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Preface

The study of brain function is one of the most fascinating pursuits of mod-
ern science. Functional neuroimaging is an important component of much of
the current research in cognitive, clinical, and social psychology. The excite-
ment of studying the brain is recognized in both the popular press and the
scientific community. In the pages of mainstream publications, including The
New York Times and Wired, readers can learn about cutting-edge research
into topics such as understanding how customers react to products and ad-
vertisements (“If your brain has a ‘buy button,’ what pushes it?”, The New
York Times, October 19, 2004), how viewers respond to campaign ads (“Using
M.R.I.’s to see politics on the brain,” The New York Times, April 20, 2004;
“This is your brain on Hillary: Political neuroscience hits new low,” Wired,
November 12, 2007), how men and women react to sexual stimulation (“Brain
scans arouse researchers,” Wired, April 19, 2004), distinguishing lies from the
truth (“Duped,” The New Yorker, July 2, 2007; “Woman convicted of child
abuse hopes fMRI can prove her innocence,” Wired, November 5, 2007), and
even what separates “cool” people from “nerds” (“If you secretly like Michael
Bolton, we’ll know,” Wired, October 2004). Reports on pathologies such as
autism, in which neuroimaging plays a large role, are also common (for in-
stance, a Time magazine cover story from May 6, 2002, entitled “Inside the
world of autism”). The 1990s were designated “The Decade of the Brain” by
the National Institute of Mental Health and the Library of Congress; the 2003
Nobel Prize in Medicine was awarded for research that lies at the foundation
of functional magnetic resonance imaging (fMRI), one of the most prevalent
and popular tools used for studying brain function.

Statisticians have a key role to play in this research, since the data that
are obtained from these studies are remarkably complex (correlated in time
and in space in ways that are still not fully understood) and massive (a typical
number might be hundreds of thousands of time series for a single subject, one
for each “voxel,” or volume element, of the brain). The number of subjects on
the other hand is generally small, a situation that creates challenges for statis-
tical inference. Statisticians have already made many important contributions
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to the field, and as more universities set up imaging centers of their own, the
presence of on-site statistical experts becomes more important. Obtaining the
necessary background in neuroimaging and neuroscience, however, can take
many years of intense study. My goal in writing this book was to provide an
introduction to functional magnetic resonance imaging, aimed at statisticians,
that would highlight the important scientific issues and survey the common
(and some not so common) analysis pathways.

The primary intended audience is statisticians who are interested in this
growing field and who wish to gain an understanding of the major problems
and current solutions. A secondary audience is cognitive psychologists and
other neuroscientists who use fMRI as a research tool. This book can also
serve them as a summary of the major statistical questions in the analysis of
functional neuroimaging data and of the commonly used methods. Readers
need only be familiar with basic graduate level statistics – linear models, gen-
eral and generalized linear models, nonparametric statistics, Bayesian theory,
and the like.

The first three chapters of this book give the scientific background: a brief
introduction of how fMRI data are acquired appears in Chapter 1, followed
by chapters on experimental design and data preprocessing. Chapter 4 is a
“bridge” chapter, summarizing the major statistical issues and setting the
stage for the core of the book, chapters 5 through 10. These chapters describe
the various statistical approaches that have been taken for analyzing fMRI
data, from the popular general linear model (Chapter 5), through spatiotem-
poral models (Chapter 6), multivariate approaches (Chapter 7), analyses using
basis functions (Chapter 8), and Bayesian analysis (Chapter 9). Chapter 10
covers the important problem of multiple testing in fMRI. Chapter 11 is the
other end of the “bridge” connecting to Chapter 4 – a look back at additional
statistical questions in light of the knowledge acquired in the previous chap-
ters. Finally, Chapter 12 presents analysis of a real data set as a simple case
study.

It is worth emphasizing that no book of this nature can ever be completely
comprehensive, nor can it be totally current. The pace of statistical research
and innovation is such that, almost by definition, such a book would be out
of date before it could be published. I have aimed instead to give readers an
overview, with some detail, of the most commonly used methods, sprinkled
with an accounting of some of the more idiosyncratic approaches. In this way
I hope to show the richness and creativity of existing statistical analyses and
make new researchers aware of what has already been attempted.

I have been fortunate in my more than ten years of working in this field to
have learned from and interacted with many talented statisticians and psy-
chologists. My thanks go to Jeongyoun Ahn, Jim Becker, Yoav Benjamini,
Dulal Bhaumik, DuBois Bowman, Pat Carpenter, Bill Eddy, Chris Genovese,
Robert Gibbons, Marcel Just, Ming-Hung (Jason) Kao, Tim Keller, Chris-
tine Krisky, Yehua Li, Beatriz Luna, Jennifer McDowell, Rebecca McNamee,
Abhyuday Mandal, Stephen Miller, Ana Moura, Tom Nichols, Todd Ogden,
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Cheolwoo Park, Sumitra Purkayastha, Lynne Seymour, Taniya Sikdar, An-
drew Sornborger, Lin Sun, John Sweeney, Keith Thulborn, Joel Welling,
Nathan Yanasak, Jun Ye, and Qun Zhao for helpful conversations over the
years and for reading parts of this manuscript as it was in progress. Sev-
eral anonymous reviewers provided useful comments and suggestions. Special
thanks to Heidi Sestrich for help with Latex. My appreciation also to John
Kimmel at Springer for his patience and technical advice.

As always, none of this would have been possible without the help, encour-
agement and love of my parents, Morty and Rita Lazar, my brother Michael,
and my husband David Sidore. My heartfelt thanks to you all for seeing me
through this latest endeavor.

Nicole Lazar
Athens, Georgia
January 2008
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1

The Science of fMRI

1.1 A Quick Tour of the Brain

A challenging aspect of starting to work as a statistician in the area of brain
research is learning about neurophysiology. This is necessary if one is to hold
meaningful conversations with psychologists and neuroscientists.

We start with orientation. This refers to common terms in use by scien-
tists to describe the different perspectives for looking at the brain. The brain
is divided into two hemispheres, the left and the right, separated by the cor-
pus callosum. The corpus callosum can be thought of as the midline of the
brain. The direction away from the midline is lateral, whereas the direction
toward the midline is medial. Proximal and distal mean closer and farther
away, respectively.

The rostral or anterior position refers to the front end of the brain (behind
the forehead); the other end of this axis, the hind end, is caudal or posterior.
The final axis is dorsal/superior (the top of the brain) versus ventral/inferior
(the bottom side of the brain). These are depicted in Figure 1.1.

It is helpful to be familiar with these terms, since many specific brain areas
are described by their positions along the various axes of orientation.

The brain comprises three main parts – forebrain, midbrain, and hindbrain.
The forebrain is made up of the cerebrum, the thalamus, and the hypothala-
mus. The cerebrum, also known as the cortex, is the largest part of the human
brain and it is responsible for higher brain function, the sort that is of inter-
est in fMRI. The cortex is often compared to a crumpled-up handkerchief -
just as a folded-up cloth can fit into a smaller physical space than one laid
out flat, so too does the “crumpling” of the cortical “cloth” allow the cortex
to fit inside the human skull (the unflattened cortex has an area of around
2500 cm2, on average; see for example Huettel et al. 2004). Furthermore, the
crumpling of a cloth, and likewise of the cortex, creates folds – sulci in neu-
roanatomical terms, surrounded by bulges of cloth, or gyri. A consequence of
having many folds and bulges is that a crumpled-up cloth has a much larger
surface area than a smoothed one. The complex structure of the cortex has

N.A. Lazar, The Statistical Analysis of Functional MRI Data,
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Fig. 1.1. Sketch of a brain with some of the orientation axes drawn in.

been related to higher brain function: higher animals tend to have more cortex
(Carlson, 1981). The thalamus is involved in sensory and motor function; it
acts as a “relay” for neural input to the cerebral cortex. The hypothalamus is
associated with regulating homeostasis in the body, thirst, hunger, circadian
rhythms. It is also involved in the modulation of reflex reactions and behav-
iors (such as fighting and fleeing) that are related to survival. The thalamus
and hypothalamus, together with the amygdala and hippocampus, make up
what is known as the limbic system (Carlson, 1981). The limbic system plays
a central role in emotional behavior.

The hindbrain contains the cerebellum, pons, and medulla. These latter
two, together with the midbrain, make up the brain stem. The cerebellum
(“little brain”) handles movement, posture, and balance, as well as fine motor
coordination. The brain stem is responsible for basic life functions, such as
breathing and regulation of the cardiovascular system (Carlson, 1981).

The cerebral cortex consists of four lobes: frontal, parietal, occipital, and
temporal, as seen in Figure 1.2. Each lobe is broadly responsible for different
functions of the brain. The frontal lobe, which is at the front of the brain,
behind the forehead, is involved with higher function such as reasoning and
planning. It also has a role in problem solving, emotion, and motor control.
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The parietal lobe, which is caudal to the frontal lobe, and separated from it by
the central sulcus, is associated with recognition, perception, and orientation.
At the back of the cortex is the occiptal lobe, which is responsible for visual
processing. The temporal lobe, located on the ventral part of the cerebrum, is
involved with memory, speech, and the recognition of auditory stimuli (Huettel
et al., 2004). It is separated from the parietal and frontal lobes by the Sylvan
fissure.

Frontal Parietal

Occipital

Cerebellum

Brain Stem

Temporal

Fig. 1.2. Sketch of the brain showing the four lobes, the cerebellum, and the brain
stem.

1.2 The Science of fMRI

How does functional MRI work? To answer this question we first need to
understand the concept of magnetic resonance (MR). From it we can advance
to an understanding of magnetic resonance imaging as a general technique for
studying anatomical structure, and finally explore applications to functional
imaging. More detailed explanations can be found in Brown and Semelka
(1995) and Hashemi et al. (2004).
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1.2.1 Introduction to Magnetic Resonance

Our bodies are made up of atoms, which in turn consist of protons (possess-
ing a positive charge), electrons (possessing a negative charge), and neutrons
(having no charge). The protons and neutrons are in the nucleus of the atom,
and the electrons are outside of the nucleus. The number of each type of
particle (proton, electron, neutron) determines the specific characteristics of
the atom. Two characteristics that are of particular interest for MR are the
atomic number and the atomic weight. The atomic number refers to the num-
ber of protons, and is the same for all atoms of a particular element. For
instance, all carbon atoms have an atomic number of 6 since carbon atoms
have six protons. The atomic weight is the sum of the number of protons and
neutrons. This may differ for different atoms of an element, or isotopes of the
element. Continuing the carbon example, one isotope of carbon has six neu-
trons as well as six protons, giving it an atomic weight of 12. Another isotope
has seven neutrons, for an atomic weight of 13. These are denoted 12C and
13C, respectively. Both of these isotopes have an atomic number of 6.

The importance of the atomic weight and number for MR stems from
the fact that these two determine a third property of an atom, namely its
spin. The possible values of spin depend on the atomic weight and the atomic
number as follows: Spin is 0 if both the atomic weight and the atomic number
are even. The 12C isotope of carbon has 0 spin. Nuclei with 0 spin cannot
be studied using MR. On the other hand, spin is of half-integral value (1/2,
3/2, 5/2, etc.) if the nucleus has an odd atomic weight. And spin is of integral
value (1, 2, 3, etc.) if the nucleus has an odd atomic number and even atomic
weight. Since most elements have at least one isotope that possesses spin, in
principle almost any element can be studied using MR. In practice, however, it
is common to study the 1H isotope of hydrogen, as it: possesses spin of 1/2; is
the most abundant isotope of hydrogen, and hydrogen is found in abundance
in the tissues that are the target of magnetic resonance imaging; and is very
sensitive to the magnetic field into which the body is placed for the purpose of
imaging. Unless stated otherwise, we will assume henceforth that images are
based on the 1H isotope. For any other isotope the basics of how the imaging
would proceed are the same.

An MR scanner is a large magnet that generates a magnetic field that is
many times more powerful than the natural magnetic field of the earth. The
strength of a magnetic field is measured in Tesla (T). One Tesla is 10,000
Gauss. The fields generated by MR scanners range from 1.5T and up. By
contrast, the magnetic field of the earth is around 0.5 Gauss, or 0.00005T
(Hashemi et al., 2004). Atoms that are placed in a magnetic field of given
strength, usually denoted B0, absorb photons of frequency ω if the atoms have
nonzero spin. The frequency of absorption depends on the gyromagnetic ratio
γ of the nucleus, via the Larmor equation

ω = γB0.
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γ differs for different elements, and also for the different isotopes of the same
element; for 1H, γ = 42.58 megahertz per Tesla. This high value of γ (for
comparison, the value of γ for 13C is only 10.71), together with its natural
abundance in the body, is what makes hydrogen particularly easy to image
using magnetic resonance.

Particles with spin naturally spin, or precess, around a central axis, much
as a gyroscope or spinning top. In the natural state, the nuclei in the body
precess in random directions, and the net magnetization of the body is zero,
since the spins in the different directions cancel each other out. When the
body is exposed to a magnetic field, the hydrogen atoms in particular have a
tendency to line up in the direction of that field, with about half going parallel
and half going anti-parallel. Significantly, the alignment isn’t exactly half and
half, and it is the slight preference of the particles to go in the direction of
slightly lower energy (the parallel orientation) that allows magnetic resonance
imaging to work at all. As more nuclei line up in the direction that is parallel to
the magnetic field, the object inside the scanner becomes slightly magnetized.
The magnetization of the object inside the field is denoted M, which can be
thought of as a vector with direction and magnitude (length). The components
of the vector are longitudinal, aligned in the direction of the magnet (this is
usually depicted on the z-axis), and transverse, aligned orthogonal to the main
magnetic field (in the (x, y)-plane). The nuclei continue to precess, but now the
directions are no longer random – precession is along the axis that is parallel
to the magnetic field. Whereas the atoms are lined up in the direction of the
field and rotate along the axis defined by the direction of the field, each atom
is precessing at a different phase. Returning to the spinning top image, we can
think now of looking at many tops, all gyrating around central axes that are
the same along the z dimension. The different tops, however, aren’t spinning
all in tandem, so they have varying values in the x and y dimensions. The
result of these processes is that the spins in the (x, y)-plane cancel each other
out, so that the net magnetization in the transverse direction is zero (or close
to it), and the total magnetization is derived from the difference in alignment
(parallel to the field or anti-parallel) of the atoms. As the proportion of spins
in the parallel alignment increases, so too does M.

There are two ways of increasing the number of protons in the low energy
state (Huettel et al., 2004). One is to decrease the ambient temperature, since
the number of spins in the parallel alignment increases as the temperature goes
down. However, as noted by Huettel et al., in order to observe a meaningful
change in the net magnetization, a large drop in temperature is required, so
that this approach for increasing M is not feasible, in general. The second
way is to increase the strength of the external magnetic field – as the field
strength goes up, more protons, proportionally, align in the parallel, lower
energy direction, a phenomenon known as the Zeeman effect.



6 1 The Science of fMRI

1.2.2 Acquiring MR Images

The next step is to inject additional energy into the system, in the form of
radiofrequency (RF) pulses. When the RF pulse is at the right frequency (the
so-called resonance frequency), the protons absorb the energy, and gradually
release it, to return to their initial state. Effectively, some of the spins in
the low energy state are excited by the RF pulse, jumping to the higher
energy state. When the pulse is turned off, excited protons emit energy as
they return to the parallel orientation. The emitted energy is detected in
turn by radiofrequency coils in the MR scanner. Magnetic resonance imaging
takes advantage of these dual processes of absorption and re-emission (or
relaxation): by applying the RF pulses in an appropriate fashion, it is possible
to uniquely identify each location in the space that is being imaged. This is
accomplished through the use of gradient pulses, or small perturbations to the
main magnetic field, which are applied in each of the three directions x, y,
and z. The differential application of magnetic gradients is fundamental to the
formation of MR images. Hence, as we will see in the next chapter, there are
many ways in which the gradient pulses can be applied, and finding optimal
strategies is a major area of research among MR physicists. Here, we survey
the basic principles that underlie all different pulse sequences.

Atoms that are precessing near the frequency of the RF pulse (as deter-
mined by the Larmor equation) are the only ones that will be affected. For
hydrogen atoms in a 1.5T scanner, applying an RF pulse of 63.87 MHz (the
Larmor frequency of (42.58 MHz/Tesla) times 1.5T) will move some nuclei
from the low energy state to the high energy state. When energy is injected
into the system at this frequency, the affected protons are “tipped,” or aligned
in a uniform angle (the flip angle). As a result, M is flipped away from its
orientation at equilibrium (i.e., when there is no extra energy in the system)
and toward the transverse plane that is orthogonal to the axis of the original
field. The tipped protons all precess in phase, by contrast with the situation
at equilibrium, where they precessed at random in the direction of the mag-
netic field. The resultant dynamic field generates current in the receiver coils
proportional to the number of hydrogen atoms in the tissue, as the atoms
emit energy (once the RF pulse is turned off) as they return to equilibrium.

Specific application of the gradients proceeds as follows. Recall that the
body in the scanner is parallel to the field of the magnet. By convention, this
direction is denoted as the z-axis. If we don’t apply any extra energy beyond
the basic RF pulse, there is no spatial discriminatory ability – an echo signal
of the object in the scanner will be obtained, but there will be no way of
distinguishing locations in the object. If that RF pulse is not at the Larmor
frequency, there will be no excitation of protons. By using a gradient coil we
can vary the strength of the magnetic field, so that each location in the brain
has its own resonance frequency. The first step is to apply a gradient in the
z direction; this will cause the strength of the magnetic field to vary, usually
in a linear fashion, from the top of the brain to the bottom, for instance. To
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exemplify this numerically, suppose the subject is inside a 3T scanner. The
effect of the gradient coil is to make the field slightly stronger than 3T at, say,
the top of the head, and slightly lower than 3T at the bottom of the head.
If we now apply a radiofrequency pulse at the frequency corresponding to
2.9T, say, only spins in those parts of the brain that are exposed to the 2.9T
field will be precessing at the appropriate rate as determined by the Larmor
equation. The other protons won’t be affected at all.

Therefore, after application of a gradient Gz in magnitude to the field in
the z direction, a slice of the brain is selected. Call this slice z1. All protons in
the particular slice affected by the gradient will precess at the same rate, and
this rate in turn matches the frequency of oscillation of the RF pulse. Nuclei
in other slices will be precessing either too quickly or too slowly (depending
on their location), and hence will not be able to absorb the RF energy – they
won’t resonate. Changing the gradient shifts the focus to different slices of
the brain. Furthermore, as the gradient is applied, energy is added to that
already in the field, so that protons in two different slices, say z1 and z2, will
have different resonant frequencies, ω1 and ω2. This process is demonstrated
schematically in Figure 1.3.

Fig. 1.3. The slice selection process. When the gradient is applied, the total mag-
netic field to which a proton is exposed will depend on its location, according to the
Larmor equation. At location zi tissue absorbs energy with frequency centered at
ωi.
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A similar principle holds for localizing in the transverse plane. After the
slice is chosen, we have to encode in the other two directions, that is, along
the (x, y)-plane perpendicular to the field. This occurs in much the same
way: a gradient is applied in the x direction, and another in the y direction.
To understand more clearly how this works, we can think of the tissue in the
chosen slice as being divided into an array with rows and columns. The protons
in the slice are precessing in phase. Now, apply a phase encoding gradient to
the field. This Gy gradient will be increased (linearly, in general) as we move
from the bottom row of the array to the top row. Now, nuclei that sit in
different rows precess at slightly different phases, however, within a row, the
protons are still precessing in phase. Finally, a frequency encoding (or readout)
gradient Gx is applied, which increases as we move from the leftmost column
of the slice to the rightmost. As a result, the nuclei in different columns are
precessing at different frequencies, although within a column the frequency
of precession is constant. Within the array defined by the slice, each element
can be distinguished from all the others, since each location has a different
phase (the y-axis coordinate) and frequency (the x-axis coordinate), as shown
in Figure 1.4.

The localization within the field can be made more explicit by considering
an expanded version of the basic Larmor equation:

ωi = γ(B0 + G× ri).

In this expanded equation, ωi is the frequency of the proton at position ri

and G is a vector summarizing the amplitude and direction information of
the gradient (Hinshaw and Lent, 1983). As can be seen from the equation, in
the presence of the gradients, each proton will resonate at its own frequency.
Hence, the MR image is, in effect, a map of these frequencies. The intensity
of the image at a given pixel is proportional to the number of protons in the
corresponding voxel (volume element), weighted by the relaxation times for
the tissues that are in that voxel.

1.2.3 Relaxation

Recall that when RF energy is injected into the system at the correct fre-
quency, it is absorbed by the protons. Once the RF pulse is turned off, the
protons start to relax, or emit the energy in an attempt to return to their equi-
librium state. There are three relaxation times that are relevant in magnetic
resonance imaging; these are denoted T1, T2 and T ∗

2 .
T1 is the spin-lattice or longitudinal relaxation time. This is the time re-

quired by the z component of the excited magnetic field to return to 63% of its
original value, after an excitation pulse. At equilibrium the magnetized field
M is parallel to the static magnetic field B0. Absorption of energy causes M
to rotate relative to the static field. The T1 relaxation process is therefore the
mechanism by which the protons release energy and return to their equilib-
rium (low energy) orientation. The T1 relaxation curve can be described by
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Fig. 1.4. Schematic of the effect of the phase and frequency gradients. Prior to
the application of the gradients, all of the elements in the slice are precessing at
the same phase and frequency, as indicated by the arrows in the top left matrix all
pointing in the same direction. Application of the gradients in sequence causes each
location in the (x, y)-plane to precess at a distinctive phase and frequency – first
the rows are shifted relative to each other, as seen in the top right matrix, then the
columns are shifted within each row, as seen in the matrix on the bottom left. This
allows localization of the areas selected for imaging.

an exponential function, 1 − e−t/T1 , where t is the elapsed time; if M0 is the
original magnetization, then Mz, the amount of longitudinal magnetization
at time t following an excitation pulse, is given by

Mz = M0(1 − e−t/T1).

Hence, for instance, after two T1 time periods, 1 − e−2∗T1/T1 = 0.86; the
magnetized field will be at 86%, relative to the level prior to the excitation
pulse (see Figure 1.5).

