain (e.g., for symbolic regression).

Definition 2. Given two parent functions T 1, T 2 : Rn → R, the recombinations
SGXE and SGXM return the real function T 3 = (T 1 · TR) + ((1 − TR) · T 2)
where TR is a random real constant in [0, 1] (SGXE), or a random real function
with codomain [0, 1] (SGMX).



26 A. Moraglio, K. Krawiec, and C.G. Johnson

OR
/ \

AND AND
T3 = / \ / \

T1 TR NOT T2
|
TR

AND
T1 = / \

X1 X2

OR
T2 = / \

X2 X3

NOT
TR = |

X3

OR
/ \

AND X3
T3 = / \

AND NOT
/ \ |

X1 X2 X3

Fig. 1. Left: Semantic Crossover scheme for Boolean Functions; Centre: Example of
parents (T1 and T2) and random mask (TR); Right: Offspring (T3) obtained by sub-
stituting T1, T2 and TR in the crossover scheme and simplifying

Theorem 2. SGXE and SGXM are semantic geometric crossovers for the space
of real functions with fitness function based on Euclidean and Manhattan dis-
tances, respectively, for any training set and any real problem.

Proof. By expanding the offspring function on the inputs and considering ev-
ery entry i of the output vectors: O(T 3)(i) = (O(T 1)(i) · O(TR)(i)) + ((1 −
O(TR)(i)) · O(T 2)(i)). As O(TR)(i) ∈ [0, 1], at each position the value of
O(T 3)(i) is a convex combination of the values of O(T 1)(i) and O(T 2)(i). So,
the vector O(T 3) is within the hyper-box delimited by O(T 1) and O(T 2), i.e., it
is in their Manhattan segment. Expressing the above relation in functional form:
O(T 3) = (O(T 1) · O(TR)) + ((1 −O(TR)) · O(T 2)). When additionally O(TR)
is constant in i, we see that O(T 3) is a convex combination of the vectors O(T 1)
and O(T 2), i.e., it is in their Euclidean segment.

Let us now consider the Computer Program domain intended as functions with
symbols as inputs (IS) and outputs (OS). The following can be easily extended
to other types of inputs and outputs.

Definition 3. Given two parent programs T1, T2 : ISn → OS, the recombi-
nation SGXP returns the offspring program T3 = IF CONDR THEN T1 ELSE T2

where CONDR is a random program whose output is interpreted as a logical value.

Theorem 3. SGXP is a semantic geometric crossover for the space of programs
with fitness function based on Hamming distance, for any training set and any
problem.

Proof. By expanding the offspring program on the inputs and considering ev-
ery entry i of the output vectors: O(T3)(i) = IF O(CONDR)(i) THEN O(T1)(i)

ELSE O(T2)(i). This means that for each input, the output value of T3 is that
of T1 or T2 depending of the value of CONDR, which is then acting as a crossover
mask on T1 and T2. This is a geometric crossover on the output vectors w. r. t.
the Hamming distance (for symbolic vectors).

Definition 4. Semantic Mutations. Boolean: Given a parent function T :
{0, 1}n → {0, 1}, the mutation SGMB returns the offspring boolean function



Geometric Semantic Genetic Programming 27

TM = T ∨M with probability 0.5 and TM = T ∧M with probability 0.5 where M
is a random minterm of all input variables. Arithmetic: Given a parent function
T : Rn → R, the mutation SGMR with mutation stepms returns the real function
TM = T +ms · (TR1− TR2) where TR1 and TR2 are random real functions.
Programs: Given a parent program T, the mutation SGMP returns the offspring
program TM = IF CONDR THEN OUTR ELSE T where CONDR is a condition which
is true only for a single random setting of all input parameters, and OUTR is a
random output symbol. The offspring can be expressed as nested IF-THEN-ELSE

statements with simple conditions of a single input parameter each.

Theorem 4. SGMB and SGMP are semantic 1-geometric mutations for boolean
functions and of programs, respectively, with fitness function based on Hamming
distance. SGMR is a semantic ε-geometric mutation for real functions with fit-
ness function based on Euclidean and Manhattan distances. The mean of its
probability distribution is the parent, and ε is proportional to the step ms.

General Construction Method: It can be obtained by reversing the common
argument in the proofs above: (i) take the geometric crossover on output vectors
associated with the distance used in the fitness function; (ii) consider the action
of the recombination operator on a single entry of the output vectors; (iii) use
the domain-specific language of the particular class of functions considered to
describe the recombination action on a single entry; (iv) that description is
the scheme to produce the offspring. Note that the offspring is not only the
effect of crossover, it is also the description of how to crossover its parents.
The target domain-specific language must be expressive enough to describe the
recombination. This seems to be the case for most GP problems.

