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Abstract. An accurate and early diagnosis of the Alzheimer’s Disease
(AD) is of fundamental importance for the patients medical treatment.
Single Photon Emission Computed Tomography (SPECT) images are
commonly used by physicians to assist the diagnosis, rating them by vi-
sual evaluations. In this work we present a computer assisted diagnosis
tool based on a Principal Component Analysis (PCA) dimensional reduc-
tion of the feature space approach and a Support Vector Machine (SVM)
classification method for improving the AD diagnosis accuracy by means
of SPECT images. The most relevant image features were selected under
a PCA compression, which diagonalizes the covariance matrix, and the
extracted information was used to train a SVM classifier which could
classify new subjects in an unsupervised manner.

1 Introduction

Distinguishing AD from other causes of dementia still remains a diagnostic chal-
lenge, specially during the early stage of the disease, that offers better opportu-
nities to treat its symptoms. Thus, an accurate and early diagnosis of the AD by
means of non-invasive methods, is of fundamental importance for the patients
medical treatment. Nuclear imaging as Single Photon Emission Computed To-
mography (SPECT) or Positron Emission Tomography (PET) are examples of
non-invasive, three-dimensional functional imaging modalities that provide clini-
cal information regarding biochemical and physiologic processes in patients, and
are frequently used as a diagnostic tool in addition to the clinical findings.

The examination of the predictive abilities of nuclear imaging with respect
to AD and other dementia illnesses is usually done through visual assessments
performed by experts[1, 2]. However, statistical classification methods have not
been widely used to assist the diagnosis, being Statistical Parametric Mapping
(SPM) the most extended tool in the neuro-imaging community[3, 4]. It consists
of doing a voxel-wise statistical test, comparing the values of the image under
study to the mean values of the group of normal images. Subsequently the signif-
icant voxels are inferred by using Random Field Theory [5]. This method suffers
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the inconvenient of local and mono-variate approaches and it was not developed
specifically for the typical case of a single image study, but for comparing groups
of images. One can use it for diagnostics by comparing the image under study to
a group of normal images. This comparison has the disadvantages of assessing a
population containing just one individual and being lacking in any information
about the pathology, that the other population of AD affected images contain.

On the other hand, multivariate approaches that consider as one observation
all the voxels in a single scan, suffer from the curse of dimensionality problem.
This major problem, associated with pattern recognition systems, occurs when
the number of available features for designing the classifier is very large compared
with the number of available training examples. The importance of multivariate
approaches is that the interactions among voxels and error effects are assessed
statistically, while paying the price of losing capability of making statistical
inferences about regionally specific changes.

Principal Component Analysis (PCA) is an example of multivariate technique
that require more training examples than features and is not suitable for making
any statistical inference about the characterizations that it obtains [3]. In the
Alzheimer’s disease aided diagnosis, it has been used as a mathematical device
that simply identify prominent patterns of correlations or functional connectivity
of brain regions, to be analyzed with other statistical tools as SPM, ANOVA or
MANCOVA [6, 7, 8].

Our approach to the computer aided diagnosis (CAD) involves not statistical
inference but machine learning techniques, which are appropriate for single image
studies. In this work we used two combined techniques that, independently have
been successful in solving several classification problems. Firstly, we made use of
eigenbrains or eigenimages, that were obtained from the Principal Components
[3], to reduce the dimension of the feature space to a set of projection coefficients
(see Sect. 2), in a similar fashion as in face detection [9]. This process reduced
the dimensionality of the feature space from ∼ 5 · 105 to ∼ 102, thus facing
the small sample size problem. Secondly, once a significant feature ensemble was
selected, we built a SVM to manage the classification task.

Support Vector Machines (SVMs) have marked the beginning of a new era in
the learning from examples paradigm [10]. Recently, SVMs have attracted atten-
tion from the pattern recognition community due to a number of theoretical and
computational merits derived from [10]. These techniques have been successfully
applied to many fields including voice activity detection (VAD) [11], content-
based image retrieval [12], and medical imaging diagnosis [13, 14]. Somehow, the
application of SVM to high dimensional and small sample size problems is still
a challenge and improving the accuracy SVM based-approaches is still a field in
development[15, 16].

