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In this study, a resting-state fMRI based classifier, for the first time,
was proposed and applied to discriminate children with attention-
deficit/hyperactivity disorder (ADHD) from normal controls. On the
basis of regional homogeneity (ReHo), a mapping of brain function at
resting state, PCA-based Fisher discriminative analysis (PC-FDA)
was trained to build a linear classifier. Permutation test was then
conducted to identify the brain areas with the most significant
contribution to the final discrimination. Experimental results showed
a correct classification rate of 85% using a leave-one-out cross-
validation. Moreover, some highly discriminative brain regions, like
the prefrontal cortex and anterior cingulate cortex, well confirmed the
previous findings on ADHD. Interestingly, some important but less
reported regions such as the thalamus were also identified. We
conclude that the classifier, using resting-state brain function as
classification feature, has potential ability to improve current diagnosis
and treatment evaluation of ADHD.
© 2007 Published by Elsevier Inc.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the
most commonly diagnosed childhood behavioral disorders which
affected approximately 5% of school-age children and character-
ized by the symptoms of inappropriate inattention, impulsivity, and
hyperactivity. Children with ADHD have difficulties in controlling
their behaviors or focusing their attentions which result in an
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adverse effect on academic performance and social function.
Moreover, 30%–60% of individuals diagnosed with ADHD in youth
have symptoms that persist into adulthood (Biederman, 1998; Bieder-
man et al., 2000).Currently available diagnosis and treatment evaluation
of ADHD are mainly made according to the levels of the symptoms
listed in the diagnostic criteria from DSM-IV (American Psychiatric
Association, 1994). Ranking of the symptoms is usually conducted by
the parents or teachers of the children,which is unfortunately subjective.
Therefore more objective approaches are highly desired.

Structural and functional magnetic resonance imaging (MRI)
techniques have been widely used in the quantitative analysis of the
brain for ADHD, and various abnormalities have been reported as
the objective evidences for some theoretical hypotheses on the
disorder. Structural MRI studies have shown abnormalities of the
whole brain and several specific brain areas, such as the frontal
lobes, the basal ganglia, the parietal lobe, the occipital lobe, and the
cerebellum in ADHD, in comparison to normal controls (Castella-
nos et al., 1996; Overmeyer et al., 2001; Sowell et al., 2003; Seidman
et al., 2006). Using various experimental designs, task-related
functional MRI (fMRI) studies found abnormal brain activation of
ADHD in the dorsal anterior cingulate cortex (dACC), the
ventrolateral prefrontal cortex (VLPFC), and the putamen (Bush
et al., 1999; Durston et al., 2003; Teicher et al., 2000). Resting-state
fMRI has also been used in the studies of ADHD and abnormalities
were found in ACC, prefrontal cortex, putamen, temporal cortex,
and cerebellum (Tian et al., 2006; Cao et al., 2006).

Although these studies have indicated that the pathophysiology
of ADHD can be associated with the various brain regions, it has
been argued that the analysis approaches based on the group-level
statistics are less helpful to diagnosis (Seidman et al., 2004).
Recently, increasing attention has been directed to the applications
of pattern recognition techniques in brain image analysis.
Compared with the traditional group-level analysis, such techni-
ques can distinguish normal from abnormal at individual subject
level. Hence they are potentially useful procedures for clinical
diagnostic purposes. In such studies, various structural character-
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istics or functional properties of the brain derived from neuroima-
ging data were used as the feature for classification. For structural
MRI, shape of brain structures of interest, deformation field for
registration, map of gray matter membership, map of cortical
thickness, and so on have been employed to discriminate patients
(e.g., schizophrenia and Alzheimer's disease) from healthy controls
(Golland et al., 2002; Fan et al., 2007; Kawasaki et al., 2007; Yoon
et al., 2007). For task-related fMRI, the original time series and
activation maps have been used for discrimination of mental
disorders (Kontos et al., 2004; Shinkareva et al., 2006).

Though the promising studies on some psychiatric disorders
were reported using classification techniques, few were conducted
on ADHD. In addition, though the task-induced brain activities
have been used as the classification feature, the brain activities
revealed by the resting-state fMRI have not been considered for. In
the resting state, low-frequency (0.08 Hz) fluctuations (LFF) of the
fMRI signal are considered to be related to spontaneous neuronal
activity and the synchrony of LFF was first used to identify
functional connectivity among motor cortices (Biswal et al., 1995)
and then extended to other functional systems, e.g., between
bilateral visual cortices, bilateral auditory cortices, bilateral
amygdala, bilateral thalamus, and within the language system
(Lowe et al., 1998; Cordes et al., 2000; Stein et al., 2000; Hampson
et al., 2002). Abnormal LFF has been reported for ADHD (Tian et
al., 2006; Cao et al., 2006) and other neuropsychiatric disorders (Li
et al., 2002; Greicius et al., 2004; Liu et al., 2006). These findings
inspired us to use the brain activity revealed by the resting-state
fMRI as a classification feature to differentiate boys with ADHD
from their normal controls in this study.