Simplification: As the syntax of the offspring of semantic crossover contains
both parents, the size of individuals grows exponentially with the number of gen-
erations. To keep their size manageable, we need to simplify offspring sufficiently
and efficiently (not optimally, as that is NP-Hard on many domains) without
changing the computed function. The search of semantic crossover is completely
unaffected by syntactic simplification, which can be done at any moment and to
any extent. For boolean functions, there are quick function-preserving simplifiers
(e.g., Espresso). Computer algebra systems (e.g., Maple) can be used to simplify
symbolically mathematical functions, like polynomials, and more complicated
expressions including sin, cos, exp, etc. if used in disciplined ways (e.g., nested
sin not allowed). Formal methods (e.g., static analysis) can be used to simplify
computer programs (but loops/recursion may be a challenge).

Does Syntax Matter? In theory, it does not matter! The offspring is a func-
tion obtained from a functional combination of parent functions. The offspring
is defined purely functionally and does not depend on how functions are ac-
tually represented (e.g., trees, graphs, sequences) and what language is used
(e.g., Java, Lisp, Prolog), as long as the semantic operators can be described
in that language. In practice, syntax does matter! As genotype structure and
language influence the way random genotypes are generated, as different repre-
sentations suggest different “natural” ways of generating them. This affects the



28 A. Moraglio, K. Krawiec, and C.G. Johnson

offspring distribution of semantic operators, the semantic diversity in the initial
population, and the dependencies in the crossover mask. Furthermore, some rep-
resentations may be easier to simplify, and may have preferable inductive bias
(i.e., generalise better on unseen inputs).

4 Computational Experiments

We compare GP, semantic GP (SGP), and semantic stochastic hill climber
(SSHC), which employs semantic mutation to explore the neighbourhood. In
all experiments GP and SGP use a generational scheme with tournament selec-
tion (size 5), crossover and mutation, which are always engaged. We give the
algorithms the same number of evaluations, set as the number needed by SSHC
to typically find the optimum (as SSHC is the quickest). We also compare al-
gorithms on CPU time: GPt is GP running for the same time as the greater of
average execution times of SGP and SSC. Below are the main settings of the
experimental setups considered. Other parameters are set to ECJ’s defaults [7].

Boolean Functions. (Table 1): Test-bed : standard GP benchmark. Fitness
function: Hamming distance to the output vector of the target function queried
on all inputs. GP : standard GP with instruction set: ‘And’, ‘Or’, ‘Not’. SGP and
SSHC : individuals are Boolean expressions in disjunctive normal form; SGMB
and SGXB with a mask TR being a random minterm of a random subset of
input variables; simplification of offspring by Espresso. Comparison: budget of
2n · 2n evaluations, where n is the number of input variables; as to population
size, GP and SGP have max{√2n, 10}, and GPt has max{√2n, 50} (and from
20 to 200 times more evaluations).

Polynomial Regression. (Table 2): Test-bed : univariate polynomials of degrees
from 3 to 10, with real-valued coefficients uniformly drawn from [−1, 1]. Fitness
function: Euclidean distance to the output vector of the target function queried
on 20 inputs in [−1, 1]. GP : Standard GP with instruction set: ‘+’, ‘-’, ‘*’, ‘x’,
constant. SGP and SSHC : individuals are polynomials of degree 10, initialised
with coefficients drawn uniformly from [−1, 1]; SGXE and SGMR with stepms =
0.001; implicit simplification (i.e, weighted sums of polynomials). Comparison:
budget of 100,000 evaluations, with population size 1,000 for GP, and 20 for SGP.

Classifiers. (Table 3): Test-bed : IS = {1, ..., nc}, OS = {1, ..., ncl}, target func-
tions f : ISnv → OS are f(x1, x2, ..., xnv ) = ((x1 + x2) mod ncl) + 1, for all
combinations of nv = 3, 4, nc = 3, 4 and ncl = 2, 4, 8. Fitness function: Ham-
ming distance to the output vector of the target function queried on all inputs.
All algorithms use classifiers of the form: <CF> := IF <COND> THEN <CF> ELSE

<CF> || <OS>; <COND> := <xi> = <IS>, and Ramped-half-and-half initialisa-
tion. SGP and SSHC use SGXP and SGMP, and simplification of classifiers
done by an Espresso-like simplifier. Comparison: budget of 2nclnvn

nv
c evalua-

tions; as to population size, GP and SGP have max{√nnv
c , 10}, and GPt has

max{√nnv
c , 50} (and from 10 to 130 times more evaluations).



Geometric Semantic Genetic Programming 29

Table 1. Problems: standard boolean benchmark suite. Hits %: percentage of training
examples correctly predicted by best solution; average (avg) and standard deviation
(sd) of 30 runs. Length: logarithm base 10 of the length of the largest solution encoun-
tered in the search.