The second relaxation time T2 is the transverse, or spin-spin, relaxation
time. T2 represents the time needed for the transverse component of the mag-
netized field to return to 37% of its initial value (see Figure 1.6). This type of
relaxation is the result of the gradual loss of phase coherence, and hence is a
result of inhomogeneities in the tissue (so-called “internal inhomogeneities”).
It can also be described by an exponential function, e−t/T2 , or

Mxy = M0e
−t/T2 ,
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Fig. 1.5. Curve of longitudinal relaxation. T1 is the time required by the z com-
ponent of the field to return to 63% of its original value following an excitation
pulse.

where M0 is as before and Mxy is the signal loss at time t in the transverse
plane. Since loss of phase coherence must occur before equilibrium can be
reached, T2 is usually much shorter than T1.

T ∗
2 is a relaxation time related to a phenomenon called free induction

decay, or FID. As soon as the RF pulse is turned off, the imposed structure
also begins to fade: the spins return to precessing at random (or “freely”),
and there is a decay of the signal over time. The typical pattern of the FID
is in Figure 1.7.

Note that the general form is sinusoidal, but the amplitude gets dampened
down over time. The relaxation in the spins induces a current in the receiver
coil. And the rate of decay due to FID is denoted T ∗

2 . In contrast to T2, T ∗
2

depends on the external field, as well as the spin-spin interactions. That is, it
is a function of both external (magnet-related) and internal (tissue-related)
inhomogeneities. Magnets with less homogeneous fields have higher values of
T ∗

2 , regardless of the value of T2. Hence T ∗
2 , which again represents a rate of

decay, is always smaller than T2, unless perfect homogeneity of the main mag-
netic field is achieved. As systems improve the amount of field inhomogeneity
is reduced; however it is probably not possible to attain total homogeneity of
the external magnetic field. Hence there will always be some T ∗

2 effect.
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Fig. 1.6. Curve of transverse relaxation. T2 is the time required for the transverse
component of the field to return to 37% of its initial value.

Fig. 1.7. The free induction decay curve.
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The values of T1 and T2 differ for gray matter, white matter, and cere-
brospinal fluid, and for magnets of differing strengths (although in principle,
as we have seen, T2 should depend only on the type of tissue, in practice there
are fluctuations in the observed value). For instance, at 1.5T the values of T1

for gray matter, white matter, and cerebrospinal fluid are roughly 900 ms, 600
ms, and 4000 ms, respectively, whereas the T2 values are 100 ms, 80 ms, and
2000 ms, respectively. In all cases, as we would expect, the T2 times are much
shorter than the T1 times. It is possible to take advantage of the differences
among tissue types to weight images in such a way that greater contrast is
achieved.

1.2.4 From MRI to fMRI

It remains to be seen how the technique described in the previous sections can
be used to image the working brain. What is the connection between brain
function, as exhibited in neuronal activity, and magnetic resonance, and how
is this connection exploited to create functional magnetic resonance images?

Although the story is still not completely known, neuroscientists have a
good idea of the mechanisms at work. When the brain becomes active in
response to a particular task or stimulus, the rate of blood flow to the regions
involved in the task or affected by the stimulus increases. The increase in
blood flow occurs because glucose needs to be delivered to the relevant areas.
The metabolism of the neurons in the affected areas also changes, as their rate
of firing increases. As a result of the increase in metabolism, more oxygenated
blood arrives in the relevant regions. However, active neurons do not require
much more oxygen than do inactive neurons, and hence there is an increase in
the oxygen levels, not of the neurons themselves, but rather of the proximate
blood vessels. The increase in metabolic demand of the active neurons, and
not the activity of the neurons per se, is what is measured by fMRI.

The changes in the ratio of oxygenated to deoxygenated blood are mea-
sured via the hemodynamic response, estimation and characterization of which
is the focus of much of the statistical research in fMRI. Figure 1.8 shows a
schematic of a typical hemodynamic response function (HRF) for a voxel in
an active part of the brain. Upon presentation of the stimulus, there is a delay
of approximately 2 seconds before any change is observed, as blood is deliv-
ered to the relevant area. A gradual increase in the response peaks at about
6 seconds following the stimulus. If there is no further stimulation, the HRF
starts to slowly decay, returning to baseline levels. Often a dip below baseline
is observed before complete recovery. It takes approximately 15 to 20 seconds
to return to baseline levels, depending on the experimental task.

Magnetic resonance enters into this description because blood contains
iron, which is paramagnetic. A paramagnetic material has the property that
when it is placed in a strong magnetic field, the atoms in that material try
to align themselves with the field, thereby increasing the field strength. In
other words, the paramagnetic material becomes a magnet, as long as the
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Fig. 1.8. The hemodynamic response. Following presentation of a stimulus there
is a delay of approximately 2 seconds before a change in the signal is observed.
The response increases gradually, peaking at around 6 seconds after the stimulus.
If no further stimulus is presented, the response will decline to baseline. The whole
process takes 15 to 20 seconds. Dips below baseline are sometimes observed before
the initial increase in signal, as well as prior to the final return to baseline.

field is present (in our context, as long as the subject is inside the scanner).
As shown by Pauling (Pauling and Coryell, 1936), the magnetic properties
of oxygenated and deoxygenated blood differ; deoxygenated blood is more
paramagnetic than oxygenated blood. This affects the measured MR signal
through the Blood Oxygenation Level Dependent (BOLD) contrast effect,
since changes in oxygenation of the hemoglobin will cause changes in the
local magnetic field applied to the body.

More specifically, deoxygenated blood has a magnetic susceptibility that
is 20% greater than that of oxygenated blood. Magnetic susceptibility is a
measure of the intensity of magnetization of a substance when it is placed in
an external magnetic field, or, thought of another way, the distortion induced
in the field with the introduction of the substance. The effect of introducing
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a substance with magnetic susceptibility into a magnetic field is a decay of
transverse magnetization, which is related to the times T2 and T ∗

2 .
In a seminal work, Thulborn et al. (1982) showed that the rate of T2 re-

laxation of blood is related, via an exponential relation, to the proportion
of deoxygenated hemoglobin. As the strength of the applied magnetic field
increases, furthermore, so too does this BOLD effect. At low fields (less than
0.5T), there is not much difference in the transverse relaxation times for oxy-
genated and deoxygenated blood. Hence, high fields (that is, 1.5T and above)
are necessary for BOLD fMRI. Also, and of critical importance for the devel-
opment of fMRI as an imaging technique, it is possible to determine the level
of blood oxygenation directly from the MR signal of the blood.

Ogawa et al. (1990) took this further, in the first “true blood oxygenation
level dependent (BOLD) contrast experiment” (Matthews, 2001, p. 11). They
showed that, following deoxygenation of the blood, magnetic susceptibility of
blood vessels (relative to the surrounding tissue in the brain) increased. The
effect of this is twofold: first, local field gradients are generated, and second,
T ∗

2 in tissue water around the blood vessels decreases. This change is exploited
in BOLD-fMRI, the most common type of fMRI, and the focus of this book.

The implication of these early experiments is that, as the concentration of
oxygenated blood in the vicinity of a neuron changes, the measured MR signal
should be affected. And, MR imaging is indeed sensitive enough to detect these
changes, which are induced by the function of the brain (Ogawa et al., 1992;
Kwong et al., 1992), although there is still uncertainty surrounding the precise
mechanisms and the connections among the various processes. Crucially, fMRI
does not measure brain activity directly, but rather correlates of brain activity.
See Huettel et al. (2004) for a more in-depth review of some of the outstanding
issues.

1.2.5 From Data to Image

After all of this, we still don’t have an image of a brain that would be recog-
nizable as such. That is because the data are collected in Fourier space, known
as k-space in the fMRI literature. The next step in our journey is to gain some
understanding of the data in k-space, how they relate to the data in “image
space,” and how to move from the former to the latter. Generally, statistical
analysis takes place in image space, not k-space, although some preprocessing
may be done in k-space.

It is helpful to recall the Larmor equation for a particular (x, y)-coordinate
in a slice. See Jezzard and Clare (2001) for more detail.

ω(x, y) = γB0 + γGxx + γGyy

Recall that the y-axis corresponds to phase encoding, and the x-axis to
frequency encoding. As a matter of convention, the signal obtained with no
phase encoding gradient is placed in the center of k-space. As we move along
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the y-axis, the phase encoding gradient increases. When the Gx gradients are
applied, we sample a row in k-space for a given phase. As we do this for each
phase in turn, we fill in a “data matrix” of k-space values corresponding to
changes in both frequency and phase at a chosen slice.

Let ρ(x, y) denote the density of hydrogen nuclei at location (x, y); this
is the ultimate quantity of interest. The signal induced in the receiver of the
system is a vector with magnitude ρ(x, y) times the size of the elemental unit,
dxdy, and phase, denoted by φ(x, y, t) = 2πω(x, y)t. Thus the contribution to
the signal from a particular position is:

ρ(x, y){cos[2π(γB0 + γGxx + γGyy)t] + i sin[2π(γB0 + γGxx + γGyy)t]}dxdy

(Jezzard and Clare, 2001). Here, the cosine is the “real” part, or the contribu-
tion along the x-axis, while the sine is the “imaginary” part, the contribution
along the y-axis. When the signal is received, there is an additional demodu-
lation, which allows for the static field B0 to be ignored, hence the signal that
is actually stored by the scanner at time t (integrating now over x and y) is

I(t) =
∫ ∫

ρ(x, y){cos[2π(γGxx + γGyy)t] + i sin[2π(γGxx + γGyy)t]}dxdy.

The significance of this expression is made clearer by introducing the
following standard notation for locations in k-space: kx(t) = 2πγGxt and
ky(t) = 2πγGyt. With this notation, we have

I(t) =
∫ ∫

ρ(x, y)[cos(kxx + kyy) + i sin(kxx + kyy)]dxdy.

In other words, the measured signal is the Fourier transform of the ρ values
of interest. It is therefore possible to recover the ρ(x, y) densities by applying
the inverse Fourier transform to the signal that is measured and stored by the
scanner.

The center of k-space contains the strongest signal (recall that in the phase
encoding direction, the location with no phase encoding is in the center). As
we move out to the periphery in either direction, the signal becomes weaker.
In fact, the signal in the precise center of k-space overwhelms the rest of
the recorded signal and its effect has to be removed in order for the Fourier
transform to result in an image that looks like a brain. Even though the
signal in the periphery of k-space is weaker than that in the center, it cannot
be ignored. Information on fine details of the image is contained on the edges
of k-space, and ignoring it results in blurry reconstructed brain images.
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Design of fMRI Experiments

In addition to the usual questions of experimental design that are relevant
for any psychological experiment, fMRI studies present a unique set of de-
sign parameters that need to be determined. These parameters refer to the
details of the data acquisition from the scanner. In this chapter we explore
issues relating to the design of fMRI experiments from imaging and statistical
perspectives.

2.1 Imaging Design Issues

The imaging parameters are fixed at the start of any study. By changing the
values of the imaging parameters, the technologist who operates the scanner
controls the spatial and temporal resolution of the data, and hence the overall
quality of the resultant images. It is standard to report the values of these
parameters in the discussion of fMRI studies.

2.1.1 Description of Parameters

Images can be acquired in one of four imaging planes: axial, coronal, sagittal,
and oblique. The first three are more common in practice. Axial slices are
perpendicular to the longitudinal axis of the body – a series of axial slices will
go from the top of the brain, down. Coronal, or frontal, slices are parallel to
the front of the body – a series of coronal slices will proceed from the front
to the back of the brain. Sagittal slices are obtained in parallel to the midline
of the body – a series of sagittal slices will proceed from one side of the brain
(say, the left side) to the other. Finally, an oblique slice is taken by tilting any
of the three standard views. Examples of the three primary perspectives are
shown in Figure 2.1.

The field of view (FOV) is the physical size of the image, measured in mm2,
and specifies the region from which the image was sampled. For instance, if
the FOV is 20 cm in each direction, this means that the slices encompassing
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(a) Sagittal slice (b) Coronal slice

(c) Axial slice

Fig. 2.1. Examples of the three primary slice orientations. Figures courtesy of
Rebecca McNamee, University of Pittsburgh.

the regions of interest are contained within a 20 cm x 20 cm region in the
plane.

The acquisition matrix size is the size of the grid into which the plane of
the FOV is divided for each slice. The acquisition matrix is usually square,
often 64 x 64 or 128 x 128. The FOV and the size of the acquisition matrix
determine the two dimensions of a voxel in the plane of a slice. Thus, if the
field of view is 20 cm in a particular direction, and the matrix size is 64 in
that same direction, voxels will be of length 200/64 = 3.125 mm on a side.
These are typical values.

Slice thickness is the thickness, measured in mm, of an individual slice. If
the x and y dimensions of the three-dimensional object are given by the FOV
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and the acquisition matrix, the z dimension is given by the slice thickness.
The slice gap, also in mm, is the space between consecutive slices. The reason
for leaving a gap between slices, historically, is that the radiofrequency pulses
were imperfect, and there could be “crosstalk” between slices if there was
no gap. This results in contamination of the signal, since the slices aren’t
perfectly separated from each other (Hashemi et al., 2004). A typical study
might use slices that are 5 mm thick with a gap of 1 mm. Together with the
FOV and matrix size values described in the previous two paragraphs, this
results in voxels that are 3.125 mm x 3.125 mm x 5 mm, which are often seen
in practice. With improvements in imaging techniques, many studies now do
away with the slice gap altogether.

The order in which slices are acquired is fixed by the excitation sequence.
While it might be intuitively appealing to image slices in a physically sequen-
tial fashion, this leads to crosstalk. Hence slices are usually acquired in an
interleaved manner, for instance, all even slices, then all odd slices. Arbitrary
sequencing is also possible with some software.

All of the parameters described above relate to the details of the data
collection, such as the size of a voxel. Brown and Semelka (1995) call these
extrinsic parameters. There are also intrinsic parameters, which affect the
voxel’s signal.

Repetition time (TR) is the time, in milliseconds, between successive appli-
cations of the radiofrequency pulses to a particular volume of tissue. Suppose
then that we have applied a single 90o pulse; the time until we apply the next
one is the TR. What happens between the two pulses?

Immediately after the first pulse is applied, the magnetization flips from
being aligned in the z direction to being in the (x, y)-plane, as was described in
Chapter 1. Call the net magnetization in the (x, y)-plane M0. As soon as the
pulse is turned off the magnetization in the transverse plane starts to decay,
with a concomitant recovery of magnetization in the z direction, according to
the formula

Mz(t) = M0(1 − e−t/T1),

as we saw previously. At time t =TR, i.e., when we apply the next pulse (and
hence flip the magnetization back into the (x, y)-plane),

Mz(TR) = M0(1 − e−TR/T1),

which is less than M0, the initial magnetization in the z direction before
the first pulse was applied. Once this second pulse is turned off, again there is
recovery toward the z-axis, but as a new pulse will be applied at time t = 2TR,
again the recovery will not be complete. That is, for each successive pulse, the
system starts with less than total magnetization M0.

As the TR increases, there is clearly more time for the radiofrequency
energy to dissipate, through the relaxation process described in the previous
chapter, and we get closer to the initial magnetization M0 at the start of each
successive pulse.
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In terms of the received signal, at time t = 0 the signal is a strong FID,
also as described in Chapter 1. At successive TRs the signal is still an FID,
but with dampened amplitude. Ideally, one would want to measure the signal
immediately after the RF pulse, with no delay. While this isn’t feasible in
practice, if we could do so, the FID signal would be proportional to 1 −
e−TR/T1 . Similar statements hold for each of the successive FIDs, that is,
they are maximal if they can be measured right after the application of the
RF pulse.

However, limitations on the hardware make it impossible to measure the
signal immediately upon the application of the RF pulse. Instead, there is a
brief waiting time between the originating pulse of the image, and the peak
of the echo, that is, the acquisition of data from the center of k-space (the
maximum of the signal). This short time is called echo time or TE, and is
also measured in milliseconds. Now, the FID in the transverse plane decays
at the rapid rate T ∗

2 according to the function e−t/T∗
2 . If we could take the

measurement immediately, before any signal decay, the measured signal would
be the initial magnetization, M0, flipped into the (x, y)-plane. After time TE
the measured signal is slightly smaller, namely M0e

−TE/T∗
2 .

Note that both processes of T1 and T2 relaxation are occurring simultane-
ously, so in fact the measured signal is proportional to

M0(1 − e−TR/T1)e−TE/T∗
2 .

Thus, it is possible to manipulate the MR signal by changing TR and TE,
which are under the control of the experimenter. Roughly speaking, TR is
related to T1 effects in the image, and TE is related to T ∗

2 (or T2) effects. We
will see this in more detail in the next section.

The excitation or flip angle sets the amount of rotation away from the
equilibrium axis following the radiofrequency excitation pulse. The default
value for the flip angle is 90o in most scanners, since this gives the maximum
magnetization in the transverse plane. Excitation angle is the other parameter,
along with TR, that determines the amount of T1 weighting in the image.

2.1.2 How Are Resolution and Image Quality Affected by Changes
in the Parameters?

Many of the acquisition parameters, such as the flip angle, the size of the
acquisition matrix, and the field of view (and hence the voxel size), are fixed
by convention, although not by necessity. Others, such as TR, are given more
to the control of the experimenter. Yet, in any case it is important to be
aware of the tradeoffs in terms of resolution and image quality (for instance,
as measured by signal to noise ratio), as well as in terms of total scan time,
that result from changes in the values of these parameters. A useful summary
of the effects of manipulating the different values on resolution, signal to noise
ratio, and scan time can be found in Brown and Semelka (1995).



2.1 Imaging Design Issues 21

We consider first the direct effect of manipulating TR and TE. This is seen
via the contrast between two different tissue types, call them A and B, with
different values of T1 and T ∗

2 , which we will denote T1A, T1B, T ∗
2A, and T ∗

2B,
respectively. The contrast between the two tissue types is given by

cAB = M0A(1 − e−TR/T1A)e−TE/T∗
2A − M0B(1 − e−TR/T1B )e−TE/T∗

2B .

Now, suppose that T1A > T1B, in other words, tissue type A has a longer
T1 recovery time than does tissue type B. Put another way, it takes tissue A
longer to reach equilibrium than it takes tissue B, so that at any given point
in time t the recovery curve for A will be below that for B. Furthermore, at
different points in time, the distance between the two recovery curves will be
different, as demonstrated in Figure 2.2 – near t = 0, the curves will be close
together (no recovery in either case), there is no signal from either tissue,
and cAB = 0. As t goes to infinity, the curves will be close together again
(full recovery in both cases), the effect of T1 is reduced (in the limit vanishing
altogether). So, at very short or very long TRs, the contrast between the
tissues is not large. Between those two extremes there is a difference between
the tissues. Since we have assumed that T1B is the smaller of the two T1

times, tissue B recovers more quickly and hence has the stronger signal at
intermediate TRs. Indeed, for any two tissues that differ in their value of
T1, we have therefore shown that there is a time point that maximizes the
distance between the two recovery curves, giving optimal contrast, and in
general, shorter TRs will give greater T1 contrast.

A similar analysis shows that shorter TE values diminish the effect of T ∗
2

(or T2), whereas longer TEs enhance the contrast from T ∗
2 . Often, in the case

of fMRI, the TE is set at the gray matter T ∗
2 time, since this enhances the

BOLD effect, although recent studies have employed variable TEs (see, for
example, Chen et al. 2003a).

The above results can be used to weight images differentially, according to
T1, T2, or T ∗

2 . T1 weighted images will result from an experiment with an inter-
mediate TR and a small TE. Tissues that have long T1, such as cerebrospinal
fluid, will be downweighted and hence will not be as visible in the image,
as tissues with shorter T1 times, such as white matter. T2 weighted images
are often used as structural reference points in functional studies. These are
generated from a long TR and a medium TE; the resultant images highlight
regions of cerebrospinal fluid and downweight the white matter. Similar to T2

contrast, T ∗
2 contrast is obtained by long TR and intermediate TE. Images

weighted in this way are sensitive to the amount of deoxygenated blood in
the tissue, which is itself a function of the changing metabolism of the active
neurons. In general, it is possible to take advantage of the T1 and T2 times of
different types of tissues, to tailor images that highlight the areas of interest
(see Hashemi et al. 2004, for more detail).

Another important aspect of an fMRI experiment is to control the signal to
noise ratio (SNR). In fMRI, SNR is proportional to the product of volume of
a voxel and

√
NyNEX/BW, where Ny is the number of phase encoding steps
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Fig. 2.2. The differences in relaxation times for different tissues can be exploited
to weight images, in such a way that different aspects of the brain are emphasized.

(that is, in the y direction), NEX is the number of excitations (the number of
times the scan is repeated) and BW is the bandwidth (the range of frequencies
in the slice selection). From this formula a number of things are clear. First, as
we increase the voxel volume, the SNR increases linearly. This is reasonable,
since increasing the size of a voxel also increases the number of protons in a
voxel, and the measured signal is related to the number of protons. Also, as the
number of excitations increases, so too does the SNR, however, the increase
is not linear. Rather, it follows a square root law: increasing NEX by a factor
of 2, for instance, increases SNR by a factor of

√
2, since the signal doubles

but the noise goes up only by a factor of
√

2 (typical variance behavior). In
a similar fashion, doubling the number of phase encoding steps, Ny, increases
the SNR by

√
2. The last component in this formula for SNR, the band-

width BW, enters in an inverse relationship. Moving to a larger bandwidth
increases the noise, and diminishes SNR. Again, the change follows a square
root law.

Different ways of looking at SNR provide insight into the various trade-
offs among the parameters. SNR depends on two elements: the volume of an
individual voxel and the total time to sample all signals. We can rewrite the
expression for SNR analyzed in the previous paragraph, as follows. The size of
a voxel along the y-axis, call it Δy, is equal to the field of view (FOV) in the y
direction divided by the number of phase encoding steps. Similarly, Δx is the
FOV in the x direction divided by the number of frequency encoding steps,
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Nx. Hence the volume of a voxel can be rewritten as FOVxFOVyΔz/NxNy.
Combining this with the previous expression for SNR, we have that SNR is
proportional to

(FOVx/Nx)(FOVy)Δz
√

NEX/NyBW.

With this formulation, we can explore the tradeoffs between resolution of
the image and signal to noise ratio. Namely, for a fixed FOV, as we increase
the number of phase encoding steps, SNR decreases. Conversely, if the FOV
increases along with Ny (thus keeping the voxel size, and the spatial resolution,
constant), SNR increases. However, there is a tradeoff in that the acquisition
time will also increase. Increasing the slice thickness increases signal to noise
ratio, but decreases resolution.