Besides classification features, learning algorithm is also an
important aspect of a classification system and has a great impact
on the performance of a classifier. Fisher discriminative analysis
(FDA), with the advantages of simplicity, sound theoretical
foundation, and ease of interpretation, has been widely used in
the domain of pattern recognition (Duda et al., 2001). The
traditional FDA, however, cannot be used directly when the within-
scatter matrix is singular in the case of small sample size. In order
to solve the problem, principal component analysis (PCA) is
usually first employed to reduce the dimension of feature space and
FDA was then performed in the transformed feature space. Such a
PC-FDA approach was first proposed for face recognition (Swets
and Weng, 1996) and extended into the field of task-related fMRI
data analysis (Mørch et al., 1997). Recently, PC-FDA and its
variants (e.g., canonical variate analysis, CVA) have been widely
used in the analysis of task-related fMRI data (Carlson et al., 2003;
LaConte et al., 2003; Strother et al., 2004; Mourao-Miranda et al.,
2005). Carlson et al. (2003) used PC-FDA to investigate patterns of
activity in the categorical representation of objects. LaConte et al.
(2003) applied CVA on PCA basis to evaluate the impact of
preprocessing choices and the number of principal components
passed to the CVA on within-subject prediction and reliability.
Strother et al. (2004) combined PCA and CVA to optimize
preprocessing choices in fMRI data analysis. Mourao-Miranda
et al., 2005 applied FDA and support vector machines (SVM) on
PCA components for classification of different brain cognitive
states using the whole-brain fMRI data. In this study, the PC-FDA
was further extended into the resting-state fMRI analysis for the
discrimination of mental disorders and applied to ADHD. Our
initial trials were presented elsewhere (Zhu et al., 2005).

The rest of the article is organized as follows: the resting-state
classification feature, learning algorithm, classifier performance,
and discriminative pattern are detailed in the Methodology section.
Materials and experimental results are presented in the Materials
and Results sections, respectively. The discussions are in the
Discussion section followed by the Conclusion section.

Methodology

Regional homogeneity

As a mapping of brain function, regional homogeneity (ReHo)
was originally proposed to measure the regional synchrony of brain
activity recorded by fMRI (Zang et al., 2004). At a given voxel p,
ReHo was defined as the Kendall's coefficient of concordance
(KCC) of the time series of pwith those of itsK−1 nearest neighbors

W pð Þ ¼
PðRiÞ2 � nðPR Þ2

1
12K

2 n3 � nð Þ ð1Þ

whereW, ranging from 0 to 1, is the KCCwithin a cluster made up of
voxel p and its K−1 neighbors; Ri is the sum rank of the ith time

point;
P
R ¼ 1

2
K nþ 1ð Þ is themean of theRis;K is the number of time

series within the measured cluster (one given voxel plus the number
of its neighbors); n is the number of ranks. A larger ReHo value at a
given voxel indicates higher regionally temporal synchronization
within the cluster. According to Eq. (1), an individual W map (i.e.,
ReHo map) was obtained on a voxel by voxel basis for each subject.

In this study, ReHo map, derived from the resting-state fMRI,
was used as our classification feature. To calculate the resting-state
ReHo map, the preprocessed resting-state fMRI data were
temporally band-pass filtered (0.01–0.08 Hz) to reduce the effect
of low-frequency drifts and high-frequency noise (Biswal et al.,
1995; Lowe et al., 1998) using AFNI (Cox, 1996). The number of
neighboring voxels was set with 26 (i.e., K=27) as that in Zang et
al. (2004). Regions outside the brain, contributing nothing to the
discrimination, were masked and removed from the ReHo maps in
order to reduce feature dimensionality. The structural images of an
arbitrarily selected subject were shown with their corresponding
map of gray matter membership and ReHo in Fig. 1.
PC-FDA