Problem Hits % Length
GP GPt SSHC SGP

avg sd avg sd avg sd avg sd GP GPt SSHC SGP
Comparator6 80.2 3.8 90.9 3.5 99.8 0.5 99.5 0.7 1.0 2.0 2.9 2.8
Comparator8 80.3 2.8 94.9 2.4 100.0 0.0 99.9 0.2 1.0 2.3 2.9 3.0
Comparator10 82.3 4.3 95.3 0.9 100.0 0.0 100.0 0.1 1.6 2.4 2.7 3.0
Multiplexer6 70.8 3.3 94.7 5.8 99.8 0.5 99.5 0.8 1.1 2.2 2.7 2.9
Multiplexer11 76.4 7.9 88.8 3.4 100.0 0.0 99.9 0.1 2.2 2.4 2.9 2.6
Parity5 52.9 2.4 56.3 4.9 99.7 0.9 98.1 2.1 1.4 1.7 2.9 2.9
Parity6 50.5 0.7 55.4 5.1 99.7 0.6 98.8 1.7 1.0 1.9 3.0 3.0
Parity7 50.1 0.2 51.7 2.8 99.9 0.2 99.5 0.6 1.0 1.7 3.0 3.1
Parity8 50.1 0.2 50.6 0.9 100.0 0.0 99.7 0.3 1.0 1.6 3.4 3.4
Parity9 50.0 0.0 50.2 0.1 100.0 0.0 99.5 0.3 1.0 1.3 3.8 3.8
Parity10 50.0 0.0 50.0 0.0 100.0 0.0 99.4 0.2 0.9 1.2 4.1 4.1
Random5 82.2 6.6 90.9 6.0 99.5 1.2 98.8 2.1 0.9 1.6 2.7 2.8
Random6 83.6 6.6 93.0 4.1 99.9 0.4 99.2 1.3 1.2 1.9 2.9 2.8
Random7 85.1 5.3 92.9 3.8 99.9 0.2 99.8 0.4 1.1 2.0 2.8 2.9
Random8 89.6 5.3 93.7 2.4 100.0 0.1 99.9 0.2 1.4 2.0 3.0 2.9
Random9 93.1 3.7 95.4 2.3 100.0 0.1 100.0 0.1 1.5 1.8 2.9 2.9
Random10 95.3 2.3 96.2 2.0 100.0 0.0 100.0 0.0 1.5 1.8 2.8 3.0
Random11 96.6 1.6 97.3 1.5 100.0 0.0 100.0 0.0 1.6 1.7 2.7 3.1
True5 100.0 0.0 100.0 0.0 99.9 0.6 100.0 0.0 1.1 1.3 2.0 2.4
True6 100.0 0.0 100.0 0.0 99.8 0.6 100.0 0.0 1.2 1.2 2.6 2.5
True7 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 1.2 1.2 2.9 2.6
True8 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.1 1.2 1.4 3.3 2.9

Table 2. Problems: Random Polynomials of degrees 3 to 10. Hits %: percentage of
training examples correctly predicted by best solution with tolerance 0.01; avg and sd
of 30 runs.

Problem Hits %
GP SSHC SGP

avg sd avg sd avg sd
Polynomial3 79.9 23.1 100.0 0.0 99.5 1.5
Polynomial4 60.5 27.6 99.9 0.9 99.9 0.9
Polynomial5 40.7 21.6 100.0 0.0 99.5 2.0
Polynomial6 37.5 23.4 100.0 0.0 98.9 3.1
Polynomial7 30.7 18.5 100.0 0.0 99.9 0.9
Polynomial8 34.7 16.0 99.5 2.0 99.7 1.3
Polynomial9 20.7 13.2 100.0 0.0 98.5 4.9
Polynomial10 25.7 16.7 99.4 1.7 99.9 0.9

Analysis: Performance: for all domains and problems, SSHC and SGP find
consistently near-optimal solutions, beating by far GP with the same budget
of evaluations, and also GPt with the same CPU time. Size: SSHC and SGP
produce individuals larger than GP. This is due to a limited amount of simpli-
fication applied that finds shorter but usually not the shortest expressions, and,
for some problems, to the optimal solution having a long encoding in the chosen
representation. Importantly, experiments show that the simplification counter-
acts effectively the exponential growth of individuals inherent in the semantic
operators, within affordable computational cost. Bias : semantic operators see
any problem as a cone landscape, hence potentially easy. However they may



30 A. Moraglio, K. Krawiec, and C.G. Johnson

Table 3. Problems: see text. Hits % and Length same as in Table 1.