The scan, or acquisition, time is given by TR × Ny × NEX. Looking now
at the effect of modifying the TR, it is clear that increasing TR increases
the scan time. It also increases coverage – with a longer TR, it is possible to
acquire more slices of the brain in a single scan. And, increasing TR leads to
better SNR. On the other hand, increasing TE has no effect on the scan time,
but does cause a worsening of SNR.

In summary, there are tradeoffs between the various desiderata from an
imaging perspective – good signal to noise ratio, short scan times (to prevent
discomfort of subjects in the scanner, for instance), and adequate spatial res-
olution. It is not always possible to achieve all of these goals simultaneously,
and it is the work of MR technologists to figure out what parameter settings
will balance the differing needs of a given experiment. Configuring the scanner
parameters appropriately is a key component of fMRI experimental design.

2.1.3 Filling in k-Space

Another aspect of fMRI design relates to how the k-space data are them-
selves acquired – the planning of pulse sequences. Here, too, there are various
tradeoffs, each trajectory through k-space having advantages and disadvan-
tages. The planning of optimal sequences is still a topic of research among
MR physicists. This section describes two of the more common types of data
acquisition for fMRI: echo-planar imaging (EPI) and spiral imaging.

With echo-planar imaging, the gradients move through k-space in a bous-
trophedonic pattern, i.e., using alternate left to right and right to left lines
(literally, as the oxen turns while plowing). EPI, originally proposed by Mans-
field (1977), is the fastest MRI imaging technique currently available (Hashemi
et al., 2004). However, it requires specific hardware to perform, namely, spe-
cial gradients that can be turned on and off rapidly. Single-shot EPI allows
for all of k-space to be filled in following a single RF pulse, whereas other
fast imaging techniques require multiple pulses. In the most widely used ver-
sion, “blip EPI,” a large phase encoding gradient places the first echo at the
edge of k-space. The readout, or frequency encoding, gradient forms a trail
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of echoes, that is, we acquire a line of k-space data in the x-coordinate. The
direction of the trail alternates back and forth, as subsequent phase encoding
“blips” move the gradient along to the opposite side, thus covering all of k-
space. In this version of EPI, the phase encoding gradient is turned on only
when the readout gradient is 0 (i.e., at one or the other end of the kx-axis in
k-space). An advantage of the blipped EPI, compared to earlier versions of
EPI in which the phase encode gradient was on continuously, is that the re-
sultant trajectory through k-space is truly rectilinear. This makes it easier to
Fourier transform the data to obtain an image. Figure 2.3 shows the k-space
trajectory for blipped EPI.

Fig. 2.3. The k-space trajectory for standard, single-shot blipped echo-planar imag-
ing (EPI).

It is worth emphasizing a technical point here, namely that since all of
k-space is filled in following a single RF pulse, the data must be acquired
quickly, before there is significant T2 or T ∗

2 decay. On the other hand, the
experimenter also wants to sample a large part of k-space in order to have
adequate spatial resolution of the images, and this takes time. That is, we see
again the types of tradeoffs that appear so frequently in fMRI experimental
design. The way the question manifests itself here is that there is a need to
compromise on the number of lines of k-space that are acquired over the space
in question, a sacrifice of spatial resolution to the demands of time. Typical
EPI images will be 64 x 64, or at most 128 x 128 voxels in a slice, whereas other
pulse sequences can produce images of as much as 512 x 512 pixel resolution.
The latter take longer to acquire, since they use more than a single pulse to
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acquire all of k-space. A single image using EPI can be acquired in 30 to 50
milliseconds, with a whole volume scan (multiple slices) in only 2 to 4 seconds.
By contrast, a particular sequence called FLASH, with resolution of 256 x 256
pixels, acquires a single image in 2.5 to 10 seconds, and a multislice volume
can take up to 4 minutes (Jezzard and Clare, 2001). The limiting factor on
EPI is the ability to rapidly alternate the gradients back and forth, which
seriously taxes the hardware.

For single-shot EPI, TR refers to the time between successive images. The
speed of single-shot EPI is offset by a number of drawbacks, aside from the
relatively low spatial resolution and the stress the method places on the gra-
dient hardware. First, the data that are collected during the transitions from
one line of k-space to the next are not used in the creation of the images, so
the technique entails an intrinsic loss of data. Second, EPI data are prone to
various artifacts, in particular, susceptibility artifacts, which manifest them-
selves as distortions in the interfaces between air sinuses and brain tissue.
Third, the long readout time of single-shot EPI may result in geometric dis-
tortions, which are seen as stretching or shearing when there is a distortion
in the (x, y)-plane, or a dampening of signal when the distortion is in the z
direction.

Multi-shot EPI is similar to single-shot EPI, with the main difference that
the readout is divided into multiple segments. The segments are acquired in an
interleaved manner, with one shot applied to each, as demonstrated in Figure
2.4. This variant of EPI puts much less stress on the gradient hardware, but
images take longer to acquire.

Spiral imaging, like EPI, is a fast image acquisition technique. It differs
from EPI in how the gradients are used to traverse k-space. Whereas EPI takes
a rectilinear trajectory, based on rapidly switching gradients, spiral imaging
uses sinusoidal gradients to induce a spiraling path through k-space. The spi-
rals may be from the edge of k-space inward, or from the center of k-space
out (see Figure 2.5). It is also possible to combine the two trajectories in a
“spiral in/out” pattern, which increases SNR and decreases susceptibility ar-
tifacts (Glover and Law, 2001); the advantages of the spiral in/out method
over conventional spiral methods appear to be greater at higher field strengths
(1.5T versus 3T) for a variety of tasks that activate a range of brain regions
that are particularly susceptible to artifacts (Preston et al., 2004). Spiral
imaging induces less stress on the gradient hardware, since it samples k-space
continuously, rather than switching back and forth as in EPI. The continuous
sampling also means that all the k-space data are used in creating the image.
Finally, spiral imaging is faster than EPI. A disadvantage of spiral acquisition
is that the data no longer fall on a Cartesian grid, hence, in order to apply
the Fourier transform, the data must be resampled prior to image reconstruc-
tion. This involves interpolating the data in order to map from a spiral to a
rectangle. Like EPI, spiral imaging is prone to certain artifacts arising from
inhomogeneities in the magnetic field, and spatial distortions, although these
can be mitigated by using the spiral in/out trajectory. The patterns of the
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Fig. 2.4. The k-space trajectory of multi-shot EPI.

artifacts are somewhat different for the two types of trajectories, however
(Jones et al., 2001).

2.2 Statistical Design Issues

The other aspect of experimental design for fMRI is statistical, namely, how
should the study itself be carried out? While this question is common to all
scientific studies, fMRI presents some interesting challenges.

2.2.1 Common Experimental Designs

There are two main approaches to the design of fMRI experiments, from the
perspective of stimulus presentation. The first, block design, will be familiar
to statisticians as a traditional way of designing an experiment. The second,
usually called event-related design, arises from functional neurology studies, in
particular, event-related potentials, or ERP. More recently, hybrid, or mixed,
designs, which combine aspects of block and event-related, have been used.

Traditionally, due to limitations in resolution, fMRI experiments utilized
simple block designs, in which periods of rest (or fixation) alternated with pe-
riods of task, or periods of different tasks were alternated. This was necessary
in order to accumulate enough data to make a statistical analysis feasible.
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Fig. 2.5. The k-space trajectory for spiral imaging.

These “boxcar designs” (so-called because of their “on-off” nature, which can
be depicted graphically as “up-down”; see Figure 2.6) lend themselves to a
variety of statistical approaches. Block design experiments are easy to carry
out, with presentation of the stimulus taking place in blocks of a fixed length,
say 30 seconds. In each block one stimulus type is presented. A simple exam-
ple of this type of experiment is the presentation of a flashing checkerboard
during the task blocks, alternating with blocks of fixation, in which no visual
stimulus is presented. More complex designs to accommodate more than one
type of task are, of course, possible.

Block designs are powerful for locating voxels in which the level of activity
is significantly different in the task versus the control conditions. To under-
stand this recall the hemodynamic response described in Chapter 1. Following
presentation of a stimulus there is a gradual rise in the signal until a peak
is reached, after which the system returns to baseline levels in the absence
of further stimulation. In a block design there is constant stimulation for the
duration of the task blocks, meaning that the hemodynamic response does
not return to baseline during this time. Instead, as the stimulus is repeatedly
presented, the hemodynamic response in the active voxels accumulates, rising
to a plateau instead of a short-lived peak. Decay back to baseline occurs only
when the stimulus presentation is turned off, that is, during the control blocks.
Voxels that are not active do not exhibit the characteristic response, and so
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Fig. 2.6. Stimulus path of a simple block design. Blocks of the experimental task
alternate with blocks of rest, or control. Of interest is the comparison between levels
of activation during the task and during rest.

will not show increased levels of signal during the task blocks compared to
the control blocks.

As should be evident even from this brief discussion, block design exper-
iments are amenable to a range of statistical analyses, most of which involve
comparison of (time-averaged) activity across experimental conditions. Since
analysis is driven in large part by comparison, much of the focus in devising
a block design experiment is on finding suitable controls. Ideally, the scien-
tist wants the conditions to differ only in the variable of interest, that is, the
control task should be identical, insofar as possible, to the experimental task.
With complicated, and even not so complicated, cognitive processes such as
are measured in a typical fMRI experiment, it isn’t always clear what an
appropriate control should be.

A study by Newman et al. (2001) demonstrates the potential impact of
the baseline, or control, condition on the results of an fMRI experiment. They
compared three baselines – rest, passive, and task-related – against the same
task. The rest baseline, in which the subject lies in the scanner with no stim-
ulus being presented, is the simplest, and is often used as the default control
condition. In the passive baseline, stimuli are presented just as in the task
condition, but subjects are instructed not to process them. As pointed out
by Newman et al., it is impossible to know whether or not subjects truly
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follow the instruction not to process the stimuli, but the rationale behind this
control is clear. Finally, the task-related baseline presents the subject with
a well-defined task. The experimental task in the study at hand was one of
“phoneme discrimination” – subjects were presented with pairs of three letter
nonsense words (consonant-vowel-consonant) and had to decide whether or
not the two nonwords in each pair ended with the same sound. The three
baseline (control) conditions were rest (relax and don’t think of anything),
passive listening (listen to the nonsense words but don’t do anything in re-
sponse), and monitoring tones, in which subjects were presented with triplets
of high and low pitched tones, and had to judge if the final tone was high
pitch. Note that the third baseline condition is similar to the experimental
task, but with tones replacing the nonsense words. The authors found that
there were clear differences in the activation patterns, depending on the con-
trol that was used. In general, more activation was detected in the resting
baseline condition and less in the passive listening baseline. In related work,
Marx et al. (2004) found that the choice of rest baseline – eyes open versus
eyes shut – was critical for a simple visual task.

The event-related design, known also as single-trial fMRI, moves away
from blocking the experimental conditions. In these studies, trials, or stimuli,
are presented individually, separated by an interstimulus interval (ISI), which
can be fixed within an experiment, or may vary from trial to trial. For exam-
ple, instead of showing a flashing checkerboard continuously for 30 seconds, as
we would do in a blocked design, in an event-related design, the checkerboard
is flashed only once, for a short period of time. Another short checkerboard
burst may follow some time later, or perhaps a completely different stimulus
may be presented (Figure 2.7). This paradigm greatly expands the flexibility
of the fMRI experiment, since researchers are no longer bound by the con-
straints of a formal block design. For instance, it is possible to let the stimulus
presentation depend on the response of the subject: A correct response to a
question could lead to a more difficult question on the next trial. Studies can
be “self-paced” in the sense that the subject himself controls when stimuli
are presented (e.g., Maccotta et al. 2001). Stimuli can also be presented ran-
domly, again in contrast to the block design, wherein the stimulus within a
block is fixed, and stimuli across blocks alternate. Furthermore, if the ISI is
long enough, the neural activation following a stimulus will return to baseline,
hence the event-related paradigm allows researchers to learn about the hemo-
dynamic or BOLD response (the time course of activity) at a single voxel.
This is not feasible with a block design, as it averages over hemodynamic
responses, thereby blurring the individual features. Therefore, whereas block
designs are good for detection of activated voxels, event-related designs are
more effective at estimation of the hemodynamic response function. Another
feature of event-related analysis is that it allows for separation depending on
the response to the task (for instance, trials in which the subject responded
correctly versus trials in which the subject responded incorrectly). As a result
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of the greater flexibility afforded by event-related studies, their statistical
analysis is often more challenging.

star oval

time

Fig. 2.7. Schematic of an event-related fMRI design. Instead of a “boxcar” de-
scribing the stimulus series, as in the block design, the event-related design can be
described as a sequence of (possibly) irregularly spaced spikes. Stimuli of different
types are presented in random order and at different time lags. In this example, a
researcher might be interested in the differences between visual and verbal presen-
tations of shapes.

A major design issue in event-related studies is the interstimulus inter-
val, specifically the optimal length of the ISI, and whether it should be fixed
or random. Early studies (for instance, Buckner et al. 1996) used constant
ISI and allowed the hemodynamic response to fully evolve; thus, for a stim-
ulus of duration 2 seconds, the optimal span of time between the end of a
stimulus and the beginning of the next was 12 seconds (Bandettini and Cox,
2000). The resultant design – 2 seconds of stimulus followed by 12 seconds
of ISI in which the subject would fixate, repeated multiple times – has the
flavor of a “quasi-block” design and doesn’t fully exploit the flexibility of the
event-related paradigm. In addition, such studies are time consuming since
the stimulus is presented very infrequently, they lack statistical power, and
subjects become distracted during the long ISI. On the other hand, as noted
by Bandettini and Cox (2000),with shortened constant ISI, there is an associ-
ated decrease in information (functional contrast) compared to the traditional
block design.

Design with variable ISI is a more complex question. Early studies with
variable ISI revealed somewhat contradictory results regarding how often the
stimulus or task should be presented and how rapidly the design should alter-
nate between task and control conditions. Dale (1999) found that the optimal
design for hemodynamic estimation is one that alternates rapidly between
conditions (short average ISI) and varies the time that passes between them
(varying ISI). Friston et al. (1999c) explored a range of designs, from the
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purely stochastic to the purely deterministic (block design), and found the
latter to be the most efficient. The difference in findings, as pointed out by
Birn et al. (2002), could be postulated to lie in the different goals that were
being assessed in the two studies: estimation of the hemodynamic response
function in the first case, and detection of active voxels in the second. Birn
et al. (2002) examine the situation in more detail via simulation. They place
the block design and the event-related design with short ISIs as two extremes
– the former has stimuli presented continuously over a (relatively) long period
of time, alternating with long periods of control; the latter switches frequently
between task and control. In between these two, with variable ISI, it is pos-
sible to have a wide range of designs, and in all cases keep the proportion of
time spent in the task condition constant. As expected from the discussion
above, and indeed not surprisingly, their simulation studies reveal that there
is no one optimal design when using variable ISI; rather, the “best” design
depends on the goals of the study (detection versus estimation).

This issue is explored more fully by Liu et al. (2001), who develop a theo-
retical framework of the relationship between detection power and estimation
efficiency. The tradeoff between the two is fundamental, in the sense that in-
creasing one perforce degrades the other. Hence it is not possible to design a
study, no matter how the ISI and stimulus presentation are manipulated, that
will be able to achieve both goals simultaneously and efficiently. An additional
factor included in their model is the “predictability” or perceived randomness
of the design. Block designs have a high degree of predictability, since they al-
ternate between two conditions, opening up the possibility (or even certainty)
that subjects will anticipate stimuli, with concomitant confounding on the
effects of interest. By deriving bounds on the estimation efficiency, Liu et al.
demonstrate theoretically that this quantity is maximized for the case of two
conditions (stimulus and control) when each condition is equally likely and
the stimulus time course (i.e., the string of “stimulus” and “control” labels
that describe the state of the experiment at each time point) is obtained as
a sequence of Bernoulli trials, with probability p = 0.5 of success. Likewise,
by deriving theoretical bounds on the detection power, they show that this
quantity is maximized in block designs, again with equal probability of being
in the task and control conditions. Similar results hold when there is more
than one trial type (Liu and Frank, 2004).

In between the two extremes of maximizing detection power at the expense
of estimation efficiency and maximizing estimation efficiency at the expense
of detection power lie a range of what Liu and colleagues term semirandom
designs, which have the potential to be useful when both goals are desired in
the same experiment. The cost of trying to achieve a balance between the two
extremes via a semirandom design is time; the semirandom designs take longer
because the researcher is now trying to both estimate and detect. Essentially,
in the semirandom design the probability of being in the task condition is
allowed to vary over time, as opposed to being fixed, as in the purely random
design.



32 2 Design of fMRI Experiments

Finally, the relationship between predictability and the other two quanti-
ties is examined. Liu et al. (2001) demonstrate that as the ability to estimate
the hemodynamic response goes up, average predictability goes down. This
makes sense if we recall that random designs are optimal for estimation, and
random designs are less predictable, by definition. Another finding is that
small increases in predictability may be worthwhile, since they can lead to
gains in detection power without seriously impairing the estimation efficiency.

The design of event-related studies is an active field in the fMRI community
and the best way to learn about the most recent state of the art ideas is to
read the current literature. To wit, we describe one final twist on the topic,
studied by Visscher et al. (2003), the mixed block/event-related design. In this
design, blocks of task are alternated with blocks of control, as in a standard
block design. However, within the task blocks, trials are assigned at random
(that is, with varying ISIs), as in an event-related study. The advantage of
this design, as the authors showed in an extensive simulation study, is that
it allows for the separation of transient activity, related to the stimulus as it
is presented, from sustained activity, which carries across tasks and stimuli.
Many other design variants are possible (Liu, 2004).

Which of these various designs should be used in a given study? It is
evident from the discussion above that there is no one “correct” design, and
even optimality of a chosen design is contingent on the specific questions
of scientific interest. My experience has generally been that the design of
the experiment, and particularly the choice between block design and event-
related design, depends more on the constraints of the study than on purely
statistical considerations, which in any case can accommodate any of the
differing paradigms described above. To some extent scientific trends play a
part as well – as event-related, mixed, and semirandom designs become more
popular and more accepted in the literature, researchers are going to want to
exploit their strengths and flexibilities in order to get the most out of the data.
As statisticians, it is important that we be aware of the latest designs, their
advantages and disadvantages, and steer our neuroimaging colleagues away
from designing experiments that will not allow them to answer the questions
in which that truly interest them.

2.2.2 Additional Issues

In this section, a number of miscellaneous issues relating to the statistical
design of fMRI experiments are explored.

We start with two specific questions on the use of block designs: first, the
timing of data acquisition within the block, and second, identifying activation
that is the result not of the task, but of the transition from task to control
or vice versa. These questions are of potential impact on both the statistical
analysis and the interpretation of block design studies.

Veltman et al. (2002) look at the first question in the context of language
processing. Conventionally, the stimulus is presented at the onset of a TR,
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but Veltman and colleagues argue that this might produce bias. To check this,
they varied the length of the fixation condition in a block design study, thereby
affecting the relationship between stimulus presentation and the TR; instead
of the two always coinciding, the presentation of the stimulus was shifted
relative to the onset of the TR. They found that effect sizes were larger in the
“no shift” condition than in the conditions where the stimulus presentation
was decoupled from the TR. Furthermore, activation was detected in some
areas only at certain timing conditions, and not others. The authors conclude
that even for block designs, it is important to distribute the sampling of the
hemodynamic response, as is done in event-related studies.

The question of activation during transitions between conditions in the
block design is taken up by Konishi et al. (2001). They found a set of regions
that were transiently activated at the transitions between blocks, consistently
for a variety of conditions involving different visual stimuli (verbal and facial)
as well as different trial presentation rates. Interestingly, these regions did not
always coincide with regions in which task-related activation was detected by
the usual statistical analysis. Moreover, the size of the transition effect was
similar in all four of the conditions considered by the authors. Perhaps most
significant, the transient activation was sometimes detected even when there
was no detected activity in the relevant task block, indicating that it is not
the activation in the task block alone that is pertinent.

We next turn to efficient and optimal experiment design, in particular for
event-related studies, a focus of two recent papers. Block designs can be incor-
porated into the framework of finding a good design, since they can be seen
as one extreme of a continuum of designs. The search for an optimal design
involves an exploration of the space of possible experimental setups, which
can be accomplished in many different ways. When we discuss “sequences”
below, the intention is to reference the string of conditions representing the
presentation of stimuli at each time point. For conceptual simplicity, think
of each condition in the experiment being assigned an integer value. Then a
design is a string, or sequence, of integers.

Buračas and Boynton (2002) consider efficient estimation of the hemo-
dynamic response curve, noting that, by use of a more efficient design it is
possible to reduce scan time without loss of signal, compared to a less efficient
design. They point out that researchers often pick an event-related sequence
of trials in a rather arbitrary fashion, namely, generating many sequences
at random, and picking the one that yields the best estimation efficiency.
Clearly this is not a satisfactory approach in general, as researchers are left
without any guidelines for choosing the design sequence in their next study,
and of course there is no guarantee that the best sequence from among a set
of randomly generated sequences is optimal in any other sense. Buračas and
Boynton propose instead to use maximum length shift register sequences, or
m-sequences, to find good stimulus presentation sequences at little computa-
tional cost (unlike the random sequence approach). The emphasis here is on
identifying the specific sequence(s) that should be used in an event-related
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study. m-sequences are sequences of integers (each integer representing here
a condition type, for instance, task or control) which are generated using
modulo arithmetic, where the modulus depends on the number of conditions.
Sequences are created using the formula

sk =
r∑

i=1

cisk−r+i−1,

where ci are set coefficients, sk is the next value in the sequence (appended
to the previous s1, . . . , sk−1), and r is the order of the shift, the number of
previous terms included in generating a new element of the sequence. For the
simplest fMRI experiments, with only two conditions, both ci and sk take
on the values 0 and 1, and the generation of new elements uses arithmetic
modulo 2.