Suppose there are two classes of samples, each with a feature
vector xaRD. FDA algorithm is trained with the samples to seek out
the optimal projective direction, xaRD, along which the two
classes of projected samples are separated with maximal ratio of
between-class distance and within-class variability. A classifier can
then be easily built up using the one-dimensional projected features.
In this work, however, the total number of training samples, N, is far
smaller than the feature dimensionD, which is defined as the number
of brain voxels in the ReHo map. Accordingly, PC-FDA approach
was adopted to solve the ill-posed problem. PCA attempts to find
linear combinations of the original features that explain most of the
variance in these features using just a few components. A major
concern is how many components should be reserved in PC-FDA to
construct the dimension-reduced subspace? From the theory of
linear algebra, the N−2 eigenvectors with the largest eigenvalues
can be reserved to make FDA feasible in the subspace. Representing
an original sample xaRD in the subspace results in a low-dimension
vector yaRd (d=N−2) and the optimal projective direction,
xdaRd , can then be worked out directly. The mathematical



Fig. 1. Slice views of (a) the normalized structural images, (b) the corresponding membership map of gray matter, and (c) ReHo map, with z value indicating slice
position; L and R indicating the left and right side of the brain.
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description of PC-FDA was given in Appendix A. and the more
theoretical foundation of PC-FDAwas detailed elsewhere (Yang and
Yang, 2003).

Classifier performance

Leave-one-out cross-validation was used in this work to
estimate the performance of our classifier. The flow chart of
leave-one-out cross-validation for our PC-FDA was shown in
Fig. 2. Suppose there are N samples in total. The leave-one-out
cross-validation trains classifier N times, each time leaving out
one of the samples from training, but using the omitted one to
compute classification error. Generalization rate, sensitivity, and
specificity can be defined on the basis of results of leave-one-
out cross-validation to quantify the performance of a classifier.

Generalization Rate ¼ ðTPþ TNÞ=ðTPþ FNþ TNþ FPÞ ð2Þ

Sensitivity ¼ TP=ðTPþ FNÞ ð3Þ

Specificity ¼ TN=ðTNþ FPÞ ð4Þ
where TP is the number of patients correctly predicted; TN is
the number of normal controls correctly predicted; FP is the
number of normal controls classified as patients; FN is the
number of patients classified as normal controls. We can see that
the Sensitivity indicates the proportion of patients correctly
predicted, while the Specificity indicates the proportion of
normal controls correctly predicted. The Generalization Rate is
the overall proportion of samples correctly predicted.
Discriminative pattern

If a classifier can predict new samples with a performance
better than random accuracy, then we can believe that the two
populations which the samples are drawn from are indeed different,
and the classifier can capture the population differences (Golland
and Fischl, 2003). When using FDA, it is straightforward to
quantify and visualize the discriminative pattern by using the
projective direction vector xaRD. After the projective direction
vector was reshaped back into a 3D matrix, the discriminative
pattern was represented as a brain (Fisher brain). Thus the
differences between the boys with ADHD and normal controls can
be explored in a stereotaxic space, such as Talairach and Tournoux
coordinates (Talairach and Tournoux, 1988). However, the optimal
projective direction vector, xdaRd , cannot be reshaped directly
into a brain space since it was obtained in the PCA dimension-
reduced subspace. To solve the problem, a back projection pro-
cedure was carried out as in Eq. (A.12). The Fisher brain con-
structed from all 20 sample subjects was presented in Fig. 5(a).

As we know from the formula (A.3), the discriminating score is
the weighted sum of ReHo values at each voxel and the weights
were determined by the values at corresponding voxels in the
Fisher brain. Thus, the larger the amplitude (positive or negative)
of a voxel in the Fisher brain, the more the voxel contributes to the
final discrimination. To determine the most important brain regions
for discriminating ADHD and normal controls, a critical threshold
is required, for each voxel, to set on the absolute amplitude of the
Fisher brain. A statistically meaningful threshold can be derived,
for each voxel, using a permutation test method. The permutation



Fig. 2. Flow chart of leave-one-out cross-validation for PC-FDA. For detailed descriptions of the variables in the flow chart, refer to Appendix A..
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test is one of nonparametric techniques which are used to estimate
empirically the distribution of a statistic under a null hypothesis
(Holmes et al., 1996; Frackowiak et al., 2004; Mourao-Miranda
et al., 2005). A full permutation test, instead of an approximation
permutation test, was applied to this study in order to produce a
more powerful test (Frackowiak et al., 2004). In a full permutation
test, all possible relabelings were used to compute the statistic to
generate the full permutation distribution. Based on these null
probability distributions and the observed statistic corresponding to
the actual labeling, the P value, defined as the probability of a
statistic value as or more extreme than the one observed, can be
worked out. The smaller is the P value, the more reasonable to
reject the null hypothesis. Usually a threshold of P0=0.05 or
P0=0.01 is meaningful. In this study, we selected P0=0.05.