The combination of these two methods grows a CAD system for the early
detection of Alzheimer Type Dementia (ATD) tested over SPECT images, and
developed with the aim of reducing the subjectivity in visual interpretation of
these scans by clinicians, thus improving the accuracy of diagnosing Alzheimer’s
disease in its early stage.
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2 PCA Application to SPECT Images: Eigenbrains
Principal Component Analysis is a standard technique for extracting the most
significant features from a dataset. It is based on a linear transformation acting
on a zero mean dataset, that diagonalizes its covariance matrix. In brain images,
the dataset is an ensemble of 3D brain images Γi, whose size M is typically
79 × 95 × 69 ∼ 5 · 105 voxels. Let the full 3D brain image set be Γ1,Γ2, ...,ΓN ,
each understood as a vector of dimension M . The average brain image of the
dataset is defined as Γ = 1

N

∑N
n=1 Γn. We need firstly to extract the average of

the image set to each one, producing a new set Φi = Γi −Γ with n = 1, 2, ..., N .
On this set, a PCA transformation is composed by M orthogonal vectors ui,
such that

λi =
1
N

N∑

n=1

(uT
i Φn)2 (1)

is maximum, subject to the constrain

uT
i uj = δij (2)

where δij is the Kronecker delta. The resulting ui and λi are the eigenvectors
and eigenvalues respectively of the covariance matrix:

C =
1
N

N∑

i=n

ΦnΦT
n = AAT (3)

where A = [Φ1, ...,ΦN ]. We will refer to this orthogonal eigenvector basis
{ui} , i = 1, ..., M as eigenbrains, because of its brain like appearance (see Fig.
1). To obtain them, it is necessary to diagonalize the M ×M covariance matrix,
which for brain images would be approximately a 5·105×5·105 matrix. The com-
putational complexity of the diagonalization process can be significantly reduced
by diagonalizing the matrix Ĉ = AT A, whose size is N × N , with N << M [9].
This allows to obtain N of the M eigenvectors un of C, from the eigenvectors
vn of Ĉ as un = Avn, n = 1, .., N . Usually, the first few eigenbrains explain
the whole variance, so only a number M ′ < M is necessary to appropriately
describe the dataset (in this case M ′ = N). The obtained eigenbrains span a
new subspace which we refer to as the “eigenbrain space”. For the classification
task we projected each image into the previously defined eigenbrain space. Each
projected image produced a vector of weights so that a matrix of weights can be
constructed with the whole database. This matrix Ω is given by:

Ωin = uT
nΦi, n = 1, 2, ..., M ′, i = 1, 2, ..., N (4)

and describes the contribution of each eigenbrain in representing the input brain
image Φi, treating the eigenbrains as a basis set for brain images (see Fig. 1). The
matrix Ω contains the most significant information extracted from the principal
component analysis, stacked in a N × M ′ data ensemble. We used this matrix
Ω for the following classification task, as N M ′-dimensional patterns:

xi = [Ωi1,Ωi2, ...,ΩiM ′ ], i = 1, 2, ..., N (5)

each of them with its corresponding class label yi ∈ {±1}.
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Fig. 1. Three representative transversal slices of the first three eigenbrains, ranked by
its eigenvalue

3 Background on SVMs

The classification is achieved through a SVM, that separates a given set of binary
labeled training data with a hyperplane that is maximally distant from the two
classes (known as the maximal margin hyper-plane). The objective is to build
a function f : IRM ′

−→ {±1} using training data, consisting of M’ -dimensional
patterns xi and class labels yi:

(x1, y1), (x2, y2), ..., (xN , yN ) ∈
(
IRM ′

× {±1}
)

, (6)

so that f will correctly classify new examples (x, y). When no linear separation
of the training data is possible, SVM can work effectively in combination with
kernel techniques using the kernel trick, so that the hyperplane defining the SVM
corresponds to a non-linear decision boundary in the input space [10]. In this
way the decision function f can be expressed in terms of the support vectors
only [10]:

f(x) = sign{
NS∑

i=1

αiyiK(si,x) + w0}, (7)

where K(., .) is the kernel function, αi is a weight constant derived form the
SVM process and si are the support vectors [10]. Common kernels that are used
by SVM practitioners for the nonlinear feature mapping are:

– Polynomial
K(x ,y) = [γ(x · y) + c]d. (8)
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– Radial basis function (RBF)

K(x ,y) = exp(−γ||x − y ||2). (9)

as well as the linear kernel, in which K(., .) is simply a scalar product.