Buracčas and Boynton show, based on simulations, that generation of
event-related designs via m-sequences results in higher estimation efficiency
than randomly generated designs, especially for shorter sequence lengths. Even
using as many as one million random designs and picking the best among
these, estimation efficiency was less than for the m-sequence. Having more
than one event type also improves the advantage of m-sequences over random
sequences. Indeed, Liu (2004) proves that m-sequences come close to attaining
his theoretical upper bound on estimation efficiency and have low predictabil-
ity, although they have low detection power. The drawback of m-sequences
is that there is less flexibility in design, since length and type of allowable
sequence are restricted. In practice, the authors claim that this is not any real
barrier to using their approach, since the class of acceptable m-sequences is
large.

Wager and Nichols (2003)propose the use of a genetic algorithm to accom-
plish the search over design space. Genetic algorithms start with an initial set
of designs and evolve new designs via three steps that mimic the ways changes
occur in DNA: selection, crossover, and mutation. Selection of designs is akin
to natural selection – the genetic algorithm tests the initial set of designs
(which are usually randomly generated) according to some prespecified good-
ness criterion, selects the best ones, and creates “offspring” from them (new
designs). In this way, the best features of the existing designs are passed on.
Crossover is similar to the biological exchange of DNA across chromosomes –
two designs will exchange “material,” or sequence patterns, from a randomly
chosen point onwards. And in mutation an element of the design sequence is
randomly switched to take another value. These processes are iterated until
an appropriate model is identified. Wager and Nichols consider three goodness
criteria: effectiveness at detection, estimation efficiency, and counterbalancing
of the design. The genetic algorithm is flexible enough to optimize multiple cri-
teria simultaneously (this is accomplished by creating a new, weighted, score,
which combines individual criteria), and can also take account of both sta-
tistical and psychological requirements (for instance, it might be undesirable
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to have the same stimulus repeated too many times in a row, for reasons of
anticipation on the part of the subject; the genetic algorithm can incorporate
such constraints by rejecting designs that have unwanted properties).

Via a series of simulation experiments, the authors demonstrate the effi-
cacy of the genetic algorithm over random search, although they note that it
is hard to achieve all three goodness criteria with one design, in agreement
with findings by others. They are also able to give specific recommendations
on the length of the ISI in an event-related design, and the length of a block
for a block design (subject to the particular model assumptions made in their
simulations), suggesting that the use of a genetic algorithm coupled with sim-
ulation will be a useful pilot tool in the early stages of planning an experiment.
In this scenario, the researcher would run versions of the genetic algorithm
with different assumptions and different weighting of the criteria of interest,
specific to the research questions at hand, to arrive at an optimal experimental
design.

As a final point we mention briefly the problem of using fMRI in clini-
cal populations (that is, groups of subjects with neuropsychological disorders,
such as autism, schizophrenia, or Alzheimer’s disease) and children, a theme
that we will revisit in Chapter 3. These groups present special challenges,
among them the need for the researcher to devise experiments that the sub-
jects will be able to perform. For example, it might not be reasonable to
expect children or patients with attentional difficulties to carry out tasks that
put a heavy load on memory. Choice of task, then, should be suited to the
experimental group of interest, as discussed in Jessen et al. (2002)for clinical
groups and by Gaillard et al. (2001)(see also references therein) for children.
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Noise and Data Preprocessing

One of the notable, but surprising, aspects of fMRI for new statistical re-
searchers is that the data are very noisy. By this we mean both that the data
are prone to noise from a wide variety of sources, which we shall survey in this
chapter, and also that the BOLD signal is but a small portion of the overall
measured MR signal. Hence it is crucial, prior to any formal statistical analy-
sis, to clean up as much of the extraneous sources of variation as possible, and
to isolate the signal. Fortunately, the noise in fMRI is well understood, and
there are standard methods and tools for preprocessing the data, so that new
researchers coming into this field do not have to start from the very beginning.
This chapter presents the major sources of noise that are of concern in fMRI,
and outlines the approaches for preprocessing.

3.1 Sources of Noise

Noise in fMRI data may be roughly characterized into three groups: thermal
noise, system noise, and subject- and task-related noise. The first two types
of noise are related to the properties of the scanner and are intrinsic to the
imaging process. The third type is derived from the inescapable fact that the
experimental subjects are human, and as such will breathe and move around
while in the scanner. Both of these activities, among others, have the effect
of introducing noise into the image.

Thermal noise is an intrinsic part of MR imaging. It reflects changes in
the strength of the MR signal over the course of an imaging session, caused
by thermal motion of the electrons in the sampled tissue and in the electronic
components of the scanner. Thermal motion occurs when electrons collide
with atoms, for example, in the scanner hardware. As the temperature of the
system increases, the rate of collisions goes up, resulting in greater distortion
of the signal. In theory, then, it would be possible to eliminate thermal noise
by reducing the temperature in the MR system as a whole. As a matter
of practice, this approach is not feasible, however, because thermal noise will
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always be present, unless the temperature is reduced to absolute zero. Thermal
noise also increases with the strength of the main magnetic field (Edelstein
et al., 1986). In general, thermal noise is not of much concern. Since it is
random, and not related specifically to the experimental task, its effects can
usually be mitigated by simply averaging over data points.

As the name implies, system noise is introduced by fluctuations in the
functioning of the MR hardware, that is, noise that comes from the system
itself. Two common causes of system noise are inhomogeneities in the static
magnetic field and instabilities in the gradient fields. Problems with the ra-
diofrequency coils are also a source of system noise. An important form of
system noise is drift in the signal, whereby over the course of an experiment,
the signal intensity at any given voxel gradually and systematically changes,
as shown in Figure 3.1.
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Fig. 3.1. Over time, the underlying signal intensity gradually changes. This phe-
nomenon is known as signal drift and is one of the sources of noise in fMRI data.

Thermal and system noise are intrinsic in that even if the object scanned is
a so-called inert “phantom,” such as a ball or a cylinder filled with liquid, these
types of noise will still be apparent. By far the more interesting forms of noise
from a statistical perspective are those arising from the fact that the object in
the scanner is not a phantom, but rather a living, breathing, thinking human
being, performing an experimental task – subject- and task-related noise.
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While in the scanner, the subject receives instructions to remain perfectly
still. The reason for this is related to the way in which the data are acquired, as
was described in the previous chapters. Recall that a series of radiofrequency
(RF) pulses are sent through the tissue, with the goal of localizing activity.
If the subject moves, activation from one location will be contaminated with
activation from nearby locations, resulting in a blurring of signal. Because the
spatial resolution of fMRI data are at the level of individual voxels, and voxels,
as we have seen, are typically 1-3 mm per side, even very small amounts of
movement can have a serious effect on the signal. In addition, a typical fMRI
scanning session can last as long as an hour, and it is very difficult to remain
stationary for such a long time. As a result, head motion is a major source of
the noise in fMRI data. Data that are corrupted by too much head motion
are often discarded; while this may involve only eliminating scans that are too
noisy, in some extreme cases all the data from a single subject are rejected by
the experimenter. Given that many fMRI studies include a small number of
subjects, throwing away even one is very wasteful.

In contrast to thermal noise, noise caused by head motion is far from ran-
dom. Since the entire head moves as one, motion induces extra spatial correla-
tion. More importantly, perhaps, motion is often related to the experimental
task (Hajnal et al., 1994; Hajnal et al., 1995). As an example, consider a
simple eye movement task, called a visually guided saccade. The subject looks
at a screen inside the scanner, fixating perhaps on a crosshair in the center.
A dot appears in the subject’s peripheral vision, and the experimental task
is to direct the eyes to the location of the dot on the screen. The head is
to stay stationary as the eyes move, but there is a very natural tendency to
move the head as well, even if ever so slightly. Aside from task-related move-
ment, head motion may result from swallowing, blinking, and head bobs as
subjects fall asleep in the scanner. Clinical populations of patients, as well
as children, may have particular difficulty following the instruction to remain
perfectly still over the course of an experiment, but it should be emphasized
that even among healthy, willing adults it is difficult to eliminate the problem
altogether. Shutting the eyes (Stephan et al., 2002) and holding the breath
(Abbott et al., 2005) are hypothesized to lead to effects similar to those of
head motion. Breath holding is evidently more common among adults at the
start of a challenging task, and even holds of short duration (on the order of
several seconds at most) have been found to affect the measured MR signal,
so this is also a type of task-related noise, in some circumstances.

Seto et al. (2001) report an interesting simulation study that examined
task-related head motion in three different groups: patients recovering from
stroke, age-matched controls, and young controls. In this study, subjects were
put into an environment that very closely matched a typical MR scanner, but
actual images were not acquired. Instead, they were required to do a variety of
motor tasks and the amount of head motion was recorded, using an accurate
position tracking system that would not be feasible inside an actual scanner.
The researchers found that the stroke patients had more head motion than
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the other two groups, and were also more variable. The age-matched controls
had more head motion than the young controls. They also found that head
motion was greater during the performance of the motor tasks than during
the rest periods, although the differences in head motion across tasks were
not consistent. The direction of the head motion, in terms of translations and
rotations, differed for some tasks, but not others. These results highlight that
head motion is a very complex issue; especially with clinical populations, care
should be taken to minimize the opportunities for movement.

A second major source of subject noise is physiological. Physiological noise
usually refers to noise in the signal induced by respiration and heartbeat (Hu
et al., 1995).When the subject breathes, this of course causes motion, as does
the beating of the heart. One effect of heartbeat and respiration is the actual
movement of the brain inside of the skull, quite apart from any movement in
the body of the subject. These are small scale motions, faster and more regular
than head motion. It is possible to exploit these characteristics of physiologi-
cal noise in the data preprocessing step. Respiration leads to increased blood
volume inside the skull, which causes the brain to expand (Hu et al., 1995).
The resultant motion and its effects on fMRI are rather complex. Beyond
motion, respiration also gives rise to systematic changes in the magnetic field,
thus directly affecting the measured MR signal.

We also include under the rubric of subject and task-related noise, noise
that is literally due to the scanning environment, which is very loud. While
this might seem to be an intrinsic source of noise, in fact it is the interaction
here as well with the subject inside the scanner, and how the literal noise of
the scanning environment affects the response in some experiments, that is
of interest. Numerous studies have shown that the effect of the noise made
by the scanner can be severe, owing to distraction of the subject, evocation
of the BOLD response in task-irrelevant areas, and the like (see Moelker and
Pattynama 2003, and the references listed therein, for an overview of this
problem).

Moelker and Pattynama (2003) list four main sources of acoustic noise in
the MR imaging environment that are of potential concern. These are: the
gradient currents (readout and phase encoding) that are used for localizing
activation within a slice; eddy currents induced by fluctuations in the system;
the radiofrequency and slice selection pulses (which generally occur simulta-
neously); and background noise from air conditioning and ventilation. The
major noise source are the gradient currents, where for EPI at 1.5T, peak lev-
els can be as high as 130 decibels. Gradient current acoustic noise increases
with the strength of the main magnetic field as well as with the strength of
the gradient currents themselves.

The effect of acoustic noise can be either direct or indirect. Direct effects
are those that confound the experimental task, hence these are mainly a con-
cern for studies that use auditory stimuli. Noise from the scanner induces a
BOLD response in auditory cortex that is similar to that of any other audi-
tory stimulus. The baseline level of activation in those areas, in the presence
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of scanner noise, is higher, making it harder to detect activation that is task-
related by any statistical method (making this a true source of noise in the
statistical sense). Indirect confounding is mostly due to attention (Moelker
and Pattynama, 2003); effects include distraction, increases in activation in
areas of the brain related to attention, temporary hearing loss (which again
will affect auditory tasks), and masking (difficulty in hearing an auditory
stimulus over the noise of the scanner itself). Research indicates that acoustic
noise is most likely not related to motion, but the studies are not conclusive
on this point.

A simple psychophysical experiment conducted by Scarff et al. (2004)
demonstrates some of these effects. Seven healthy adults with normal hearing
were presented five tones of equal loudness, ranging in frequency from 250 to
4000 Hz. Acquisition parameters were manipulated so that the peak scanner
noise was close to the frequency of one of the tones. For the frequency that was
close to the frequency of the peak scanner noise, the perception of loudness, as
well as the detectable fMRI activity, were both decreased. The experimenters
considered two scanning protocols, producing two different frequencies of peak
scanner noise, with consistent results. Although there was no control condition
in this study (it not being possible to remove scanner noise completely), and
the sample was quite small (typical of fMRI experiments, due among other
factors to the cost of the scan), this outcome offers some evidence for acoustic
masking and the confounding effect of background noise on the outcome of
an auditory experiment.

As a final example of subject related noise, consider the fact that while
an individual is in the scanner, that person is actively thinking about many
things, and inactively thinking about others, in spite of any instructions that
may have been given by the experimenter. The human brain is always active,
always attending (consciously or not) to the surroundings. No matter how a
researcher tries to control all of these external (to the experimental condi-
tions of interest) factors, it is simply quite impossible to do so. These mostly
transient elements should be related to as noise, because they will manifest
themselves in task-irrelevant areas and will also affect baselines levels through-
out the brain, making it potentially harder to detect true effects of interest.

3.2 Dealing with Noise by Manipulating the Scanning
Environment

There are two main approaches to handling the noise inherent in fMRI data,
and these are usually used in tandem. The first approach, which is the focus
of this section, is to prevent noise, insofar as this is possible, by suitable ma-
nipulation of the environment. Clearly, not all noise can be approached in this
way, and even the types of noise that can will not necessarily be eliminated.
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The second approach, which we take up in the next section, thus involves es-
timating and removing the various sources of noise from the recorded signal,
a procedure that is known as preprocessing.

Noise related to the subject and task are the primary targets when the
scanning environment is manipulated. Researchers have concentrated in par-
ticular on head motion, since this is one of the major sources of fMRI noise in
general. It is routine, for instance, to pad the inside of the magnet around the
head with pillows or foam padding to make it harder for the subject to move
suddenly and to any great extent. Subjects can go through training prior to
the experiment, in either a simulated or real scanner, to become adjusted to
the environment and learn how to minimize head motion. Masks and plaster
head casts which are molded to the subject’s head and face, and then bolted
into position, are an effective means of reducing motion, but some subjects
find them uncomfortable and anxiety-inducing (Savoy, 2001). Also in wide use
are bite bars, in which the subject bites down on a dental mold throughout
the course of the scanning session. Subjects may also find bite bars hard to
tolerate, but they are an efficient way of preventing head motion. See Edward
et al. (2000) for a brief review of methods currently used to fix the head in
one location throughout the course of a study, as well as the advantages and
disadvantages of each technique.

As is apparent from Edward et al. (2000), the main problem with methods
for restraining motion such as bite bars and masks, is that they can provoke
anxiety in the subject, even in healthy young adults. This in turn can affect
performance on the task of interest. For this reason, Thulborn (1999) proposes
a more “user-friendly” procedure for reducing head motion, namely, a visual
feedback system. A visor is mounted to the RF coil in the line of sight of the
subject. A screen inside the visor provides the subject with visual feedback
on head position, so that if motion does occur, the subject is able to see this
and realign. A small-scale study on six healthy volunteers showed that the
visual feedback is helpful in reducing head motion. Furthermore, although
the feedback system is visual, it apparently does not interfere significantly
with activation resulting from visual processing tasks.

Environmental manipulation is also used to reduce ambient scanner noise,
as described in the review article by Moelker and Pattynama (2003). Acoustic
noise can be reduced by adjusting the timing of image acquisition, by using
pulse sequences that generate less noise, and by improving the scanner hard-
ware. Most common, however, is to reduce noise through the use of earplugs,
helmets, vacuum cushions or other devices to muffle sound; Moelker and Pat-
tynama call this “passive noise reduction.” This is by contrast with “active
noise reduction,” in which noise is eliminated via the application of a sound
that is the exact inverse of the original noise. The two approaches can be used
together, although for technical reasons active reduction does not seem to be
as effective for fMRI. Passive reduction is cheap, effective, and probably the
easiest method currently available for decreasing acoustic fMRI noise.



3.3 Preprocessing fMRI Data 43

Finally, for dealing with problems of noise arising from distraction, atten-
tional drift, and the like, various methods are used. Eye trackers can help verify
that subjects remain on-task for visual processing experiments and identify
problematic trials, although this is most frequently done a posteriori rather
than in real time. Simply having the MR technologist speak to the subject in
between tasks or scans will refocus the attention, and this too can be a highly
effective mechanism.

3.3 Preprocessing fMRI Data

Not all noise can be removed by careful control of the imaging environment.
Instead, it is always necessary to perform some preprocessing, or cleaning,
of the data, prior to statistical analysis. Different software packages accom-
plish this in different ways; even different laboratories using the same soft-
ware preprocess their data differently. Within this, however, there are certain
commonalities. Motion correction, for example, is almost always carried out,
although the details of how the amount of motion is estimated, and how its
effects are eliminated, may differ. Some preprocessing steps are carried out
in k-space, others are applied after image reconstruction. In this section we
survey some of the big issues in data preprocessing.

First, recall from the discussion in Chapter 1 on how data are acquired
that there is a high frequency component in the center of k-space. A critical (if
trivial) preprocessing step is, therefore, to perform a correction to the baseline
of the data, that is, subtract the mean. If this step is not performed, the first
Fourier component will overwhelm everything else, and the image will consist
of a single bright spot in its middle.

Recall too that in EPI the trajectory through k-space reverses direction on
alternate lines. This is corrected via a simple flipping of alternate lines so that
all proceed in the same direction. When this is done, it is important to also
align the data properly, to correct for possible mistimings in the gradients. If
the reversed lines are not realigned, “ghosts” will appear in the reconstructed
image (Lazar et al., 2001). Ghosts are faint, shifted images of the brain that
appear in the air outside the head in the reconstructed image. While ghosts
are often corrected in k-space at the time of line reversal, it is also possible to
remove them in image space (Buonocore and Zhu, 2001).

Slice timing correction accounts for the fact that slices of data are acquired
one at a time, rather than all at once, yet most data analysis schemes assume
that every voxel was sampled at exactly the same time. When slices are ac-
quired in an interleaved fashion, for example, all even slices then all odd slices,
this assumption is clearly not tenable. But even when the slices are acquired
sequentially, there is a delay in moving from one to the next. Thus, different
voxels are sampled at (slightly) different times. It is generally desirable to
correct for this time shift by reshifting the voxel time series, and this is easily
accomplished on the image space data (Smith, 2001).
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Scanner drift is corrected by detrending. There are many different ways of
detrending the data, ranging from simple mean correction (normalizing to the
mean signal intensity of each run), to linear and polynomial models, wavelets
and splines. These methods, as well as an automated detrending procedure,
are compared by Tanabe et al. (2002). For the polynomial techniques each
voxel time course is fit by the appropriate model and the detrended signal
acquired as the difference between the fit and the original time series. The
spline model is a cubic spline with five knots, three of them internal to the
time course at the voxel. The wavelet model uses a scale of 1 to track low
frequency noise. The automatic detrending procedure chooses the detrending
method that fits best on a voxel-by-voxel basis (that is, instead of applying
the same detrending method to the entire data set, the procedure that fits
each voxel best is used to detrend that voxel).

Tanabe and colleagues find that simple mean correction greatly enhances
the number of active voxels detected in the subsequent statistical analysis,
compared to no correction for drift. Hence mean correction is always a valuable
part of the preprocessing to adjust for scanner drift. Indeed, in the rest of
their comparison, Tanabe et al. first apply mean correction, followed by the
detrending algorithm. With this approach on two subjects, they find that
the spline method performs best overall in terms of increasing the number
of active voxels that are detected. Further gains can be achieved using the
automated algorithm to pick the optimal procedure for each voxel. When they
look specifically at the automated method within regions of interest relevant
to the visual task in this experiment, they find that almost half of the voxels
do not benefit from additional detrending beyond the mean correction; for the
rest of the voxels the spline model is chosen most often.

Just as head motion is a major focus of environmental manipulation within
the scanner, so too, much effort has concentrated on estimating head motion
and correcting the data for its effect, prior to formal statistical analysis. The
first step, estimation, involves aligning each scan to a “target” scan, which
may be the first image, an image taken from the middle of the series, an aver-
age of images, and so on. A common simplifying assumption in the estimation
process is that head motion is “rigid body,” that is, the head and the brain do
not change their shape, only their position and orientation. Translations and
rotations in each direction are then estimated by minimizing the distance be-
tween the scan and the target. This can be done in two dimensions (on a slice
by slice basis) or in three dimensions (over the whole brain simultaneously),
using a variety of optimization procedures and different measures of distance.
Typical distance measures are least squares and least absolute difference be-
tween the image and the target. In both cases the goal is to find values of the
translation and rotation parameters that minimize the distance between the
two. See Brammer (2001) for a nontechnical overview of motion estimation.

Once the motion parameters have been estimated, the second step of the
procedure, namely correction, can be carried out. Again, there are various
ways to perform the correction, or registration, step. The estimated translation
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and rotation parameters are used to shift the image to the target, using vari-
ous interpolation schemes such as sinc interpolation, polynomials of different
orders (cubic or quintic, for example), and linear interpolation. These methods
are performed on the reconstructed images, rather than on the raw k-space
data. Eddy et al. (1996) propose, instead, performing motion correction on
the k-space data and using Fourier interpolation. They note that translations
can be achieved in k-space without interpolation, but that rotations in either
k-space or image space generally require interpolation. Rotations in k-space
are accomplished through a series of shearing matrices; since a rotation matrix
can be written as a product of three shearing matrices, rotations are easily and
efficiently performed. Furthermore, performing motion correction in k-space
with shearing matrices for rotations results in no loss of the statistical infor-
mation in the images, which is not the case for interpolations and corrections
on image space data (Eddy and Young, 2000).

Several groups have also considered motion correction in real time, as
the scan is being performed. This is much more computationally burdensome
than motion estimation and correction after the fact as part of a general
preprocessing of the data, but is made possible by advances in computer
memory and speed. Cox and Jesmanowicz (1999), for example, generalizing
the shearing matrix ideas of Eddy et al. (1996) from two dimensions directly
to three, develop a quick algorithm for image rotation and shift. Using least
squares distance and a gradient descent method, motion can be estimated and
corrected for as fast as the images themselves are acquired.

An alternative real-time approach is given by Ward et al. (2000), who
use “navigator echoes” before each image acquisition to determine if there
have been any translations or rotations of the brain in the three-dimensional
space, and if so, to what extent. These estimated translations and rotations
are then used to alter the image acquisition parameters in order to compen-
sate for any motion that may have occurred. Obtaining the information from
the navigator echoes and correcting the image acquisition parameters can be
accomplished very quickly, making this another feasible method for real-time
motion correction.