In this work, the statistic is the absolute magnitude of each
voxel of the Fisher brain and the null hypothesis is that there are no
differences in the ReHo maps between ADHD patients and normal
controls. The original class labels were permuted CN1

N times for a
full permutation, where N is the total number of samples and N1 is
the number of normal controls. For each relabeling, PC-FDA was
trained and a Fisher brain was generated. After all possible
relabelings were considered the full permutation distribution was
estimated for each voxel under the null hypothesis. Based on the
null probability distributions and the observed Fisher brain
corresponding to the actual labeling, a P value was computed for
each voxel and a P map was then constructed. Finally those voxels
with P value smaller than the predefined threshold of P0 were
identified as significant for discrimination.

Materials

Participants

Participants included 12 boys with ADHD (age range: 11.00–
16.50 years, mean±SD 13.34±1.44 years) and 12 age-matched
(within 0.5 year) control boys. All subjects are right-handed and
have an intelligence quotient (IQ) N80. Written informed consent
was obtained from parents or guardians of all participants. All
children agreed to participate in this study. Three patients and one
control were excluded from further analysis because of excessive
head motion (translation greater than 1.2 mm or rotation greater
than 1.2°). Hence there were 9 ADHD boys and 11 controls left for
discriminative analysis.

MRI acquisition

The MR images were acquired on the SIEMENS TRIO 3-Tesla
scanner in Institute of Biophysics, Chinese Academy of Sciences.
For each subject we concerned the following two sets of imaging
data: resting-state fMRI time courses and 3D structural MRI. Echo
planar imaging (EPI) blood oxygenation level dependent (BOLD)
images were acquired axially with the following parameters: 2000/
30 ms (TR/TE), 30 slices, 4.5/0 mm (thickness/gap),
220×220 mm (FOV), 64×64 (resolution), 90° (flip angle), the
whole session lasted for 480 s. 3D spoiled gradient-recalled
whole-brain volume was acquired sagittally with the following
parameters: 1700/3.92 ms (TR/TE), 192 slices, 1.0/0 mm
(thickness/gap), 256×256 mm (FOV), 256×256 (resolution),
12° (flip angle).

Data preprocessing

The first 10 volumes of each functional time series were
discarded for participant adaptation to the scanning. Preprocessing
procedures for fMRI signals included motion correction, within-
subject registration, time aligning across slices, time series linear
detrending, voxels resampling to 3×3×3 mm3, and spatial
normalization. 3D structural MR images were also spatially
normalized into the MNI space and non-brain tissue voxels were
masked out. Among these processes, the linear detrending was
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undertaken using the AFNI (Cox, 1996) and the others using the
SPM2 (www.fil.ion.ucl.ac.uk/spm).

Results

As we described in Materials, there were totally 20 samples for
discriminative analysis in this work, including 9 ADHD and 11
controls. First, the classifier was trained with all the 20 samples and
then tested with the same 20 samples to indicate the separability of
the classifier on the training set. Then a 20-round leave-one-out
cross-validation, each with 19 training and 1 test samples, was
conducted to estimate the prediction ability of the classifier.
Classification results were listed in the top row of Table 1 from
which we found that the training error was zero; Generalization
Rate, Sensitivity, and Specificity of our resting-state fMRI based
classifier computed from leave-one-out cross-validation were 85%,
78%, and 91% respectively.

In order to comprehensively investigate the discriminative
ability of the proposed classification feature (ReHo map), structural
brain information was also employed as a comparing feature. Map
of gray matter (GM) membership has been used in voxel-based
morphometry (VBM) analysis to identify and characterize
abnormalities in GM density in ADHD (Overmeyer et al., 2001).
The map presents, at each voxel, the membership of the local brain
tissue belonging to GM and is usually derived from the algorithms
of soft brain tissue segmentation. Multi-context fuzzy clustering
(MCFC) was used here to generate the map because it is insensitive
to the intensity inhomogeneities (Zhu and Jiang, 2003) and the
resultant map of GM membership corresponding to the MR image
in Fig. 1(a) was shown in Fig. 1(b). The classification results of the
PC-FDA classifier based on the map of GM membership were
depicted in the fourth row of Table 1. We found that the brain
function at resting state (i.e., ReHo map) had a significantly higher
Generalization Rate of 85% when compared with the structural
feature of GM membership (55%).

The distributions of discriminative scores of both the training
and test samples in each round of the cross-validation were shown
in Figs. 3(a) and (b) for the ReHo map and the GM membership,
respectively. From Fig. 3(a) we found that, for the ReHo map, only
one testing control (round 5) and two testing patients (round 12 and
17) out of the 20-round leave-one-out cross-validation were placed
on the wrong side of the boundaries by the classifier. Moreover, the
within-class variations of discriminative scores of training samples
were small relative to the between-class distance. For the GM
membership, however, much more test samples were misclassified
and a significantly larger within-class variance appeared as shown
in Fig. 3(b).