4 Experiments

The database consists of a set of 3D SPECT brain images produced with an
injected gamma emitting 99mTc-ECD radio-pharmaceutical and acquired by a
three-head gamma camera Picker Prism 3000. Images of the brain cross sections
are reconstructed from the projection data using the filtered back-projection
(FBP) algorithm in combination with a Butter-worth noise removal filter. The
SPECT images are spatially normalized using the SPM software [3] in order to
ensure that the voxels in different images refer to the same anatomical positions
in the brain, in a process described in detail in [13, 17]. The images were initially
labeled by experienced clinicians of the “Virgen de las Nieves” hospital (Granada,
Spain), within two classes: NORMAL and AD. In total, the database consists of
79 patients: 41 NOR and 38 AD.

The size of the images was reduced by a factor 1/n3, with n ranging from 2 to
12, in order to reduce the effect of possible defective acquisitions of some brain
regions and to simplify the computation of the eigenbrains. In average, only 76
eigenbrains were necessary to explain near the 100% of the variance, with about
the 60% retained by the first eigenbrain. These 76 eigenbrains were taken in
groups of M ′ = 1, 2, ... to 76 items to construct the matrix of (4), grouping them
according to:

– their covariance eigenvalues.
– selecting those which made the Fisher Discriminant Ratio (FDR) between

the Ω values higher.

Fig. 2. Eigenbrain representation of three representative transversal slices of the
p-th zero-mean brain image. The representation is encoded in the coefficients
(Ωp1, Ωp2, ..., ΩpM′).
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Fig. 3. Two different kernels accuracies versus the number of eigenbrains used to con-
struct the matrix Ω for the two methods of selecting components

FDR =
(μ1 − μ2)2

σ2
1 + σ2

2
(10)

where μi and σ2
i denote the variance and the mean of the i-th class respectively.

Once the matrix Ω was obtained, a SVM was trained using 4 different kernels:
linear, quadratic, RBF and polynomial, and was tested using a leave-one-out
cross-validation strategy.

Results: Linear kernels are expected to perform better than others when the
dimension of the feature space increases. If this increase is made with a covari-
ance eigenvalue criterion, the relevant information is contained in the few first
eigenbrains, and the rest only contributes with noisy information, as seen from
Fig. 3. But enhancing the dimension of the feature space with a FDR criterion
shows a fundamental increase of the effectiveness, if compared to ranked co-
variance eigenvalues which allows to conclude that only a small fraction of the
eigenbrains contains noisy information. When a linear kernel SVM was built in
combination with a large dimensional feature space, independently of the re-
ducing factor, the method reaches notably the 100% accuray. This outperforms
previous results, as the 74% accuracy Voxel-as-Features approach [18] [19].

5 Conclusions

Using statistical classification methods in SPECT images for assisting the AD
diagnosis looks promising, but still faces problems to become a useful tool to
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physicians. Two main problems are the high dimensionality of the feature space
and the small sample size problem. In this work, we presented two solutions to
each problem: we made use of the eigenbrain approach, inspired in the eigenface
solution to the face detection problem, leading to the idea of collecting a small
feature pattern which best describes the patient image characteristics. Secondly,
we trained a SVM supervised learning classifier, which allowed us to automati-
cally separate the patient database in normal and affected subjects. Furthermore,
a classification of new subjects in a unsupervised manner was possible, without
any concrete knowledge about the Alzheimer’s disease. A significant advance is
seen when estimating the performance of this learning process with a leave-one-
out cross-validation test, reaching the 100% accuracy. PCA is then a simple and
effective method to deal with the high dimensionality problem in SPECT im-
ages with a low computational cost, which shows its effectiveness in combination
with a linear kernel SVM and high dimensional feature space, provided that the
dimension is enhanced with a FDR criterion.
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C.G., Álvarez, I., López, M., Gómez-Ŕıo, M.: Automatic computer aided diagno-
sis tool using component-based svm. In: Medical Imaging Conference, Dresden.
IEEE, Los Alamitos (2008)
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