While not carried out in real time, the method proposed by Caparelli
et al. (2003)is similar in spirit to the real-time techniques, namely, to develop
a procedure by which motion parameters can be quickly estimated so that
problematic scans can be detected immediately. When a scan with excessive
motion is identified, it is then possible to give feedback to the subject and
repeat the scan. Unlike other procedures, in which the motion parameters
are carefully estimated and the images subsequently registered to the target,
Caparelli et al. define and monitor instead several “quality measures” of
the image; furthermore, these measures are calculated on the k-space data,
not out of any sense of optimality, as in Eddy et al. (1996), but rather
because the system with which these authors work “...does not provide real
time image reconstruction...” (p. 1412). The quality measures are essentially
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squared differences between the image at time t and the target image, taken
to be the first image.

It should come as no surprise that motion correction may cause artifacts
when in fact there has been no subject motion, as pointed out by Freire and
Mangin (2001). According to these authors, the use of least squares for es-
timating the motion parameters introduces bias because areas of activation
will be treated as outliers. They therefore advocate the use of more robust
distance measures (they suggest mutual information, but others are possi-
ble) to avoid this problem. Presumably this would not be an issue for motion
correction techniques that preserve statistical information. In a series of sim-
ulation experiments designed to test some of the popular motion correction
algorithms, but notably not the one introduced by Eddy et al. (1996), Freire
and Mangin demonstrate that, in the absence of motion, least squares-based
methods introduce spurious activation.

Finally, we mention briefly two comparisons of motion correction tools.
The first, by Morgan et al. (2001), uses a computer-generated phantom
to evaluate and compare motion correction algorithms in three popular fMRI
software packages. A computer-generated phantom is much more flexible than
a standard, physical one, making it possible that different types of motion be
mimicked, together with different patterns of activation and noise. With the
exception of one algorithm implemented in one version of the popular software
SPM (see Appendix A for more discussion of SPM), there are few differences
among the procedures. Oakes et al. (2005) perform a more extensive com-
parison, using five different software packages, different configurations of the
algorithms within each package (default options exist, but these can be manip-
ulated and customized by users), and real as well as simulated data. While the
different packages, and different implementations within each package, have
advantages, they find that no one algorithm dominates the others, and in
practical terms of detecting activation, all are quite similar. Hence the choice
of software and procedure for motion correction does not seem to be critical;
what matters is that motion correction be performed.

Perhaps because its effects are more subtle, and not as pervasive, phys-
iological noise correction has not been the subject of as much research as
correction of head motion. An early paper by Hu et al. (1995) provides a gen-
eral method for estimation and correction of physiological effects. Two main
ideas are involved in their approach. First, estimation of the physiological
noise is carried out on the k-space data. Second, physiological activity of the
subject is monitored simultaneously as functional data are being acquired.
This allows for the two types of data to be synchronized and is key to this
preprocessing step. An explicit assumption of the method is that the noise in-
duced by heartbeat and respiration is pseudo-periodic in nature, which makes
it more natural for one to estimate those effects in k-space. However, there is
no reliance on the periodicity of the respiration and heartbeat themselves.

The first step of the algorithm is to synchronize the k-space data with
the physiological motion. This is achieved by determining for each sampled
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point the respiratory or cardiac cycle into which it falls. The next step is
estimation; Hu et al. use as a model a truncated Fourier series of relatively
low order, to reflect the smoothness in the variations within a physiological
cycle. Following estimation, it is possible to remove the effects from the phase
and magnitude of the measured data, as we have seen in other preprocessing
steps. The authors note that the effects of respiration are more prominent
than those of heartbeat, so the latter are first removed, then the cardiac effect
is estimated and removed from the respiration-corrected data.

Correcting for physiological noise has a number of consequences, according
to results presented in Hu et al. (1995). First, the standard deviations at
each voxel are significantly reduced. Second, voxel time courses that showed
periodicity due to cardiac or respiratory influences lose their cyclic behavior,
allowing the time course of activation to manifest itself. Third, physiological
correction enhances the detection of low level activations, as expected by the
reduction in voxel variability. Fourth, physiological effects do not appear to
be correlated with activation.

More recent work by Glover et al. (2000) introduces a method similar to
that of Hu and colleagues, but based in image space rather than k-space. The
essential idea is the same, with the main change being that the estimation of
physiological effects is carried out in image space, that is, after reconstruction
of the data. Hu et al. estimate the physiological effects prior to reconstruction.
The functional form of the estimation model in both algorithms is the same.
The authors compare the two methods on only three subjects, but in all
three cases the image-based procedure is much more effective in reducing
noise. Glover et al. speculate that this might be due to the fact that for k-
space correction, estimation can only proceed in parts of k-space where the
signal to noise ratio is high enough to provide a good fit to the Fourier series
model, that is, near the origin. This limitation introduces correlations in the
reconstructed image data, so that some regions are undercorrected and others
are overcorrected. This is not a problem in image space, since each voxel is
treated separately.

Chuang and Chen (2001) propose another image-based method for physio-
logical noise correction. By contrast with the previous two procedures, Chuang
and Chen’s algorithm does not require simultaneous monitoring of heartbeat
and respiration during the functional scan. Rather, they suggest estimating
the physiological effects directly from magnitude changes in the voxels that
exhibit strong physiological fluctuation. Their method uses information on
the typical frequencies of heartbeat and respiration, that is, how many times
the heart beats or breath is inhaled, in a unit of time. Finding the strong
frequency components within this typical range provides the estimate. Cor-
rection proceeds as in the other algorithms. Results are comparable to the
k-space method.

McNamee and Eddy (2005) consider the problem of physiological correc-
tion from a very different perspective than previous works. Their two under-
lying considerations are that it is feasible to estimate directly the relationship
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between the physiological data and the fMRI data, so that no functional form
for the former needs to be assumed; and that the physiological effect on the
BOLD signal may not be instantaneous, but rather will take place after some
time lag. First, they calculate simple correlations for the time series of fre-
quencies of the data in k-space (phase and magnitude separately) and the
physiological measures (heart beat and respiration separately) on a voxel by
voxel basis. Working in this time series framework, a simple generalization
is then to calculate correlations at lag j, that is, to shift one of the series
relative to the other. In this way, it is possible to determine the lag at which
the physiological data are most highly correlated with the fMRI data. The
time lag showing the strongest correlation between the cardiac and the fMRI
data is slice dependent in a predictable way, which has implications for the
way in which the correction should be performed. Specifically, correlations are
cyclic with a period equal to the TR. The same is not true for the respiration
data. The strongest correlation between respiration and signal is often at no
lag, reflecting that breathing has an immediate effect, whereas the effect for
heartbeat is delayed. Both of these findings are then taken into account in
the modeling process to remove the physiological noise. Cardiac and respira-
tory effects are entered as independent variables in a simple regression model,
with the magnitude or phase of the k-space data the dependent variable. A
separate model is fit at each point in k-space. Time lags can also be easily
accommodated in this linear regression to reflect the different effects of heart
beat and respiration. Residuals from these models then give the fMRI data
corrected for the various physiological effects.

Although not a means of removing any specific type of noise, many groups
include smoothing as part of their preprocessing of fMRI data, particularly
spatial smoothing of the images. The most common approach is to smooth
the data with a Gaussian filter; the usual way of characterizing the filter is
through a measure called full width half maximum (FWHM). Formally, for a
Gaussian distribution with variance σ2, the FWHM is defined as 2

√
2 log 2σ ≈

2.36σ. The width of the spatial filter is expressed in millimeters at half of the
maximum value, with typical values being between 3 and 10 mm FWHM (one
to three voxels). Less formally, if the maximum value of the Gaussian kernel
is ν, then to obtain the FWHM, go down to 0.5ν and find the length of the
kernel at that height, from one end to the other. See Figure 3.2 for an example.
Clearly, as the FWHM increases, the kernel becomes wider, resulting in more
smoothing.

There are two main reasons generally given in the fMRI literature for
smoothing (see Smith 2001). First, is that small amounts of smoothing im-
prove the signal to noise ratio, since the effect of smoothing is to blur the
measured signal in neighboring voxels. If the size of the filter is small, the
noise will get averaged away, but the signal of interest should not be adversely
affected. The second reason given for smoothing is to improve the quality of
the data for statistical analysis by making the data “more normal.”
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Fig. 3.2. Full width at half maximum, the common way of quantifying the amount
of smoothing in fMRI. Here, the kernel has a standard deviation of 2. The maximum
height at f(0) is approximately 0.1995; half of that is approximately 0.0997. The
x value corresponding to that height is approximately −2.355, hence application of
this kernel results in a smooth of roughly 4.7 voxels.

The disadvantage of spatial smoothing is that if the size of the filter is not
appropriate, that is, too large or too small, there can be a deleterious effect on
the statistical analysis. For instance, if the filter is too large, say larger than
the region in which activity takes place (this can happen if the regions are
very small), then the activation will be smoothed out and hence will not be
detected. If the filter is too small, the signal to noise ratio won’t be improved,
and the spatial resolution will degrade. Smoothing can also cause regions
that are functionally different to merge together (Fransson et al., 2002).
One also needs to be aware that filtering will change the nature of the spatial
correlation among voxels. For these reasons not all groups filter as part of the
preprocessing. A reasonable compromise might be to analyze the data both
with and without smoothing, and in the latter case with kernels of varying
FWHM, in order to gain a clearer understanding of how critical the smoothing
is to the conclusions that are drawn from the data.
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3.4 Assessing the Effects of Preprocessing

Once the preprocessing steps have been decided upon and implemented, we
might also consider evaluating how useful they have been. This issue has been
addressed by only a few groups.

One approach to assessing the effects of preprocessing has been proposed
by Strother and colleagues (Strother et al., 2002; LaConte et al., 2003; Shaw
et al., 2003), using a paradigm that they call the nonparametric prediction,
activation, influence, and reproducibility (NPAIRS) framework. The paradigm
is called nonparametric because it uses cross-validation ideas, by splitting an
fMRI data set into two equal parts; one half is set aside for estimating the
parameters of a model, which are then used for prediction on the second half.
The process is repeated, switching the roles of training and testing samples.
These two steps give a measure of prediction accuracy. Reproducibility (the
ability to repeat an fMRI experiment and get the same result) is measured by
comparing the end result of the statistical analysis on the two training sets.

As input to the system, the authors set up different preprocessing streams,
which may include no preprocessing, as well as adjusting the preprocessing
parameters (for instance, varying the FWHM in the smoothing step). Run-
ning each of the preprocessing streams plus a final statistical analysis, and
calculating the prediction accuracy and reproducibility of each, provides the
information necessary to assess the value added by each processing step or
each level of preprocessing. The authors suggest a graphical approach, for in-
stance, plotting prediction accuracy and reproducibility for each combination
of preprocessing steps and parameters. The NPAIRS framework is also used
to determine optimal preprocessing streams on an individual basis, that is,
which preprocessing steps are carried out and to what extent can be decided
for each subject separately. For example, different amounts of filtering might
be optimal for different subjects, some subjects have more motion than others,
and so forth. Thus it is not surprising that individualized processing streams
will generally be more advantageous than application of the exact same pre-
processing to all subjects in a study. The advantage of NPAIRS is that it helps
to identify, for each subject, which preprocessing steps should be performed.

McNamee and Eddy (2001) evaluate the efficacy of preprocessing steps
by extending analysis of variance (ANOVA) ideas to what they term visual
ANOVA, or VANOVA. Just as ANOVA partitions variability into different
sources so that the effect of each can be isolated and understood, so too does
VANOVA provide a visual “partitioning” of the variability in an fMRI data
set after each preprocessing step so that the effect of each one can be isolated
and understood. The method tracks changes in the mean and variance of
the intensity of each voxel over time, as each preprocessing step is carried
out. In this way, it is easy to evaluate which preprocessing steps have an
effect on the mean of the image, which have an effect on the variance, and
which affect both. It is also possible to quantify those effects numerically.
Furthermore, the visual technique allows the user to identify where in the
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brain specific preprocessing steps have the greatest impact. For instance, in the
study reported by McNamee and Eddy, motion correction and physiological
correction had the largest effect on the mean and the variance at the edges
of the brain. Other uses for VANOVA, as pointed out by the authors, are
to optimize the order in which the preprocessing steps are applied and to
assess whether a given preprocessing step is needed. Of course, the analogy
with ANOVA is only conceptual, borrowing the idea of partitioning sources
of variability. The formal mathematics behind ANOVA, such as projections
and orthogonality, do not hold here.



4

Statistical Issues in fMRI Data Analysis

Having surveyed the science of fMRI, specifically how the data are collected,
experimental design, and noise, and before moving to an in-depth discussion
of the many statistical techniques that have been developed (and continue to
be developed) for the analysis of fMRI data, it might be helpful to take a step
back and consider what the major statistical analysis questions are. This will
help frame the discussion in the coming chapters, as well as provide context
for that discussion.

4.1 Characteristics of the Data

fMRI data acquired on a single subject are characterized by the following
features: they are abundant, they are noisy, and they are highly correlated
both spatially and temporally.

We can think of the data with which we have to work as a time series,
or more generally a movie, of the human brain in action. At each voxel of
the brain, the measured data are the MR signal as it evolves over the time
course of the experiment. In a typical experiment this time course may be
hundreds of time points long, with an image being acquired at each time point.
The number of spatial points for which data are available will usually be in
the tens or hundreds of thousands, if not higher. With standard acquisition
parameters, a single slice contains 4096 voxels (it is a 64 x 64 grid); the number
of slices varies greatly from study to study and from MR center to MR center.
A lower limit on the number of slices might be 7-10; an upper limit might be
in the 30s or 40s. The number of slices, of course, will depend on how much
of the brain needs to be imaged, the TR, the voxel size, and other factors,
as discussed in Chapter 2. Hence for each subject in a study, we will have
potentially hundreds of thousands of time series, each several hundred time
points in length.

Chapter 3 described the many sources of noise that are prevalent in fMRI
data. Indeed, the signal of interest represents only a small part of what is
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measured by the MR scanner, and the changes we are looking for are similarly
small in scale, on the order of 3%. Even after preprocessing, there remains
considerable variability (statistical noise) in the data, presenting a challenge
to statistical methods and limiting, to some extent, the types of analysis that
will be effective.

Another complication is the spatial and temporal structure in the data,
which even now is not fully understood. What is evident is that the signal
is inherently correlated both in time and space. The temporal correlation
arises from the fact that stimuli are presented continuously or periodically
over time, and the reaction to a stimulus at time t will clearly be affected by
the stimulus at time t − 1, and the reaction to it, and also by stimuli and
reactions farther back in time; indeed one could plausibly argue that all of a
person’s past history affects his response to each and every stimulus presented
during an fMRI experiment. Spatial correlation comes about because all of
the voxels are in the brain of a single person. However, the correlation is most
likely more complicated than if it were based on simple physical distances.
For instance, while it is reasonable that voxels that are close to each other
in the brain might be correlated in their activation patterns, it is also likely
that voxels distant from each other can co-activate. As one example, voxels
in the different language processing areas might be highly correlated, even if
they aren’t in physical proximity.

In an extensive examination of the statistical characteristics of the BOLD
response, Chen et al. (2003b) studied seven subjects during a rest (“null hy-
pothesis”) condition, in order to gain a deeper understanding of fMRI noise.
The subjects were scanned in two different centers, one on a 1.5T magnet and
six on two separate 3T magnets. Finally, in one of the 3T scanners, functional
data were acquired using a spiral sequence, while in the other, they were ac-
quired using EPI. In all cases, subjects were simply asked to recline in the
scanner with their eyes shut.

For the analysis, the authors only considered voxels in white or gray mat-
ter. The data were not motion corrected so that they could also explore the
effect of motion on the statistical properties of the BOLD response. A number
of interesting observations can be made. First of all, for most of the subjects in
the study, the distribution of the mean level of the voxels had a long left tail;
this was more apparent in the gray matter than in the white matter, with the
latter being less skewed in general. The means were more spread out in the
gray matter than in the white, especially in the data acquired via spiral imag-
ing. By contrast, the distributions of the voxel standard deviations exhibited
longer right tails; for all of the subjects in the study, the average standard
deviation was smaller in the white matter than in the gray. As Chen et al.
point out, the implication of these two sets of findings is that the white matter
has smaller between-voxel variation over space than does the gray matter, and
furthermore, it also has smaller within-voxel variation over time, on average.

Using simple q-q plots and correlations, the authors next examined the
normality of the temporal variation within each voxel, for each subject. For
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most of the subjects the percentage of the voxels that were significantly dif-
ferent from normal according to the correlation analysis was small, on the
order of 5% or less in both white and gray matter. However, for one subject,
as much as 35% of the voxels exhibited significant non-normality. Based on
these findings, the authors tentatively concluded that temporal variation in
the BOLD response noise is approximately normal, whereas spatial variation
appears to be well fit by a gamma distribution instead.

Regarding head movement, Chen et al. observed that the subjects with
a higher motion index also had more non-normally distributed voxels in the
gray matter. They concluded that head motion is a major contributor to the
observed non-normality of the temporal variation of the BOLD signal. No
such relationship between head motion and spatial variability was found.

As we shall see in later chapters, many of the standard statistical analyses
make assumptions about the normality of the noise; while this may be justified
in the time dimension (i.e., within a voxel), the work of Chen et al. seems
to cast doubt on the viability of the assumption along the spatial dimension
(i.e., across voxels). Clearly, these issues warrant further exploration.

These features of the data make them especially challenging, and interest-
ing, for statisticians to work with. In Chapter 5 we will examine, among other
topics, the linear model approach to analyzing fMRI data, and the implica-
tions of the normality assumption. Chapter 6 will take up the more realistic,
and complex, spatiotemporal modeling that is becoming more prevalent in
the literature.

4.2 Detection or Estimation?

As we saw in Chapter 2, the two main experimental designs used in fMRI
are capable of effectively addressing two different questions of interest. Block
designs are especially useful for detection, that is, locating which voxels are
“activated” in response to a given task, compared to a control condition.
Event-related designs, by contrast, provide a means of estimating the hemo-
dynamic response function. This, in turn, can also lead to detection, as in (for
just one example) Gibbons et al. (2004).

Since fMRI studies have traditionally employed block designs, detection of
activity has naturally been the focus of much research. Most of the commonly
employed statistical techniques have as their end product a map, usually re-
ferred to as a statistical parametric map (or nonparametric if the map was
obtained as the result of a nonparametric analysis) of the brain. These maps
are a graphical representation of the output of the statistical analysis at each
voxel of the brain: a map of t statistics, or F statistics, and so forth. The
brain maps that the public often sees on the covers of magazines and in the
science pages of the newspaper are one step removed from these statistical
parametric maps; those “pretty pictures” show only those voxels which have
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been declared active. As we shall see, reaching this point involves a com-
bination of statistical models, statistical tests, and corrections for multiple
testing; the latter is known in the neuroimaging community as the problem
of “thresholding” (see Section 4.3).

With the growing popularity of event-related designs due to their greater
flexibility, statistical methodology is being extended to permit efficient esti-
mation of the hemodynamic response function, and also to use this to arrive at
conclusions regarding which voxels should be considered active. Ideally, then,
our statistical procedures should permit us to answer both sets of questions.
Issues of detection and estimation, including the various modeling decisions
that need to be made for both, are addressed in Chapter 5.

4.3 Thresholding

The question of thresholding, or determining which voxels are active, is obvi-
ously intricately linked to the question of detection described in the previous
section. Most analysis and testing is still done on a voxel by voxel basis (al-
though more sophisticated approaches are becoming common), thereby neces-
sitating at each voxel a decision as to whether it should be considered active
or not. With the many tens of thousands of voxels in a typical scan, the result
is a large multiple testing problem. Various solutions exist already in the fMRI
literature, ranging from completely ad hoc arbitrary thresholds to thresholds
based on high-level mathematical theory. These are explored in more detail
in Chapter 10.

4.3.1 Is “Voxel Activation” the Right Criterion?

One might claim that applying thresholds and designating some voxels to be
“active,” with the rest “inactive” is not, in fact, a realistic way of thinking
about the data. Indeed, the application of hard thresholds is misleading in
the sense that voxels that are close to, but below, the threshold, will not
be shown in an activation map, whereas voxels that are close to, but just
above, the threshold, will be shown. Yet the difference between those two
voxels is minimal. Some authors argue, plausibly, that instead of hard binary
thresholding, we should create gradated maps that display the change in the
extent of activated regions as thresholds are modified (Jernigan et al., 2003).

We should also note that a thresholded map is a static object, summariz-
ing the entirety of an experiment that evolved over time in a single “yes-no”
decision (active-inactive). The dynamic nature of brain activity, and in partic-
ular any information about the times at which different regions become active,
is lost. Questions about regional connectivity cannot be answered from this
approach, yet these are often more interesting and critical than the detection
question that is answered. One of the fascinating and difficult questions about
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brain science is understanding the circuits in the train of function – which re-
gions activate first, which regions do they then affect, and so on. More flexible
and sophisticated statistical methods are needed to incorporate and examine
the dynamic, temporally changing activation patterns that more accurately
describe what is truly going on in the brain during the course of an imaging
experiment. Friston (1998) phrases this dichotomy as a question of looking for
“principles” (that is, organizing principles of brain behavior) versus drawing
“maps” (the common practice). This distinction is an important one.

4.3.2 Reliability and Reproducibility of Activation

Another element of importance when thinking about issues of thresholding
relates to the consistency of activation for individual voxels. If, in response to
a given stimulus, the same voxels in the brain of a particular individual always
activate, then the search for “active voxels” has a concrete meaning: We are
looking for those particular voxels in the brain of an individual that become
active when that person taps his fingers, or solves a math problem, or sees
a face. However, research has shown that in fact the “test-retest reliability”
of activation is quite low; a voxel that is active in one experimental run has
only about a 50% chance of being active in a later repetition of the same
experiment, carried out on the same individual (see, for example, Genovese
et al. 1997; Noll et al. 1997; Maitra et al. 2002). Likewise, activation volume,
that is, the overall number of voxels detected as active, has been found to vary
considerably from scan to scan, apparently in a fashion that is uncorrelated
with changes in levels of signal, levels of noise, and subject performance on the
task (Saad et al., 2003b). Liu et al. (2004) also found significant differences in
the numbers of active voxels across scanning trials within a session, but noted
that averaging the trials led to a lack of significant differences across sessions
separated in time. This lack of reliability of activation indicates that the target
is much more elusive, and hence the focus on voxel level analysis is misguided.
Researchers should instead concentrate on the behavior of clusters, or regions,
of voxels – can activation be reliably detected at this aggregate level? Indeed,
this is usually the ultimate goal, but it is only achieved indirectly in many
commonly used statistical procedures.