For further validation, our PC-FDA classifier was compared
with other two typical linear classifiers, Batch Perceptron (Duda
et al., 2001) and linear support vector machine (SVM) (Vapnik,
Table 1
Classification results

Discriminative model Classifier perf

Classification feature Classifier type Training set c

Function ReHo Map PC-FDA 100%
Linear SVM 100%
Batch Perceptron 100%

Structure GM membership PC-FDA 100%
1998). Batch Perceptron algorithm, for a linearly separable
problem, can yield a separating hyperplane by minimizing a
perceptron criterion function. Geometrically, the perceptron
criterion function is proportional to the sum of the distances from
misclassified samples to the separating hyperplane. In this study,
the learning rate of Batch Perceptron was set to 1. Considering the
stochastic property of the Batch Perceptron algorithm, we repeated
the 20-round leave-one-out test for 10 times, each with a random
initialization. Then the averaged results were used to quantify
the final performance. SVM, based on the principle of structural
risk minimization, is one of the most successful classification
techniques over the last decade. For a linearly separable problem,
linear SVM seeks a separating hyperplane maximizing the
geometric margin, defined as the minimal Euclidean distance
between any training example and the hyperplane. Intuitively, the
margin measures how well the two classes were separated by a
hyperplane. The classification results of the two alternative
methods were listed in the second and third row in Table 1,
respectively. From Table 1, we found that the Batch Perceptron
approach yielded a very low Generalization Rate (55%). Both the
linear SVM and the PC-FDA classifier performed much better than
the Batch Perceptron. Moreover, the Generalization Rate of the
PC-FDA classifier (85%) was higher than that of the linear SVM
(75%) (see Discussion).

To give more insight into the Fisher brain, we compared it with
the traditional mass-univariate analysis approach, i.e., t-test map
(denoted as T brain) from the viewpoint of both mathematics and
classification ability. The mathematical relationship between the T
brain and the Fisher brain was detailed in Appendix B. In general,
the T brain is a special case of the Fisher brain when voxel is
assumed to be independent from each other and standard deviation
at each voxel is introduced as a weighting factor. Thus the T brain
can also be treated as a projective direction and we can evaluate
their classification abilities by comparing the performance of the
two projective directions in classifying the ReHo maps of ADHD
and normal children. The Generation Rate of the classifier using
the T brain as the projective direction was 55% which was
significantly lower than that using the Fisher brain (85%).
Moreover, as shown in Fig. 4, the discriminative scores derived
from the T brain demonstrated a significantly larger within-class
variation than that of the Fisher brain.

In addition to sensitively differentiate ADHD from normal
controls, our classifier can also be used to characterize how the
discriminative information is represented in the brain, which is
important to assist basic and clinical neuroscience researchers to
elucidate the pathophysiology. As shown in Fig. 5(b) the abnormal
brain regions identified by the permutation test on the Fisher
brains, like the prefrontal cortex and the anterior cingulate cortex,
well confirmed previous findings on ADHD. Moreover, the
thalamus was identified which was less reported in literatures.
ormance

orrect rate Leave-one-out cross-validation

Generalization Rate Sensitivity Specificity

85% 78% 91%
75% 56% 91%
55% 44% 64%
55% 56% 55%

http://www.fil.ion.ucl.ac.uk/spm


Fig. 3. Distributions of discriminative scores of 20-round leave-one-out (LOO) cross-validation of PC-FDA for (a) ReHo map and (b) GM membership.
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We also compared the results of the Fisher brain and the T brain at
the significant level (P=0.05). Generally speaking, the patterns of
identified regions of the two approaches were quite similar.
However, the Fisher brain demonstrated a larger size at most of the
identified regions than that of the T brain.

Discussions

The resting-state fMRI currently received more andmore interest
since a baseline state is fundamental in understanding human brain
functions (Raichle and Mintun, 2006) and has been intensively
employed to study healthy (Biswal et al., 1995; Lowe et al., 1998;
Cordes et al., 2000; Stein et al., 2000; Hampson et al., 2002) and
abnormal (Li et al., 2002; Greicius et al., 2004; Tian et al., 2006; Cao
et al., 2006; Liu et al., 2006) brains. Moreover, the resting-state
fMRI, asking patients nothing but to remain still with eyes closed, is
of more potential applications in clinical studies than the task-related
fMRI where patients are required to follow relatively complicated
cognitive tasks. Selection of classification feature is an important
issue in pattern recognition and it greatly affects the classifier
performance. In this study, the resting-state fMRI was extended into
the field of discriminative analysis of mental disorders. ReHo map,
derived from resting-state fMRI data, has been used as the index of
resting-state brain function to investigate regional spontaneous
neural activity of patients with ADHD (Cao et al., 2006), which
suggested that ReHomap could be potentially useful in revealing the
pathophysiology of psychiatric disorders during resting state.
Accordingly, the resting-state fMRI, reflecting spontaneous neural
activities, is a promising feature for the classification of mental
disorders and we used ReHo map in this study as the classification
feature for ADHD.