Problem Hits % Length
GP GPt SSHC SGP

nv nc ncl avg sd avg sd avg sd avg sd GP GPt SSHC SGP
3 3 2 80.00 8.41 97.30 4.78 99.74 0.93 99.89 0.67 1.6 1.9 2.3 2.3
3 3 4 49.15 9.96 78.89 8.93 99.89 0.67 99.00 1.63 1.6 2.1 2.3 2.3
3 3 8 37.04 5.07 59.52 14.26 99.74 0.93 96.04 2.85 1.2 1.9 2.3 2.3
3 4 2 67.92 7.05 93.80 5.41 99.95 0.28 99.58 0.80 1.8 2.3 2.7 2.7
3 4 4 39.11 7.02 68.48 8.66 99.84 0.47 98.08 1.64 1.7 2.3 2.7 2.7
3 4 8 28.02 3.73 46.98 14.48 99.73 0.58 94.22 1.72 1.1 2.0 2.7 2.7
4 3 2 88.31 6.98 98.89 2.89 99.96 0.22 100.00 0.00 1.6 1.9 2.9 2.9
4 3 4 48.85 6.54 88.15 10.10 100.00 0.00 99.54 0.68 1.4 2.2 2.9 2.9
4 3 8 36.54 9.01 60.37 17.14 100.00 0.00 96.63 1.23 1.0 1.9 2.9 2.9
4 4 2 82.75 8.21 99.79 1.12 100.00 0.00 99.86 0.23 2.2 2.3 3.3 3.3
4 4 4 44.13 8.75 77.55 6.30 100.00 0.00 99.68 0.29 2.0 2.4 3.3 3.3
4 4 8 30.63 5.33 50.21 15.08 99.96 0.12 98.84 0.58 1.4 2.1 3.3 3.3

have heavy biases in the offspring distributions that hinder performance. Exper-
iments show that these biases do not prevent achieving very good performance.

5 Conclusions and Future Work

We presented a newGP framework rooted in a geometric theory of representations
to searchdirectly the semantic space of functions/programs.Remarkably, the land-
scape seen by the semantic operators is always a cone by construction, hence gen-
erally easy to search. Seen from a geometric viewpoint, the genotype-phenotype
mapping of GP becomes very easy. This allowed us to derive explicit algorithmic
characterization of semantic operators for different domains following a simple
recipe. Semantic operators require simplification, which on the domains consid-
ered was not a problem. In the experiments, the semantic approach systematically
outperformed standard GP. There is plenty of future work and open challenges:
(i) construct semantic operators for more complex domains, to explore potentials
and limits of the framework; (ii) use formal methods to simplify non-trivial pro-
grams with loops/recursion, and use CAS to simplify non-polynomial functions,
and, more generally, devise quick heuristic simplifiers for complex domains; (iii)
investigate the practical advantages of different types of syntax/languages: e.g.,
programswritten in minimalistic languages with strong theory, like lambda calcu-
lus, may be much easier to simplify; also, certain syntax may allow to implement
easily semantic operators with probabilistic biases that make them more effective
in practice; (iv) derive analytical runtime: as semantic GP search is equivalent to
standardGAs/ES on cone landscapes, it should be easy to transfer analytical run-
time results to semantic GP, and determine the optimal parameter settings.

References

1. Beadle, L., Johnson, C.G.: Sematically driven crossover in genetic programming.
In: Proc. of IEEE WCCI 2008, pp. 111–116 (2008)

2. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in ge-
netic programming. Genetic Programming and Evolvable Machines 10(3), 307–337
(2009)



Geometric Semantic Genetic Programming 31

3. Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic programming.
In: Proc. of IEEE CEC 2009, pp. 1336–1342 (2009)

4. Jackson, D.: Phenotypic Diversity in Initial Genetic Programming Populations. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010)

5. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: Proc. of GECCO 2009, pp. 987–994 (2009)

6. Krawiec, K., Wieloch, B.: Analysis of semantic modularity for genetic program-
ming. Foundations of Computing and Decision Sciences 34(4), 265–285 (2009)

7. Luke, S.: The ECJ Owner’s Manual – A User Manual for the ECJ Evolutionary
Computation Library (2010)

8. Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. PhD
thesis, University of Essex (2007)

9. Moraglio, A.: Abstract convex evolutionary search. In: Proc. of FOGA 2011, pp.
151–162 (2011)

10. Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Tari, Z.
(eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)

11. Uy, N.Q., et al.: Semantically-based crossover in genetic programming: applica-
tion to real-valued symbolic regression. Genetic Programming and Evolvable Ma-
chines 12(2), 91–119 (2011)


	Geometric Semantic Genetic Programming
	Introduction
	Abstract Geometric Semantic Search
	Construction of Geometric Semantic Operators
	Computational Experiments
	Conclusions and Future Work
	References