When regions of activation, as opposed to individual voxels, are consid-
ered, one no longer needs to be concerned with the status of each and every
voxel (active or not). Instead, the focus will be on the overall patterns of ac-
tivation that are observed in the test and retest maps. It is easy to assess the
test-retest reliability visually by simply looking at the two maps, a qualitative
rather than a quantitative comparison, as concluded by Liu et al. (2004). More
formally, as part of a more organized statistical analysis, differences between
test and retest could be evaluated through contrasts in a linear model. Tak-
ing this view, Kiehl and Liddle (2003) demonstrated strong reproducibility of
the hemodynamic response in an event-related study of an auditory “oddball”
task, where the two sessions, carried out on 10 subjects, were separated by
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approximately six weeks. In the oddball task, a “standard stimulus” is pre-
sented with relatively high probability (in this experiment, 75% of trials were
the standard stimulus); with lower probability, a “target” and a “novel” stim-
ulus are also presented (frequency 12.5% each in the Kiehl and Liddle study).
The subject is only expected to respond to the target stimulus, ignoring both
the standard and the novel stimuli when they are presented. Kiehl and Liddle
(2003) give both detailed functional maps as well as a contrast-based statis-
tical analysis to back up their claim that the hemodynamic response, at least
for this task, is quite consistent across testing sessions separated in time.

Other researchers have not found such consistent patterns across testing
sessions, even when the focus has been on regions of activity. McGonigle et al.
(2000) scanned a single subject 33 times over the course of two months on a
series of three simple motor (finger tap), visual (flashing checkerboard), and
cognitive (generate random digits from 1 to 9) tasks. In what the authors term
a “Groundhog Day” scenario, each scanning session was treated as though it
were the first time the subject was performing the experiment, to mimic the
usual paradigm in which each subject is seen only for one session, and the
results of that session are taken as representative of the subject’s brain acti-
vation patterns as a whole. In each session of the “Groundhog Day” scenario,
the subject performed all three tasks, in counterbalanced order, block design
experiments. By contrast with the results of Kiehl and Liddle, McGonigle et
al. report statistically significant differences in activation across the 33 scan-
ning sessions. This can also be seen in the thresholded maps they present for
the three tasks over the sessions, which vary greatly, and not in any system-
atic fashion. The authors caution against relying too heavily on the outcome
of a single scanning session, as discovered effects may be idiosyncratic to the
particular day or time at which the images were acquired. It is worth noting
that in a follow-up analysis of the same data set, this research group softened
their conclusions somewhat (Smith et al., 2005).

At the present time, the test-retest reliability and reproducibility of fMRI
results seem to still be somewhat of an open question. Evidently, some ex-
perimental paradigms are more robust than others, and will reveal consistent
patterns of activity across subjects and across scanning sessions within a sub-
ject. Others are more elusive. A complicating factor is the different ways in
which one can think about reliability of activation. Among the types of re-
producibility that have been of interest are: consistency for a single subject
across sessions, or across runs within a single session; consistency across sub-
jects, within or between sessions; and consistency across imaging centers, on
different scanners, using the same or different subjects. Aside from the acti-
vation status of a voxel, characteristics of the BOLD response itself have also
been examined for their reliability on repeated trials. See Casey et al. (1998)

(reproducibility across imaging centers); Salli et al. (2001) (effect of classifica-
tion rule for determining the activation status of a voxel on reproducibility);
Neumann et al. (2003) (reliability of BOLD response patterns across imaging
sessions) for more detailed explorations of specific aspects of this topic.
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4.4 Multiple Subjects

Most imaging experiments include a small number of subjects, but in current
studies that number is still greater than one, and the trend is toward larger
groups (Thirion et al., 2007). Considering each subject on an individual ba-
sis is relatively easy, but not powerful in any statistical sense. Furthermore, it
does not permit researchers to draw meaningful conclusions about the behav-
ior of the group of subjects as a group, to extrapolate to the population from
which the subjects were sampled, or to compare groups of subjects (for in-
stance, young children, older children, adolescents and adults; or schizophrenic
patients and healthy controls; or men and women). It is therefore crucial to
have statistically valid and powerful methods of combining the information
obtained from multiple subjects in order that these higher-level scientific ques-
tions can be investigated.

The issue of combining information across subjects has two aspects, only
one of which is statistical. The other dimension is physiological and has to
do with the fact that each person’s brain is different. Brains differ in size,
shape, and in the relative positions of identifiable regions and landmarks. It
only makes sense to combine brain images from different individuals if they
are put on an equal basis, in the form of a common space. Thus a preliminary
step prior to any statistical combination work is to warp the brain images
onto such a common atlas, of which several possibilities are available, most
notably the Talairach coordinate system (Talairach and Tournoux, 1988).
Once this is done, we can consider the various methods of combining infor-
mation across independent subjects, and of comparing independent groups
of subjects, depending on the ultimate inferential goals. In Section 5.5 we
examine and compare methods for combining subjects.

4.4.1 Consistency Across Subjects

Just as reliability of activation is an important consideration for model fitting
in general and thresholding of statistical maps in particular, so too is con-
sistency across subjects, at least in some broad sense, when the focus is on
combining data to create group maps. One would naturally expect between-
subject variability to be greater than within-subject variability; subjects will
differ more from each other than an individual will differ from himself scanned
at different points in time (barring any brain trauma or similiar phenomenon,
of course). Still, even in this context some amount of reproducibility across
subjects of the effect of interest is clearly desirable. To take an extreme (and
unrealistic) example, if every subject has a completely idiosyncratic brain re-
sponse to a simple motor task such as tapping the fingers on the right hand,
then any meaningful statistical analysis will be ultimately unattainable. We
cannot gather strength from disparate sources of information (subjects) if
there is no commonality among them, hence a fair amount of consistency as
we move from subject to subject is needed. The issues, between subject and
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within subject variability, are of course related, and it is important to assess
the relative strength of these two effects. At the very least, statisticians ap-
proaching the analysis of group level data need to be aware of the special
complications that arise in the neuroimaging setting.

How consistent are patterns of activation across subjects? Typically, the
combination of subjects to create a group map is not performed on the thresh-
olded maps of the individuals (see Section 5.5.2 for a detailed discussion), so
it makes little sense to worry about the reproducibility of the binary ac-
tive/inactive images. Furthermore, since the hemodynamic response underlies
what is observed in the data, whatever the experimental paradigm from which
they were generated, we can focus for the purpose of this discussion on vari-
ability of that response across subjects.

In an early study on the stability of the hemodynamic response, Aguirre
et al. (1998) had 41 subjects perform a simple motor task (bilateral button
press). Thirty-two of these subjects were scanned only once; four of the sub-
jects were scanned five times, with each scan on a different day, spread out over
several months; the final five subjects were also scanned five times, but all five
scans were on the same day, in the same scanning session. For the first group
of subjects, therefore, only one estimate of the hemodynamic reponse could be
obtained; the scans on the other two groups yielded five separate estimates.
This allows for comparison both within and between subjects. Analysis was
not performed on the whole brain, rather the authors concentrated on a spe-
cific area, composed of approximately 200 voxels. The hemodynamic response
was estimated by averaging together the time courses of the active voxels in
the identified search region of interest.

Looking first at the subjects who were scanned multiple times during one
session, the authors found significant differences in the hemodynamic response
on only one (one subject was also dropped from this part of the analysis due
to insufficient overall activation in the prespecified region of interest). This
indicates that scan-to-scan variability within a single session is probably low
(although the small number of subjects makes any such conclusion tentative
at best). For those subjects who were scanned multiple times over a period of
months, by contrast, significant differences were found for three. Finally, the
subjects who were scanned only once exhibited highly significant differences in
their hemodynamic responses. This is noteworthy especially since the search
region was highly localized and did not include many voxels, a stark contrast
to the common whole brain analyses. Putting these results together, it appears
that the hemodynamic response within subjects and scanning sessions is much
more stable than the response across subjects, as one would expect. However,
it is also evident that the response within a subject is not necessarily stable
over time, as we also saw in the discussion in Section 4.3.2.

Based on their findings, Aguirre et al. suggested that analysis might be
improved if the fitted hemodynamic response function is unique to each sub-
ject. This notion was further explored in Handwerker et al. (2004), who also
examined the effects of shifting the parameter values of the models used for
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the HRF, on the outcome of a statistical analysis. In addition, Handwerker
and colleagues considered multiple brain regions of interest, which were all
assumed to be activated by a single task. Across 20 subjects who had enough
activation in the regions of interest to warrant further analysis, it was found
that the form of the HRF indeed differed from subject to subject, as well as
from region to region within a subject. Some subjects exhibited more vari-
ability across regions than did others. The empirically derived HRFs of many
subjects also differed significantly from the “canonical model” implemented
in the SPM software (we will see more on this model in the next chapter); the
peak in the BOLD response tended to occur earlier for these subjects than
allowed for in the standard model.

In general, there was more variability across subjects within each region
than within each subject across regions, again indicating that behavior within
an individual is relatively stable. Note that this stability is only relative; as
Handwerker et al. point out “Although intersubject variability is larger, there
is a large intrasubject variability” (p. 1649). Compared to using the canonical
HRF for all subjects and regions, the authors found improved detection ability
(in simulated data) by using an empirically derived function for each subject;
in their study, the empirical HRF was derived in one region and applied to
others, and this still resulted in better performance. Presumably, further im-
provement could be achieved if the time and effort were taken to estimate
region-specific response functions, although this tactic might not be practical
in all situations.

A recent exploration of this question on a large cohort of 81 subjects
(Thirion et al., 2007) gives some interesting further insight on a scale that is
not possible with smaller groups of subjects. For example, by splitting their
data set into smaller subsets of 10 to 16 subjects (the typical size for multi-
subject studies) Thirion and colleagues show that the resultant group maps
obtained by some of the common models exhibit a great deal of variability.
This variability is strong enough that in some cases different scientific conclu-
sions would be reached. This is a pretty strong indication that across-subject
variability should not be ignored. Group maps are more reproducible as the
number of subjects on which they are based increases, providing an impetus to
move toward larger studies in general. As has been found by other researchers,
Thirion et al. (2007) also note that reliability or reproducibility of activation
is highly task-dependent.

4.5 Regional Versus Whole Brain Analysis

Should fMRI data be analyzed on a region by region basis, with, for instance,
different models or different forms for the HRF assumed in different parts
of the brain? Or should we take the stance that one unified analysis should
suffice for the brain as a whole? Both approaches have advantages as well as
drawbacks. A region-based analysis is likely to be more realistic. As we shall
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see in Chapter 5, researchers have repeatedly found variations in, for exam-
ple, the details of the BOLD response (time to peak, rate of decay back to
baseline, etc.) when different tasks and regions of the brain are considered.
Hence it is unlikely that one model will be appropriate for all voxels. Cer-
tainly at the very least one ought to consider that the behaviors observed in
the gray matter, where most brain activity occurs, will differ from those in
white matter or cerebrospinal fluid, and perhaps the latter should be modeled
differently than the former. Even within the gray matter itself, however, it
might be reasonable to posit region-specific analyses. The drawbacks of such
an approach are equally obvious. First, it necessitates having some conception
of what these models should look like, which might not be feasible especially
when new experimental tasks are being explored. Second, the process will per-
force be more involved, requiring for example a partitioning of the brain into
gray/white/cerebrospinal fluid, and perhaps further within the gray matter
into specific regions of interest (ROIs). This is a very time-consuming and
arduous task, demanding expert knowledge, and it introduces an element of
subjectivity via the definitions of the regions for each subject in the study;
furthermore, since the size of the voxel is based on the imaging parameters and
has no intrinsic physiological meaning, a single voxel may contain more than
one type of tissue (for example, both gray and white matter can appear in the
same voxel). Fitting region-specific models is more computationally intensive
than fitting one model for the whole brain, especially if model selection is also
part of the procedure. Finally, if a different model is fit to each region, or
potentially even to each voxel in the analysis, issues of thresholding become
more complicated, since a single cutoff point can no longer be applied, and
interpretation of the resultant map is more difficult.

The advantages of a whole brain analysis mirror the disadvantages of the
regional analysis. First, it is computationally easier to fit a single model to the
entire brain, even if model selection is involved. Not having to segment the
brain into the different tissue types or partition it into ROIs saves effort and
time (defining and outlining the regions of interest can take weeks of work),
permitting a more detailed focus on the statistical analysis proper. One thresh-
old can be applied to the entire brain and the binary map of active/not active
voxels is easily interpeted. On the other hand, as noted above, the assumption
that one model or one type of analysis will be suitable for every location is
questionable and probably not believed by most practitioners. Whole brain
analyses are often, although not always, done on a voxel-by-voxel basis; this
introduces the additional unrealistic assumption that voxels are independent.

It is in fact quite common to have both approaches represented in a single
analysis: An analysis will be performed of the entire brain using a single
model, in conjunction with a more specific analysis of several ROIs, focusing
on particular aspects of behavior (for instance, percentage of activated voxels
in a region). The questions of level of analysis and the assumptions implicit
in the various choices are starting to receive more attention in the fMRI
literature, but the area is still rather underdeveloped.
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4.6 Summary of Statistical Challenges

The opportunities inherent in the analysis of fMRI data are many. I have
touched here on some of the most obvious and immediate issues: developing
useful models for detection and estimation of the HRF, thresholding, combin-
ing information from multiple subjects, and comparing results from groups
of subjects. As we shall see in the upcoming chapters, each of these basic
questions has provided the impetus for methodological/statistical research,
yielding many and varied (partial) solutions.

As would also be expected from a data source as rich as fMRI, the inter-
esting statistical questions deepen the more we learn. For instance, moving
away from the simple and simplistic voxel-by-voxel analysis, we can consider
incorporating spatial and temporal information garnered from previous stud-
ies to build more realistic models. This presents challenges of its own, both
conceptual and computational, which have yet to be fully explored. Methods
from computer science, engineering, and even data mining can be applied to
fMRI data, representing different views of the scientific problems, and these
can (and should) be compared to more statistical approaches. Model selection
and model choice, visualization of large high-dimensional data sets, efficient
processing when the number of subjects is also large (a situation that is be-
coming increasingly feasible), Bayesian versus frequentist analyses: all of the
questions at the center of modern statistical practice can, and do, find expres-
sion in one form or another in fMRI. Many of these topics are taken up in the
following chapters.



5

Basic Statistical Analysis

In this chapter, we consider some of the basics of the statistical analysis of
fMRI data. The goal is to study the predominant fundamental approaches
to the data analysis problem so that we can build up to an understanding
of the more statistically and conceptually advanced methodologies being cur-
rently developed. We start with a brief discussion of exploratory data analysis
(EDA). The discussion then moves on to the basic statistical analysis of block
design studies and event-related studies. This will set the stage for a more
general survey of the general linear model as it is used in fMRI data analysis.
The chapter ends with an examination of some simple methods for combining
multiple subjects.

5.1 Exploratory Data Analysis

Exploratory data analysis (EDA) as we commonly use it in statistics is not
very prevalent in fMRI. I believe that there are several reasons for this. First,
the nature of the data plays an important role. Since the raw data obtained
from the scanner have to be preprocessed significantly before they begin to
look anything like a brain, there is a sense in which the lowest level information
to which we have easy and interpretable access has already undergone a fair
amount of analysis. A statistical map showing levels of activation at each
voxel, for instance, has already been subjected to statistical analysis, with an
assumed underlying model, and in this situation classical EDA is not relevant.
Yet this is the form in which practitioners are used to seeing their data, often
for the first time.

This would argue for taking the data down a level, bringing us to the second
point, namely, the massively complex spatial and temporal characteristics of
fMRI data render many of the standard EDA visualization tools difficult, if
not impossible, to apply. For example, what would a boxplot of the 4096 time
courses in a typical slice look like? How should the data from different slices
be presented – as each slice individually or all slices collectively? How would
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the data from subjects within a group, or for different groups of interest, be
compared? Some preliminary statistical analysis seems to be necessary prior
to performing EDA, or alternatively new EDA methods for large, complicated,
spatiotemporal data sets need to be developed and applied in this setting.

Finally, and related to the second point, is that at the “most raw processed
level” (that is, after preprocessing to clean up the data but prior to any
substantial statistical analysis), it is not even entirely clear what we would
hope to discover via traditional EDA. Regardless of the experimental design,
be it block or event-related, one would be dealing with time courses of the
hemodynamic response function (HRF), either in aggregate (block design) or
distinctly for each trial (event-related design). “Interesting patterns” in these
time courses would be indicative perhaps of localized activation, the subject
of more formal statistical analysis. Again, we come back to the question of
how exactly should large, spatiotemporal data be visualized? Histograms and
other plots to assess normality are clearly not relevant or directly applicable.
Likewise, many of the tools we are used to employing seem to have no direct
utility or applicability to fMRI data.

In summary, the development of appropriate and relevant tools for the
exploration and visualization of “most raw processed” fMRI data, together
with the formulation of suitable target questions for EDA in this context, is
an area that has not yet, in my view, been adequately addressed. As with much
of the work in fMRI, it is possible, indeed likely, that here, too, importing ideas
from other fields with similar data problems (such as geostatistics) could be
fruitful.

An interesting attempt at performing some EDA steps for fMRI appears
in Luo and Nichols (2003). These authors propose a set of diagnostics and in-
teractive graphical tools for simple assumptions on the error structure (such
as normality or autoregressive of various orders), independence, constant vari-
ance, and model fit. The process involves a series of steps, some relating to
scan summaries and others to model summaries. The aim of the former is
to identify particular scans (images) that are potentially problematic, for in-
stance, very noisy or showing a lot of motion; the aim of the latter is to check
whether model assumptions are violated, and if so when and where. That is,
there is both a temporal and a spatial element to the EDA, as well as a mod-
eling component, as there must be. Finally, after remediation, the diagnostics
provide a measure of the validity of the analysis at each voxel. Note that this
EDA is different from what a statistician might typically deem “exploratory”
in that it includes modeling as an integral part.

5.2 Block Designs: Basic Analysis

Section 2.2.1 described how in a block design experiment the constant stimula-
tion during the task blocks results in a characteristic time course for activated
voxels, whereby elevated levels of activation are observed roughly during the
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task blocks and lowered levels of activation are observed during the control
blocks. By contrast, the observed activation for voxels that do not respond
specifically to the stimulus is not related so directly to the structure of the
design.

An example of several voxels from a well-understood visual task appears
in Figure 5.1. In this block design, periods of fixation (a black screen with a
red crosshair in the center) alternated with a black and white flashing checker-
board at 8 Hz (also with a red center crosshair). The experiment started and
ended with a period of fixation. Each block lasted 30 seconds and the exper-
iment lasted 4.5 minutes. The plot shows the time courses for eight voxels:
three from occipital cortex that are very robust and task-related; three from
the edges of occipital cortex that are weakly related to the task; and two from
unrelated areas in the cortex. The first panel shows representative voxel time
courses from each of the three regions, plotted on the same scale. As can be
seen in this panel, the general levels of activation are the same in all voxels,
making this alone a useless criterion for discriminating between active and
inactive voxels. On the other hand, the voxels from strongly task-related re-
gions exhibit very different behavior from the behavior of voxels in unrelated
regions, with elevated levels during periods of flashing checkerboard and de-
pressed levels during the periods of fixation. The weakly task-related voxels
on the edge of occipital cortex are similar to the unrelated voxels, although
they do show some signs of the characteristic behavior of interest.

The other three panels of Figure 5.1 show close-ups of the three types of
time courses; from this closer look it is apparent that the voxels on the edge
of the relevant region are in fact responding to the visual task, but at much
reduced levels compared to the strongly task-related voxels. By contrast, the
levels of activation for the voxels in an irrelevant region of the cortex show no
relation at all to the presentation of the stimulus.

These two broad patterns, one for responsive, or “active,” voxels and one
for unresponsive, or “inactive,” voxels suggest some simple ways for proceeding
with the data analysis on a voxel by voxel basis. For simplicity, assume that
there is only one task of interest, so that the experiment alternates between
blocks of task and blocks of control. Perhaps the easiest analysis in this setting
is to ignore the temporal aspect of the data and to calculate the value of the t
statistic for comparing the mean levels of activation during the task blocks and
the control blocks, at each voxel. Hence, at voxel i the amount of activation
is summarized by the statistic

ti =
X̄task − X̄control

se
,

where X̄task is the average level of activation in voxel i over all times during
which the task was being performed (that is, aggregating over all the task
blocks), X̄control is the average level of activation in voxel i over all times
during which the subject was at rest or performing the control, and se is the
standard error of the difference; commonly one would use the pooled estimate
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Fig. 5.1. Time courses for different voxels in a simple flashing checkerboard block
design. Voxels that are strongly involved with the visual processing task show a
characteristic boxcar behavior of increased activation during the stimulus presenta-
tion and relaxation during the fixation period. Voxels that are weakly involved in
the task show a similar pattern, but not as strong. Unrelated voxels exhibit ran-
dom “noise-like” activity throughout the course of the experiment. Data courtesy
of Christine Krisky, Oregon Health and Science University.

of the variance,

s2
p =

(ntask − 1)s2
task + (ncontrol − 1)s2

control

ntask + ncontrol − 2
,

so that

se = sp

√
1

ntask
+

1
ncontrol

.

Here, ntask and ncontrol are the number of observations in the task and control
conditions, respectively, and s2

task and s2
control are the sample variances of the

activation in those two conditions, respectively, at voxel i.
After performing this analysis at each voxel for a given subject, the result

can be plotted in a statistical parametric map, in this case a map of t values.
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Typically, such a map will be generated for each subject, and these maps will in
turn be subject to additional statistical processing, for instance thresholding to
determine which voxels should be declared “active.” See Chapter 10 for more
on this issue. In most instances, practitioners will only be interested in those
voxels for which the level of activation was higher in the task condition than
in the control condition, i.e., large positive t values, leading to a one-sided
hypothesis test for the difference being greater than zero. Voxels in which the
level of activation decreases during the task condition relative to the control
are termed deactivated and are usually of less scientific interest. Note that if
there is more than one task condition, this basic approach can be extended
to generate an F statistic at each voxel for comparing levels of activity over
all conditions, leading to an F map for each subject, which in turn will be
thresholded, and so forth.