As noted in the Introduction section, studies have also
suggested various brain abnormalities in brain structures in ADHD
population. For example, the map of GM membership was
previously used to identify and characterize abnormalities in GM
density in ADHD (Overmeyer et al., 2001). In order to validate the
discriminative ability of the resting-state fMRI (i.e., ReHo map),
structural MRI feature (i.e., GM density map) was used as a
comparing classification feature. Though ADHD related abnorm-
alities have been reported using ReHo (Cao et al., 2006) and GM



Fig. 5. Slice views of 3D images. (a) Fisher brain and (b) highly discriminative regions overlaid on structural images, with z value indicating slice position; L and
R indicating the left and right side of the brain; color bar indicating the significant level (i.e., P value) of detected regions. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Distribution of discriminative scores of 20-round leave-one-out (LOO) cross-validation when using T brain as projective direction.
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membership (Overmeyer et al., 2001) independently, our experi-
mental results in Table 1 clearly demonstrated that ReHo is more
powerful (both in sensitivity and specificity) for discrimination of
ADHD than GM membership. It implies that brain function may be
more susceptible than brain structures for ADHD and the features
derived from resting-state fMRI thus have more potential to assist
in the diagnosis for ADHD.

Besides the classification feature, learning algorithm is another
important aspect of pattern recognition. Although more complex
nonlinear learning algorithms exist, linear learning algorithms were
adopted in this study because they are more insensitive to
overfitting problems than nonlinear ones, especially in the case
of high feature dimension and small sample size (Mørch et al.,
1997). In addition, the explanation of linear classifier is much more
straightforward than that of nonlinear ones. In a linear classifier,
the projective direction itself, like Fisher brain in FDA, is a natural
way to clarify which voxels or brain regions are more important
than others for the final discrimination. However, there is no
uniform expression for the discriminative pattern between two
populations due to the complicated separating boundaries of
nonlinear classifiers, and thus it is difficult for a basic or clinical
neuroscientist to understand the mechanism underpinning the
classifier.

For further validation, the PC-FDA classifier was compared
with two other typical linear classifiers, Batch Perceptron and
linear SVM. Batch Perceptron algorithm, starting with a random
initialization, may converge to any one of the possible solutions
that correctly classifies all training samples (in the linear separable
case). Therefore this algorithm does not care whether the solution
has the best capacity of generalization or not. FDA and linear
SVM, however, seek their own best one in all feasible solutions.
FDA tries to find the solution to separate two classes' samples with
maximal ratio of between-class distance and within-class varia-
bility. Linear SVM seeks out the solution to maximize the
geometric margin, defined as the minimal Euclidean distance
between any training example and the separating hyperplane.
Therefore, the two linear classifiers should outperform Batch
Perceptron and these are the theoretical reasons why Batch
Perceptron algorithm gave the lowest Generation Rate of 55%
among the three linear classifiers. Our experimental results further
showed that the Generation Rate of PC-FDA (85%) is higher than
that of linear SVM (75%). Though Mourao-Miranda and colleges
suggested, on the basis of their experimental results, that linear
SVM had better generation performance than other linear
classifiers (Mourao-Miranda et al., 2005). Some other studies,
however, have found that SVM did not always outperform FDA
(Yang et al., 2001; Tang et al., 2003). The theoretical comparison
between FDA and linear SVM is not easy since they have different
objective functions for classification and one possible reason to
the difference in performance of the two classifiers may be the
limited number of examples. Considering the small sample size
(20 in total), the 10% difference in the Generation Rate between
the two classifiers is, in practice, only two samples. After we
carefully examined the distribution of the discriminative scores of
the two samples additionally misclassified by linear SVM (LOO
round 15 and 18), we found that both of them were located much
near the separating boundary as shown in Fig. 3(a). Classification
results are sensitive to such samples very near the separating
boundary. If the decision on such samples were ignored the two
classifiers then have no significant difference in classification
performance.
As shown in Fig. 5(b), several localized areas were identified as
highly discriminative regions, including the anterior cingulated
gyrus, prefrontal cortex, putamen, occipital cortex, temporal
cortex, cerebellum, and thalamus. Evidences from both structural
and task fMRI studies have indicated that most of these regions
may be involved in the pathology of ADHD (Castellanos et al.,
1996; Durston et al., 2003; Bush et al., 1999; Sowell et al., 2003).
The previous resting-state fMRI study also found the abnormality
of prefrontal cortex, putamen, temporal cortex, and cerebellum in
ADHD (Cao et al., 2006).

An involvement of the thalamus in the regulation of cortical
arousal through thalamo-cortical connections has been reported
earlier (Montaron and Buser, 1988). Then several functional
neuroimaging studies found that the thalamus was activated during
attentional tasks (Lawrence et al., 2003; Sturm et al., 2004; Fan
et al., 2005) indicating the important role of the thalamus in
attentional processes (Buchsbaum et al., 1990). Although the
thalamus is presumed a very critical brain region subserving
normal attentional processes, few studies from neuroimaging, to
our knowledge, have found abnormality in thalamus in ADHD. In
this study, however, the thalamus was identified in ADHD. The
reason, as mentioned previously, may be that the traditional
analysis approaches are essentially univariate. FDA is, in contrast,
multivariate in nature. That is all voxels are explored simulta-
neously and the covariance structure is taken into account when
quantifying group differences. Thanks to the intrinsically spatial
correlations of brain activities, FDA should (at least, in theory) be
more sensitive to the group difference than traditional analysis
methods and, thus, the classifiers using Fisher brain as the
projective direction be more powerful than that using voxel-wise t-
test map (T brain). This has been supported by our experimental
results. The Generation Rate of the T brain (55%) was much lower
than that of the Fisher brain (85%). In addition, the discriminative
scores derived from the T brain demonstrated a significantly larger
within-class variation than that of the Fisher brain as shown in Fig.
4. In addition, we performed a statistical analysis on the P values
over the identified bilateral thalamus for the Fisher brain and the T
brain respectively and found that the distribution of significant
value (i.e., P value) in the bilateral thalamus identified by the
Fisher brain (mean±SD: 0.0188±0.0146) is obviously lower than
that for the T brain (mean±SD: 0.0252±0.0128). This result
indicated that the thalamus can still be identified in the Fisher
brain, even with a more rigorous P threshold at which the thalamus
cannot be identified by the T brain or other univariate approaches.

Though our classifier demonstrated a good performance from
cross-validation, it is still a challenge to generalize our findings
into clinical applications due to the limited size of samples with
high dimensional feature and the impact of acquisition hardware
and pulse sequence parameters for scanning. Accordingly it would
be very important to evaluate our classifier with larger sample size
and multi-center imaging data in the future. In addition, brain
function features derived from task-related fMRI will be compared
with the ReHo map in the future to further validate our proposed
brain function feature derived from resting-state fMRI. Finally,
future studies should be complemented to unravel the role of
thalamus in the pathology of ADHD.

Conclusions

In this study, resting-state fMRI was proposed, for the first
time, as classification feature and successfully applied into the
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discriminative analysis for ADHD in the framework of PC-FDA.
The discriminative model provided important evidence for
potentially improving the diagnosis of ADHD. More impor-
tantly, other discriminative models could also be built in a
similar way to identify subtypes of ADHD and to evaluate and
predict treatment response of ADHD or extended even to other
psychiatric disorders.
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Appendix A. PC-FDA

Mathematically, the objective function of FDA in the formula
(A.1) is to be maximized.

J xð Þ ¼ xTSbx
xTSwx

ðA:1Þ

where Sw ¼PN1
i¼1ðxð1Þi � mð1ÞÞðxð1Þi � mð1ÞÞT þ PN2

i¼1ðxð2Þi � mð2ÞÞ
ðxð2Þi � mð2ÞÞT and Sb= (μ(1)−μ(2))(μ(1)−μ(2))T are the within-class
and between-class scatter matrix respectively; xi

(1)(i=1,2…N1) and
xi
(2)(i=1,2…N2) are the feature vectors, μ(1) and μ(2) the mean
feature vector, and N1 and N2 the sample sizes, of the two classes,
respectively. Theoretically, the optimal projective direction can be
given by:

x ¼ S�1
w ðmð1Þ � mð2ÞÞ ðA:2Þ

Projecting each sample x onto ω results in a one-dimensional
discriminating score, zaR1, by the inner product operation:

z ¼ hx;xi ¼ xTd x ðA:3Þ
Finally, the classification threshold, z0aR1, is determined

by:

z0 ¼ ðN1
P
z

ð1Þ þ N2
P
z

ð2ÞÞ=N ; N ¼ N1 þ N2 ðA:4Þ
where z̄ (1) and z̄ (2) are the centers of discriminating score of
class 1 and 2 respectively. Finally a linear classifier is generated
as

gðxÞ ¼ xTd x� z0N0 8xaclass 1
gðxÞ ¼ xTd x� z0b0 8xaclass 2

ðA:5Þ

PCA is usually implemented by singular value decomposition
(SVD). Suppose all training samples were contained in a data
matrix XaRD�N with one column x for each subject and the
sample center is maRD.