This analysis makes certain strong assumptions, beyond the usual one of
normality, namely:

1. Independence of voxels. Since the analysis is carried out for each voxel in-
dividually, resulting in a single test statistic at each point in the image, the
implicit assumption is that those voxels are independent. This assumption
of spatial independence is clearly not realistic and will be violated in all
fMRI data sets.

2. Independence in time. Likewise, this analysis aggregates over time points,
both within and across blocks of similar type (task or control), implicitly
assuming that measurements collected at different points in time are in-
dependent. The assumption of temporal independence is also unrealistic
and will be violated in all fMRI data sets.

3. Onset of the hemodynamic response is immediate upon stimulus presen-
tation and it likewise stops immediately when the stimulus is stopped. In
the simple version of the test described above, no consideration is taken of
the physiological fact that the BOLD effect does not start instantaneously,
but rather there is a delay of several seconds before the response begins,
and several more seconds before the peak is reached. Similarly, once the
stimulus is turned off in the control conditions, the hemodynamic response
does not immediately drop back to baseline; rather the decline is grad-
ual, again taking several seconds. These behaviors can be accommodated
within the simple modeling framework, at the price of some loss of data,
by deleting the first few images after each transition from one block type
to another.

4. Equal variances in task and control conditions. Although this assumption
may or may not be realistic, the two-sample t test is quite robust to
violations of homoscedasticity, especially when the sample sizes are close
to being equal (Miller, 1986), as they are in fMRI experiments run with
block designs.

A recent study (Pavlicová et al., 2006) examined the assumptions of nor-
mality and equal variances in the rest and task conditions. Not surprisingly,
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the study found that the data can exhibit departures from both of these as-
sumptions. The authors proposed using, instead of the standard t test, mod-
ifications that allow for these departures: the Welch test (Welch, 1937)

tWi =
X̄task − X̄control√

s2
task

ntask
+ s2

control
ncontrol

,

which permits the population variances to be different; and the Cressie-
Whitford test (Cressie and Whitford, 1986), which has a complicated form
and additionally allows for non-normality. Simulations show that the Cressie-
Whitford test is more powerful than either the standard t or the t test modified
according to Welch’s correction.

In spite of the serious simplifying assumptions that are made, the simple
t test analysis is common in the fMRI literature, since it is easy to implement
and gives sensible scientific results for a wide variety of experimental condi-
tions. Averaging over time (trials) also has the effect of increasing the signal
to noise ratio, resulting in a more powerful analysis. Nonparametric versions
of this statistic, which allow the researcher to drop the normality assumption,
are also available, as they always are. These are not often used, however, per-
haps because the degrees of freedom (as measured through the length of the
time course, that is, the number of images) are generally large, and in this
case nonparametric tests are approximately normal.

It is possible to refine the t test analysis and take some advantage of the
temporal information in the data by carrying out a so-called correlational
analysis (Bandettini et al., 1993) in which the stimulus time course or the
predicted hemodynamic response is correlated with the voxel activation time
course. That is, at voxel i calculate

ri = r(S,Xi),

where S is the pattern of zeros and ones describing the block design stim-
ulus presentation pattern, and Xi is the activation time course of voxel i; r
represents Pearson’s correlation coefficient,

r(Y,Z) =

∑n
j=1(Yj − Ȳ )(Zj − Z̄)√∑n

j=1(Yj − Ȳ )2
∑n

j=1(Zj − Z̄)2

between two vectors Y and Z of length n. Voxels with a high positive value of
ri are considered to be active, since there is a strong correlation in those voxels
between the task (respectively, control) blocks and high (respectively, low)
levels of activity. When there is no such correlation, voxels are inactive, and
strong negative correlation indicates deactivated voxels, which, as mentioned
above, are generally not of interest.

It can be shown, in fact, that when the number of images in the task
condition is equal to the number of images in the control condition (that is,
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a balanced block design), the two analyses coincide after transforming ri by
the usual

ti = ri

√
n − 2
1 − r2

i

,

where in this case, with n as the total number of images we have n/2 images
from the control condition and n/2 from the task condition. However, when
the design isn’t completely balanced, e.g., there is one more run of the task
block than of the control block, the two analyses only approximately coincide.

An advantage of moving from the t test to the correlation framework is
that we can consider different stimulus series other than the simple “boxcar” of
the two-condition block design experiment. For instance, we can just as easily
correlate fMRI time series with a time series of behavioral data collected in the
scanner during the course of the experiment, to explore which voxels activate
when a particular behavior is carried out. This may or may not correspond
exactly with the series of stimuli as presented to the subject in the scanner. Or,
we can correlate the fMRI time series with a smoothed version of the stimulus
series, or some other suitable transformation. It is also easier to account for
the delay in the hemodynamic response by considering correlations with a
lagged stimulus series rather than the original one. Furthermore, designs which
may not be amenable to a straightforward t- or F -type analysis, such as an
experiment with more than two conditions that is not completely balanced,
might lend themselves to a correlational analysis instead. In most applications
in practice, of course, it will matter little which of the two approaches is taken.
Some research groups tend to report their results in terms of the correlation
analysis, and others in terms of the t analysis, but the difference seems mostly
to be an issue of preference or habit.

Similar to the t test analysis, one can account for the gradual increase
and decrease of the hemodynamic response at the transitions between task
and control blocks by calculating a shifted or lagged correlation between the
stimulus presentation series and the voxel time course. For longer lags more
observations are lost.

5.3 Event-Related Designs: Basic Analysis

In the analysis of event-related studies, a major focus is estimation of the
hemodynamic response function (HRF); estimated HRFs can in turn be used
to identify areas of interesting activity. Beyond simple estimation of the HRF,
event-related experiments allow for the investigation of a range of subtler
effects as well, such as estimating the delay of response onset, exploring dif-
ferences in brain behavior according to reaction to a stimulus (for instance,
differences in the hemodynamic response when a correct answer is given to a
question and when an incorrect answer is given), and so forth.
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There are two main tools for the basic analysis of event-related designs:
trial averaging, reminiscent of both the t test analysis for block designs and
the analysis of event-related potential (ERP) studies of the brain (whence the
name “event-related fMRI”); and function estimation.

By “trial averaging” we refer to the simple averaging together of like trial
types (Dale and Buckner, 1997; Buckner, 1998). The trials in an experiment
are sorted according to type and then the fMRI time courses of each type, at
each voxel, are studied. In this way, we obtain the average fMRI time course
for a particular type of trial, as well as the variance of the time course for that
type of trial. Averaged time courses for voxels that are activated in reaction to
a particular trial type should exhibit the stereotypical behavior of the BOLD
response; for trial types that do not cause a reaction, the trial averaged fMRI
series should not show the typical behavior.

The trial averaged time series can be further subjected to statistical anal-
ysis such as a t test or a correlational analysis, as described in the previous
section, or to any of the more sophisticated approaches outlined in Section
10.6.

Dale and Buckner (1997) and Buckner (1998) show that this simple ap-
proach can be effective in eliciting meaningful responses when trials are spaced
as little as 2 seconds apart; furthermore, when subjects are presented with
more than one trial of the same type, in rapid succession, the BOLD response
adds in a more or less linear fashion. Hence, trial averaging is not restricted
to cases in which the interstimulus interval (see Chapter 2) is long enough for
the hemodynamic response to return to baseline levels, as one might expect
a priori.

Note that trial averaging yields an estimate of the HRF, albeit one that
is not based on any model or assumptions. With the “function estimation”
approach, we aim instead to obtain an estimate of the HRF that is model-
based in some sense. The techniques can be roughly categorized as parametric
and nonparametric.

5.3.1 Parametric Approaches to the Estimation of the HRF

As the name implies, the parametric approach to HRF estimation specifies
some family of statistical distributions to model the shape of the BOLD re-
sponse curve. Although the first model to be proposed was the Poisson (Fris-
ton et al., 1994), the family that is most often used for this purpose is the
gamma (Lange and Zeger, 1997). Compared to the gamma family, the Pois-
son family is much less flexible, since it has only one parameter available to
describe the HRF; furthermore, it is discrete, whereas the BOLD response
evolves continuously over time.

Lange and Zeger (1997) model the HRF at time t and voxel i by a simple
two-parameter gamma family:

h(t, i) = bi(tbi)ai−1 exp(−tbi)/Γ(ai),
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where ai and bi are the shape and scale parameters, respectively, of the gamma
distribution, which are allowed to vary from voxel to voxel, and Γ(·) is the
normalizing constant for the density, the gamma function. The parameters are
estimated iteratively, a potentially computer-intensive and time-consuming
step. An example of such a function for a = 3 and b = 4 appears in Figure 5.2.
Note that the shape of the curve for these choices of the parameters roughly
parallels the fundamentals of the response: a slow rise to a peak value, followed
by a (slower) decline back to baseline. Clearly the gamma family is flexible
enough, through the choice of parameters to accommodate a wide range of
functional shapes, only some of which will approximate the BOLD response.
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Fig. 5.2. Lange and Zeger model for the HRF based on a gamma distribution, here
with shape parameter 3 and scale parameter 4.

Figure 5.2 shows that a single gamma component can describe the gross
features of the BOLD response; the finer details, such as the initial delay prior
to onset of the response and the undershoot before the recovery to baseline
levels, are not so easily modeled with a single gamma. For this reason, Friston
et al. (1998) modify the suggestion of Lange and Zeger by taking instead
the difference of two gamma functions, with set parameter values as given
by Glover (1999); this version is currently implemented in the SPM software
package. Using this model, the slight underdip that is sometimes observed
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prior to the return to baseline is accounted for:

h(t) =
(

t

τ1

)δ1

exp
[
−δ1

τ1
(t − τ1)

]
− c

(
t

τ2

)δ2

exp
[
−δ2

τ2
(t − τ2)

]
,

with τj = 0.9δj, δ1 = 6, δ2 = 12, and c = 0.35. The two values τ1 and τ2

represent the time to peak and the time to undershoot peak, respectively.
Using other values of the parameters in the function h(t) besides those given
here corresponds to different assumptions regarding the time to peak and
peak undershoot, which may indeed vary by task and by region of the brain
(Glover, 1999). The function, plotted in Figure 5.3, is more flexible than the
simple gamma model, and more realistically describes behavior observed in
studies of the HRF.
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Fig. 5.3. The difference of two gammas, using parameter estimates from Glover,
1999, to model the HRF.

Estimating the parameters for the gamma-type model can be difficult,
requiring iterative procedures, hence the tendency to use a “canonical” set
of parameter values whether they are appropriate to the particular task and
brain region under study or not. Alternatively, Rajapske et al. (1998) propose
a simple Gaussian model for the HRF. In contrast to the other parametric
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models, the authors claim that the parameters of the Gaussian model can be
easily estimated, or approximately so, making it feasible to provide voxel- and
task-dependent fits. In their comparison of the three model types, Rajapske
et al. define two characteristics of the HRF: the lag (equated to the mean of
the model function) and the dispersion (equated to the variance). Clearly, for
the Gaussian family these are independent, whereas for both the Poisson and
the gamma families they are not: for the Poisson the mean and the variance
are the same, whereas for the gamma, the mean and the variance are related.
Empirically, the authors find no evidence of a relationship between the lag
and dispersion of the hemodynamic response in active regions over a variety
of tasks. On the other hand, the symmetry of the Gaussian curve does not
correspond to the supposed response, nor can it account for the often-observed
undershoot.

These various approaches are subsumed into one general, nonlinear model
by Kruggel and von Cramon (1999). Concentrating only on the subset of
voxels declared significant by some other method, they consider models of the
form

y(s, t) = g(t, β) + ε(s, t),

where s indexes the voxel and t indexes time, and g(t, β) can be taken as any
of the existing parametric forms for the HRF described in this section. Across
s and t, the vector ε is assumed to be multivariate normally distributed with
mean zero and unknown variance-covariance matrix Σ, whose elements must
be estimated.

The β parameters of the model are estimated using maximum likelihood.
Estimation of the variance-covariance matrix is more complicated, since with-
out any further restrictions the number of parameters is large; hence some
constraints must be imposed. The authors accomplish this by separating the
variance matrix into temporal and spatial parts and assuming each of these
has an AR(1) structure:

Σ = γ2
2(ΣS ⊗ ΣT ),

where γ2
2 is a variance term and ⊗ is the Kronecker product. Σ−1

S and Σ−1
T

are modeled and estimated separately, and then used to build Σ−1 via

Σ−1 = 1/γ2
2(Σ−1

S ⊗ Σ−1
T ).

5.3.2 Nonparametric Approaches to the Estimation of the HRF

The parametric approach to estimating the HRF has two main, intertwined,
drawbacks. First, for simplicity it is usually assumed that the form of the HRF
is the same at each voxel, under all conditions, and for all subjects. This is
the implication of fitting the difference of two gammas with the canonical pa-
rameters as described in the previous section. Yet there is increasing evidence,
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some of which we shall see in this section, that the HRF varies spatially, and
across individuals. The need to fit the HRF with a single model regardless of
the circumstances is in part a consequence of the second drawback, namely
that many of the methods proposed in the previous section, as we saw, are
computationally intense. This is a problem that plagues fMRI data analysis
in general due to the highly complex and high dimensional nature of the data.
It is common therefore to make the simplifying assumption that one model
fits at each and every voxel, although this is clearly not realistic.

While the nonparametric approaches do not rid one of the computational
burden (indeed, many of the methods we will see in this section are very com-
putationally intensive), they do have the benefit of not imposing a priori and
somewhat arbitrarily a prespecified shape to the HRF, such as a Poisson or a
gamma. Under the rubric of nonparametric estimation we include techniques
that use basis functions or otherwise avoid families of distributions to fit the
shape of the response curve. Genovese (2000), for example, fits the HRF as
one component of a more general Bayesian time course model, using cubic
splines, with knots located at certain “critical points” of the curve. In this
way, separate pieces may be fit for the initial delay, for the increase up to
peak, for the decay, for the underdip, and for the recovery back to baseline
levels. Genovese combines this spline model with terms for the baseline signal
and the drift, as well as a series of priors, to develop a full-blown, compu-
tationally intensive, Bayesian approach. The need to specify priors, together
with the computational complexity of this method, has limited its applica-
bility in practice. We discuss Genovese’s model in more detail in Chapter 9,
but simply note here the use of a nonparametric method to estimate the HRF
itself.

Gibbons et al. (2004) take as a starting point time-averaged curves for an
event-related design with a “pseudo-block structure” (as in Dale and Buckner
1997, and others discussed above). Specifically, the design presents a single
quick stimulus, followed by rest condition long enough to allow return to
baseline; this same pattern of single quick stimulus and long rest is repeated
many times. The time-averaged curve is obtained by averaging the responses
at each corresponding time point in the pseudo-block (i.e., first images in
each block are averaged, as are second images in each block, and so on). To
these curves they then fit a simple cubic polynomial, which captures many of
the main features of the hemodynamic response, without fixing a parametric
form. The authors use a random effect polynomial regression with one effect
for each voxel; the random effects represent the deviations of the voxels from
the overall “average” cubic polynomial curve. The model can also incorporate
fixed effects for particular covariates such as the brain region in which the
voxel is located:

yi = Wiα + Xiβi + εi,

for i = 1, . . . , N voxels; yi is the time averaged time course for the ith voxel,
Wi is the known design matrix for the fixed effects (if there are any in the
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model), Xi is the known design matrix for the random effects, and α, βi are
the unknown parameters. The random effects are assumed to be normally
distributed with mean zero and unknown covariance Σβ ; the errors εi are also
normal and assumed to have covariance σ2

ε Ωi.
Random effect coefficients in this model are estimated using an empirical

Bayes approach, which has the advantage that estimates of the polynomial
coefficients at a particular voxel “borrow strength” from the information avail-
able in the other voxels in the analysis. This yields the estimates

β̃i = [XT
i (σ2

ε Ωi)−1Xi + Σ−1
β ]−1XT

i (σ2
ε Ωi)−1(yi − Wiα),

the empirical Bayes estimators for the voxel-level coefficients, and

Σβ|yi
= [XT

i (σ2
ε Ωi)−1Xi + Σ−1

β ]−1,

the posterior covariance matrix.
The fixed effect coefficients are estimated from the maximum marginal

likelihood as follows:

Σ̂β =
1
N

N∑
i=1

β̃iβ̃
T
i + Σβ|yi

gives an estimate of the population covariance,

α̂ = [
N∑

i=1

WT
i Ω−1

i Wi]−1[
N∑

i=1

WT
i Ω−1

i (yi − Xiβ̃i)]

gives the estimates of the fixed effects, and the scale factor of the error term,
σ2

ε , is estimated by

σ̂2
ε = (

N∑
i=1

ni)−1
N∑

i=1

tr[Ω−1
i (ε̂iε̂

T
i + XiΣβ|yi

XT
i )],

where ni are the number of time points observed on voxel i. Iterative pro-
cedures such as EM algorithm or Fisher scoring are needed to obtain final
parameter estimates. A further step in the analysis classifies the voxels ac-
cording to their estimated coefficients, to detect clusters of activation; see
Section 10.6. Roy et al. (2005) generalize this work so that the first step,
namely time averaging over the trials, is not needed. Instead, the entire time
course is fit all at once using cubic splines, with knots in predetermined loca-
tions.

Burock and Dale (2000) avoid both trial averaging and specifying a form
for the hemodynamic response altogether, preferring instead to estimate the
HRF directly as the “parameter” in a linear model. First, they write the
observed fMRI signal for a given voxel at time t (where time is considered to
be discrete) as

y(t) = x1h1(t) + x2h2(t) + . . . + xkhk(t) + ε(t),
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where xi is a dummy variable representing the trial type, hi is the hemody-
namic response associated with the ith trial type, and ε is noise, normally
distributed but with arbitrary covariance matrix (i.e., independence across
time is not assumed). Noting that this can be written in the usual matrix for-
mulation, now with the vector h being unknown, maximum likelihood methods
can be used to estimate h without having to assume any particular shape for
the hemodynamic responses of the different trial types. Since the covariance
in the noise term is not known, this needs to be estimated as well, and the
authors propose a procedure for modifying the simple ordinary least squares
(OLS) estimates to take this into account.

Their method proceeds roughly as follows. First, obtain the ordinary least
squares estimate of h, ignoring the temporal correlation,

ĥOLS = (XT X)−1XT y

and calculate the residuals e = y−XĥOLS. The residuals are then used to get
an estimate of the unknown covariance matrix of ε, call it Σε. This can either
be a “global” estimate in the sense that the covariance matrix is assumed
to be the same at every voxel in a slice, or “local” and varying from voxel
to voxel. Certain assumptions also need to be made about the noise process;
Burock and Dale assume a mixture of white (uncorrelated) Gaussian noise
and a correlated (autoregressive) component. A component of the covariance
matrix at lag k is modeled as

C(k) = σ2[λδ(k) + (1 − λ)ρ|k|],

for parameters λ and ρ which need to be estimated, and σ2 estimated using
the residuals from the OLS fit above. The estimated covariance matrix Σ̂ε is

Σ̂ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ĉ(0) Ĉ(1) · · · Ĉ(j)

Ĉ(1) Ĉ(0)
...

. . .
... Ĉ(0) Ĉ(1)

Ĉ(j) · · · Ĉ(1) Ĉ(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Here, j represents the biggest time lag considered, and Ĉ(k) is the estimate
of C(k) with λ and ρ replaced by their estimates; as mentioned above, these
may be either global or local. With this in hand, Σ̂ε can be calculated, and
the final estimate of the hemodynamic response is

ĥ = (XT Σ̂−1
ε X)−1XT Σ̂−1

ε y.

A Bayesian extension of this approach is given by Marrelec et al. (2003),
who model the response at time n (1 ≤ n ≤ N) as
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yn = h0xn + h1xn−1 + . . . + hKxn−K + λ1d1,n + . . . + λMdM,n + εn,

where n = K + 1, . . . , N , the h elements make up the hemodynamic response
that is the target of estimation, the d elements are possible other nuisance
effects such as signal drift, and the components of ε are assumed to be inde-
pendent, identically distributed N(0, σ2). As in Burock and Dale, the goal is
to estimate h from this linear model. Simple prior information on h is incor-
porated into the analysis in the form of two postulates:

1. The hemodynamic response function starts and ends at zero. This repre-
sents the fact that before any stimulus is presented, the subject is in a
resting state, so voxel activity is at a baseline level, and that after the
stimulus is turned off, in an event-related study, the voxel activity returns
to baseline. This part of the prior requires setting the first and last points
of the HRF to zero, which reduces by two the number of h parameters
that need to be estimated.

2. The hemodynamic response function is smooth. This represents the ob-
served behavior that there is a gradual rise from baseline to peak after
stimulus presentation, followed by a gradual decay back down to base-
line when the stimulus is stopped. There are no sudden jumps or jolts
in the response; rather it evolves slowly over time. This part of the prior
is expressed by putting a normal distribution on the norm of the second
derivative of the HRF.

Interest then focuses on the marginal posterior distribution of h given the
data y, which does not have a simple closed form solution. Instead of appeal-
ing to standard Bayesian simulation techniques (Markov chain Monte Carlo)
to obtain the posterior distribution of h in its entirety, Marrelec et al. only
evaluate the posterior mean of h given the data and the estimated value of a
tuning parameter on the second (Gaussian) component of their prior specifi-
cation, since this has a known distribution. Hence they avoid computational
complexity, at the cost of not taking full advantage of the strength of the
Bayesian paradigm. Although their approach does allow for inference in the
form of detecting active voxels, it is likely that a more informative analysis
would result if the entire marginal posterior distribution were calculated.

5.3.3 Methods for Estimating the Delay of the Hemodynamic
Response

Several authors have addressed the specific problem of estimating the delay in
the BOLD response, since the length of that delay may be of intrinsic interest
(Saad et al., 2001). As discussed by Saad et al. (2001), variation in the response
delay has been observed empirically, both for different voxels and for repeated
measurements on the same voxel. The reasons for the variation in delay are
not clearly understood; the basis could be physiological (delays in the flow of
oxygenated blood through the large veins near the areas of neuronal activity,
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heterogeneity in neuronal function or anatomy) or due to other sources, such
as fMRI noise.