X ¼ ½xð1Þ1 ; xð1Þ2 ; N ; xð1ÞN1
; xð2Þ1 ; xð2Þ2 ; N ; xð2ÞN2

� ðA:6Þ

m ¼ 1
N

XN1

i¼1

xð1Þi þ
XN2

i¼1

xð2Þi

 !
ðA:7Þ
Then the centered data matrix is

X0 ¼ ½xð1Þ1 � m; xð1Þ2 � m; N ; xð1ÞN1
� m; xð2Þ1 � m; xð2Þ2 � m; N ; xð2ÞN2

� m�
ðA:8Þ

SVD on X0 results in the following decomposition

X0D�N ¼ UD�NSN�NT
T
N�N ðA:9Þ

S is a diagonal matrix with nonnegative diagonal elements si
(i=1,2…N) (i.e., singular values) in decreasing order. U contains
the corresponding eigenvectors aiaRDði ¼ 1; 2 N NÞ.

Suppose d (less than D) components are reserved to generate
the dimension-reduced space Rd . Then representing an original
sample xaRD in the subspace results in a low-dimension vector y

y ¼ UT
d ðx� mÞ; Ud ¼ ½a1; a2 N ad � ðA:10Þ

Thus (A.2) can be directly used in Rd to find the optimal
projective direction, xdaRd , and the final classifier is then
obtained as

gðxÞ ¼ xT
dd U

T
d ðx� AÞ � z0N0 8xaclass 1

gðxÞ ¼ xT
dd U

T
d ðx� AÞ � z0b0 8xaclass 2

ðA:11Þ

Finally, ωd in Rd can be back projected to the original feature
space Rd according to the formula (A.10)

x ¼ Udxd; Ud ¼ ½a1a2 N ad� ðA:12Þ

Appendix B. Relationship between Fisher brain and T brain

T brain is constructed by doing a t-test at each and every voxel
between two groups:

T ¼ ½t1; t2; N ; tD�T ðB:1Þ

where tk ¼ mð1Þk � mð2Þk

rk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N1
þ 1

N2

q is the t-value at voxel k (k=1,2,…,D) and

(1) (2)
μk ,μk is mean observation of two classes; σk is the pooled
standard deviation. T brain results essentially from mass-univariate
statistical approach since each voxel was treated independently.
Under the assumption of independency, within-class scatter matrix
in (A.2) is degenerated into a diagonal matrix:

Sw ¼
SSð1Þ1 þ SSð2Þ1 0 0 0

0 SSð1Þ2 þ SSð2Þ2 0 0
0 0 O 0

0 0 0 SSð1ÞD þ SSð2ÞD

2
6664

3
7775

ðB:2Þ
where SSk

(1) and SSk
(2) are the sum of squares of class 1 and 2 at

voxel k respectively. The pooled standard deviation at voxel k is
estimated by

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSSð1Þk þ SSð2Þk Þ=ðN1 þ N2 � 2Þ

q
ðB:3Þ

Hence,

Sw ¼ ðN1 þ N2 � 2Þd
r21 0 0 0
0 r22 0 0
0 0 O 0
0 0 0 r2D

2
664

3
775 ðB:4Þ
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Therefore, the optimized projective direction vector is

x ¼ S�1
w mð1Þ � mð2Þ
� �

¼ 1
N1 þ N2 � 2

mð1Þ1 � mð2Þ1

r21

Að1Þ2 � mð2Þ2

r22
N

mð1ÞD � mð2ÞD

r2D

" #T

ðB:5Þ
Replacing

mð1Þk � mð2Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiq with tk, we get

rk 1

N1
þ 1

N2
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N1
þ 1

N2

q
N1 þ N2 � 2

t1
r1

t2
r2

N
tD
rD

� �T
ðB:6Þ

which is very similar to the T brain in (B.1) when ignoring the

scaling factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N1
þ 1

N2

q
N1 þ N2 � 2

. Comparing (B.1) with (B.6), we can

see that classical T brain is just a Fisher brain when voxels are
assumed to be independent from each other and standard
deviations are introduced as weights for each voxel.
Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2007.11.029.
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