To explore some of these questions, Saad et al. collected data on a simple
visual processing task (flickering rings, paired with a series of easy behav-
ioral tasks designed to focus the attention) for seven subjects. The main foci
of the statistical analysis were to detect which voxels were activated by the
stimulus, and, for those voxels, to estimate the delay in the response rela-
tive to the stimulus presentation. This was accomplished in a single step by
calculating the lagged correlation coefficients between the fMRI time course
(observed response) and a reference time course (the ideal fMRI response).
More specifically, the authors defined the reference time series r(t) as

r(t) = x(t) + e1(t),

where x(t) is an “ideal” response (with no delay) and e1(t) is noise. For the
purposes of the analysis, the reference time series was taken to be a sinusoidal
wave with frequency that matched the frequency of the stimulus presentation,
so that e1(t) was null and r(t) = x(t).

For the observed time course the authors specified the lagged model

f(t) = ax(t − Δt) + e2(t),

with a being a scaling factor, and e2(t) noise. Under the assumptions that
e1(t) and e2(t) have mean zero, are uncorrelated with each other, and both
are uncorrelated with x(t), the correlation coefficient between r(t) and f(t)
as defined above at lag γ is

rr,f (γ) = arx,x(γ − Δt),

(Saad et al., 2003a, p. 495). Here rx,x(γ) is the autocorrelation of x(t), which
is maximal for γ = 0, so that rx,x(γ−Δt) is maximal when γ = Δt. Thus, one
can calculate the lagged correlations, finding the lag for which the correlation
is maximized, and thus obtain an estimate for the delay in the hemodynamic
response. As a natural by-product of this procedure, the value of the maximal
coefficient is also obtained. A voxel was considered activated if the maximal
correlation was over 0.5. Computational aspects of this algorithm and further
theoretical detail are developed in Saad et al. (2003a).

The active voxels were subjected to further analysis. Voxels were classi-
fied as “positive” or “negative,” according to whether the measured signal
increased or decreased with the onset of the stimulus; the authors then com-
pared the estimated delay in these two types of active voxels. The voxels were
also classified according to whether or not they were related to the large blood
vessels in the brain, and the estimated delays for the two groups were com-
pared. Finally, the authors investigated heterogeneity in the delay both across
and within voxels.

All subjects possessed both positive and negative voxels, with the vast
majority being of the former type, in general. Overall, the mean response delay
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was found to be about 8.5 seconds; across voxels the variance of response delay
was estimated at approximately 4.4 sec2, with within-voxel variance estimated
at 1.44 sec2. There was no statistically significant difference in the average
delay of response between the two voxel types. In a more detailed analysis
of a subset of the subjects, the authors found that the spatial distribution
of the positive and negative delayed voxels differed, and depended on the
configuration of the stimulus (several configurations were tried over the course
of the experiment). These voxels were located, as would be expected, in parts
of the brain involved in visual processing. The average delays of response
differed across the different visual areas, suggesting that in fact disparate brain
regions react idiosyncratically to the same stimulus. Onset delays for voxels
related to the blood vessels did not differ from onset delays for voxels unrelated
to the blood vessels, although it should be noted that because of difficulties
in classifying voxels along this criterion, there was much variability across
subjects and across classification thresholds. There was some evidence for
slightly longer delay (on the order of one or two seconds) for the blood vessel
voxels, however, in all cases there was significant overlap in the distributions
of the two types.

Estimation of the delay is also taken up by Liao et al. (2002),who note sev-
eral drawbacks to the approach of Saad and colleagues, primarily the potential
for computational complexity and the lack of theoretical standard errors for
the estimate of the delay. Liao et al. aim to rectify these potential problems
by use of a linearized model. They start with a reference HRF, such as the
gamma model, or the difference of two gammas, described previously, denoted
h0(t). The shifted model from the base is then described by a location family,
that is h(γ, t) = h0(t − γ), where the lag γ is again permitted to vary. This
function is approximated using as basis functions the first two components
of the singular value decomposition of the matrix H defined by evaluating
h(γ, t) as both γ and t are varied along a regular grid of values. The result is
a linearized model for the fMRI response at time i:

Yi ≈ x0(ti)w0(γ)β + x1(ti)w1(γ)β + εi;

see Liao et al. (2002) for details.
The method of moments approach is used to get estimators for γ and β.

Since everything is based on a linear model, the parameters are easily esti-
mated, without need to resort to iterative or other time-consuming procedures.
The authors also give an expression for the standard error of the estimated
delay, making it feasible to test proposed values for the amount of delay using
a t test, and also to compare the lags at two different voxels. Henson et al.
(2002)propose a similar method, using Taylor series basis functions instead of
the basis functions used here. As noted by Liao et al., the practical differences
between the two, as evidenced by simulations, appear to be minimal.

Looking at a number of different reference functions and several variations
on their basic methods for a tactile stimulation task the authors found the
length of the delay to be approximately 6 seconds, compared to the canonical
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value of 5.4 seconds in the difference of gamma model, and the estimated value
of 8.5 seconds in the study described by Saad and colleagues. Furthermore,
the amount of the delay did not vary considerably across the brain, again in
contrast with the findings of Saad et al.

A much different idea is advocated by Calhoun et al. (2000). They model
the signal in a voxel as

y = XΔtβ + ε,

where Δt represents the delay in the start of the response following the stim-
ulation, and the errors are assumed to be independent, identically distributed
with mean zero. The main innovation of the method proposed by Calhoun
and colleagues is to use a weighting function w to modify the errors, so that
different amounts of importance can be assigned to various parts of the esti-
mation problem. Where we are interested in focusing on the delay, or latency,
of the response, for instance, we would assign higher weight to the beginning
of the time course. The problem then becomes one of weighted least squares
and it is straightforward to obtain estimates of the β parameters for a fixed
value of Δt. Since the delay is itself unknown, in practice this calculation
needs to be repeated for each Δt on a grid of values within a “reasonable”
range (say 3-10 seconds following stimulus onset), and the choice of optimal
delay is essentially a question of model comparison. As with some of the other
methods discussed in this section, the activation status of voxels is determined
by imposing a criterion on the value of the estimated latency.

The efficacy of this approach was tested on a simple visual motor task;
subjects were presented with a flashing checkerboard and had to press a button
upon seeing the pattern. Delays in the hemodynamic response were found to
differ in the visual and motor areas, with longer delays occurring in the motor
cortex. Compared to a least squares fit without weighting, estimates of the
delay with weighting decreased in the visual areas, and increased in the motor
areas. These results need to be interpreted with caution, since they are based
on only a single subject.

5.4 The General Linear Model

Much of what has been described in the previous two sections can be subsumed
under, or used in conjunction with, the general linear model, which is at the
foundation of most traditional statistical analysis of fMRI data. Indeed, some
of the methods from the previous section (Burock and Dale, 2000; Gibbons
et al., 2004) utilize the general linear model as a means to an end, for instance,
estimating the shape of the HRF for an event-related study. More prevalent
is to have the focus of the analysis be the output of the general linear model
itself. Due to its ubiquity in the fMRI literature, it behooves us to study this
model more closely.

The form of the general linear model is of course familiar to statisticians,
written in matrix form as:
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Y = Xβ + ε,

where Y is the response, X the matrix of predictors, β the unknown coef-
ficients of the predictors, and ε the error, usually assumed to be normally
distributed with mean zero and variance σ2. In the context of fMRI, Y will
generally be a matrix representing the time courses of all the voxels (hence, it
will be of dimension t rows and v columns, say, one column for each voxel, and
one row for each time point), X will be a design matrix reflecting the stim-
uli presented at each point in time, and ε may have constant or nonconstant
variance, as well as nonzero covariance terms. The design matrix is often pre-
sented graphically. In the most basic expression of the general linear model,
each voxel and each time point is assumed to be independent of the others,
and σ2 is assumed to be constant, so estimates of β can be obtained via ordi-
nary least squares. With this formulation the general linear model subsumes
the t test and the correlation analysis described in Section 5.2. More realistic
assumptions allow for spatial and temporal correlation, a topic and class of
models that we take up in Chapter 6.

The design matrix can, and usually will, incorporate a variety of different
types of covariates of interest. First are factors that describe the experimental
design, which are simple binary variables for the elementary block design,
and more complicated categorical variables for more extended block designs
(multiple tasks) and event-related designs. Usually the X matrix will also
include predicted hemodynamic responses, which are obtained by convolving
the stimulus time course with a model for the HRF (typically a simple gamma
or Poisson model); this convolution takes into consideration the fact that the
BOLD response does not start immediately upon presentation of the stimulus,
and also brings in to the analysis other pertinent aspects of the hemodynamic
response, such as the undershoot before return to baseline. These covariates
are defined as

x(t) =
∫ ∞

0

h(u)s(t − u)du,

where h(·) is the model for the HRF and s(t−·) the stimulus time series. The
value of the covariate at the ith scan is x(ti), with ti the time of the image
acquisition. See Figure 5.4. Note that the convolution has the effect of “smear-
ing” the time course of the stimulus presentation, so that transitions from
baseline to task (in this simple two-condition example) are smooth, rather
than abrupt.

Finally, the model is also flexible enough to account for other categorical
covariates besides those related to the design, such as subject demographics,
group membership, and so forth. In this way, the general linear model provides
a framework not only for the analysis of individual subject data, which has
been our focus up to this point, but also more generally of data of groups of
subjects, including comparisons across groups.

The model in its most fundamental form makes many of the same as-
sumptions as are made for the t test analysis. This is not surprising, since the
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Fig. 5.4. The top panel shows the stimulus time course of a simple, two condition
block design, with 0 representing the baseline and 1 the task. The middle panel gives
the hemodynamic response function modeled as the difference between two gammas,
using the parameters from Glover (1999), as described in Section 5.3.1. The bottom
panel presents the convolution of the HRF with the stimulus time course; this is
used as an independent variable in the general linear model.

general linear model is an extension of the simpler analysis to allow for the
inclusion of additional covariates. In particular, when using the basic general
linear model makes these assumptions:

1. Voxels are independent. The model makes no use of spatial information,
whereas it is reasonable to assume that neighboring voxels will, to some
extent at least, have similar behaviors. Hence, fMRI data analysis tends
to be univariate in nature, even though the data themselves are massively
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multivariate. However, implementing a truly multivariate linear model is
generally infeasible, since the number of voxels is always much larger than
the length of the time course, leading to problems of identifiability and
parameter estimation.

2. Time points are independent. In practice this is a completely unrealistic
assumption, as has already been discussed. While it is not clear how much
of an effect the response at some time t1 has on subsequent responses, nor
how much the response at time t1 is affected by past responses, such effects
are surely present.

3. The error variance at each time point (experimental condition) is the
same. This assumption precludes the possibility that some conditions may
have more residual noise than others, which may or may not be realistic.

4. The same model, as given by the design matrix, is appropriate for every
voxel in the brain. While the β estimates will differ from location to loca-
tion, since they are derived independently at each voxel, the assumption
is that one model fits everywhere. On the one hand this is a pragmatic
stance to take; given the large number of voxels and the potential com-
plexity of the models involved, it is easier to fit a single model to the
whole brain. Interpretation might also be easier. On the other hand, from
physiological and other considerations, one might find it more believable
to fit different models at different locations, or at least to allow for such
via a process of model selection. We take this issue up further in Section
11.3.

Since these common assumptions are almost surely unrealistic and hence
violated in practice, much of the statistical research in fMRI has centered on
ways of improving and extending the general linear model, or it has focused on
alternate analysis paths. We explore these ideas in subsequent chapters. In the
rest of this section, we consider in more detail three issues that are relevant to
the immediate implementation of the basic general linear model: modifying
the predictor variables to improve inference; fixed, random or mixed effect
models; and analysis in “real time”.

5.4.1 Some Implementation Issues

The basic model includes terms representing the hemodynamic response,
specifically a convolution of the modeled HRF with the stimulus time course(s).
This convolution is subsampled at the slice acquisition times to create the ac-
tual predictor as used in the general linear model. Delays between the real
data and the HRF model are not uncommon; Friston, (Friston et al., 1998)
for example, has suggested incorporating the first temporal derivative of the
convolved HRF into the model as an additional predictor in order to account
for these potential mismatches. Motivating the inclusion of the first derivative
is the idea that this will allow for different response latencies and for mis-
specification of the stimulus onset relative to when the data were acquired in
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practice (since the two do not occur simultaneously). Figure 1 in Friston et al.
(1998) shows that the hemodynamic response model and its derivative exhibit
different time and amplitude of peak, as well as different time and amplitude
of poststimulus dip, thereby admitting a wider range of possible behaviors at
the voxel level.

The model for a single voxel at time i therefore becomes

yi = β0 + β1xi + β2
∂xi

∂i
+ εi.

The effect of interest is still β1, which is tested using the usual t test.
Calhoun et al. (2004) take this suggestion one step further and provide

a rigorous basis for testing the effect of β1 while directly accounting for the
effect of the temporal derivative as well. The test they propose is

sgn(β̂1)
√

β̂2
1 + β̂2

2

e
≥ τ,

where e is the residual error from fitting the model above, and τ is the critical
value of the new t test. This test is derived under the very weak, and easily
imposed, conditions that the vectors x and ∂x/∂i are orthonormal. As the
authors show, it is also easy to extend their method to include additional
derivatives, which in turn help capture additional spatially-varying features
of the data. When there is a delay in the onset of the hemodynamic response,
as is typically the case, the test that includes both terms outperforms the usual
t test, and the corresponding model fits significantly better than a model that
includes only the convolved HRF. As the delay increases (in simulated data),
the ability of the nonderivative term to capture important features in the
data decreases; specifically, the estimate of the amplitude of the response is
dampened when only the first term is included, resulting in severe lack of
fit. When the derivative term is included as well, the estimate of the effect
amplitude is very close to the true value.

Including additional covariates beyond those having to do with the ex-
perimental design itself allows researchers to investigate the differences across
multiple runs (scans) performed on a single subject over the course of a scan-
ning session, or across multiple sessions. Furthermore, by adding indicators
for group membership, one can also examine differences between experimental
groups (men versus women, healthy controls versus clinical populations, and
so forth). When such terms are included in the model as predictors, a natu-
ral question is whether they should be considered as fixed or random effects.
This question has generated much discussion in the fMRI literature and seems
particularly relevant for assessing the outcome of multisession and multiple
subject studies. In the former we encounter again the question of reliability
across scanning encounters (see Section 4.3.2); in the latter, we are concerned
with inference from a given group of subjects to the more general popula-
tion. In both cases there is a distinction that is made between within-session
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(subject) effects and between-session (subject) effects; how these are treated
is critical to the statistical inference as it is implemented and interpreted. In
fMRI it has become standard to treat certain effects, such as sessions or sub-
jects, as random (Friston et al., 2005), while others, such as the effect of the
experimental manipulation, are treated as fixed, hence the general model is
what would usually be considered a mixed effect model by statisticians.

The rationale for treating sessions and subjects (for example) as random
is clear from the neuroimaging perspective, since this allows researchers to
generalize their conclusions beyond the particular subjects that participated
in an experiment to the broader population. Still, as we shall see in Section
5.5.2, the statistical question of how to treat subjects in the linear model is not
completely resolved. Treating them as random effects results in a conservative
testing procedure, in which patterns of activation need to be consistent across
subjects, a rather stringent requirement for many fMRI experiments. The
exploratory nature of many neuroimaging studies argues in favor of the more
limited, but statistically more “generous,” fixed effect approach to subjects.
This question is discussed further in the next section. Also, see Friston et al.
(2005) for more on the use of the mixed effect paradigm in fMRI, and Friston
et al. (1999a) on the choice between treating subjects as fixed or random in
the general linear model.

The procedures for estimating the parameters in the general linear model
can be cumbersome, particularly for the mixed effect model where there are
also multiple components of variance to estimate; the latter is usually ac-
complished by standard statistical approaches for such problems, including
restricted maximum likelihood (REML), or iterative algorithms such as EM.
Depending on the complexity of the model and the number of subjects, these
calculations can be very time consuming. Yet there is continued (although
sporadic) interest in the fMRI community for real-time analysis of the data
as it is acquired in the scanner. One proposal for such an analysis is given by
Bagarinao et al. (2003). As the authors note, an advantage of real-time anal-
ysis is that the quality of the data can be assessed as it is being collected, and
changes can be made to the experimental paradigm “on the fly,” if needed.

In the first step of the algorithm, the original linear model is transformed
via a Gram-Schmidt orthogonalization, so that the response at voxel i at time
j is given by

yij = αi1φ1(tj) + . . . + αkpφp(tj) + εij ,

where the φ terms are the orthogonalized versions of the original predictors.
We are then interested in estimating the α coefficients instead of the βs from
the original model. Bagarinao and colleagues demonstrate that the compo-
nents required to obtain the estimates of the α (and hence the β) parameters
at time j can be calculated based on those from time j − 1 plus known quan-
tities related to the data collected at time j. Hence it is possible in principle
to update the parameter estimates and test their significance at each voxel
after every volume acquisition (scan of the complete brain or whatever portion
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thereof is of interest). Since the method updates the parameter estimates and
the test statistics at every time point, one natural output is a “trace plot” of
these quantities, which allows for monitoring over the course of the experi-
ment; the statistical parametric map of activation can also be plotted at each
time point, so that the effect of acquiring additional data can be assessed.

5.5 Methods for Combining Subjects

As a final topic before moving on to more advanced statistical analysis meth-
ods, we include a discussion of combining subjects from an fMRI study. Al-
though notionally the topic itself is rather sophisticated, it is included here
with the basic fMRI data analysis because the methods that are introduced
in this section rely on the output of a basic analysis such as a t test, or are
arrived at as part of a general linear model analysis.

Section 4.4 briefly outlined the two fundamental questions that arise when
a researcher wishes to combine the statistical maps of multiple subjects to
create a summary, or group, map. The first question involves finding a common
space on which to consider the maps. The reason for this is that each and
every brain is different, in size and shape at the very least, and possibly
in other aspects as well. Hence, if the images of different subjects are to
be combined into a single group map, account must first be made of these
individual variations in anatomy. Although this is not a statistical question as
such, the problem is key to much of the statistical endeavor in fMRI research,
and so is given a brief survey in this chapter.

The second question can truly only be approached after some solution has
been found to the first. This question involves finding a statistically optimal
way of combining the data from the subjects in the study. What precisely is
meant by “statistically optimal” is open to consideration, but given the nature
of the data some possible desiderata include: computational efficiency and
speed; good small sample properties; effective use of the data; and robustness.

5.5.1 The Anatomical Question

As already described, any effort to create a group map that summarizes sub-
ject activation, be it in the form of common patterns of activity or of an overall
level that is characteristic of the group as a whole, requires a “warping” trans-
formation to bring all of the brain images onto a common frame of reference.
Such operations are often used in image processing prior to, or together with,
statistical analysis. In fMRI the normalization step is almost always carried
out as a separate preprocessing step, and the transformation has most often
been to the standard Talairach coordinate system (Talairach and Tournoux,
1988). The Talairach and Tournoux system is a very detailed atlas of a sin-
gle human brain that was obtained post-mortem; semi-automated software,
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such as in the AFNI fMRI package (see Appendix A), allows users to eas-
ily transform images obtained from individual subjects into this coordinate
space. Human intervention is required as a prelude to the transformation,
since certain landmarks in the brain must be identified by hand and their
coordinates (in original image space) fed into the program. Often, the warp-
ing transformation is carried out using simple linear interpolations, although
more sophisticated schemes have also been developed, ones involving various
forms of nonlinear interpolation.

When the data are shifted into “Talairach space,” voxels are also resized,
generally to 1 mm along each side. If a typical voxel is 3 mm along each
side, then 1 “original space” voxel is transformed into 27 Talairach space
voxels, thereby introducing extra correlation and potentially also blurring of
the signal, depending on the warping algorithm. Still, in spite of these prob-
lems, the Talairach system, and more generally the warping of each individual
brain onto a common atlas (of which several standards exist, beyond that of
Talairach and Tournoux), remains one of the more popular approaches for
handling the anatomical aspect of the group map question.

Another popular atlas is the Montreal Neurological Institute, or MNI,
brain (Evans et al., 1993). By contrast with the Talairach system, the MNI
atlas is an average based on a large number of living brains, over 300 MRI
scans of healthy individuals. A template based on the MNI atlas has been
adopted by the International Consortium of Brain Mapping (ICBM) as its
standard (Chau and McIntosh, 2005). The ICBM has also developed a prob-
abilistic atlas (both the Talairach and the MNI systems are deterministic) to
account for individual differences (Mazziotta et al., 1995). However, since the
Talairach system remains the standard for reporting in the literature, even
when group maps or other analyses are calculated in these other coordinate
systems, it is often necessary to transform the transformed data into Talairach
space. This introduces further uncertainty into the results that appear in the
neuroimaging literature, since the same point in MNI space for two differ-
ent subjects might correspond to different points in Talairach space, and vice
versa (Chau and McIntosh, 2005). It thus seems critical to establish a sin-
gle standard that could be used by all neuroimaging scientists for research
purposes. The development of a standard atlas, as well as the assessment of
existing systems and the methods that are used to transform an individual
brain image into the template space, continue to be topics of active research
in the community.

A comparison of different warping procedures is given by Crivello et al.
(2002), in which all brains are warped to a common brain (itself shifted into
Talairach coordinates), but this is accomplished using a variety of methods:
a 12-parameter linear (affine – involving rotation, translation, and rescaling
operations) transformation; a fifth order nonlinear polynomial algorithm in-
volving 168 parameters; a combined “linear and nonlinear” procedure; and a
multigrid technique based on continuum mechanics.
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The standard affine transformation is applied as a first warping step for
all of the other methods. In the polynomial algorithm the initial warping is
refined by the use of the fifth order nonlinear model, whereas in the “linear and
nonlinear” combined method, it is improved by the use of discrete cosine basis
functions. This is a very highly parameterized approach, as is the multigrid
technique (requiring thousands and millions of parameters, respectively).

The authors consider the effect of using each type of warping procedure
on both the structural (anatomical) and functional images. For the structural
images they look at such criteria as how the different tissues in the brain
are segmented (white matter, gray matter, cerebrospinal fluid); for the func-
tional images, extent and patterns of activation following statistical analysis
are relevant. In terms of the anatomical criteria, Crivello et al. find no dif-
ferences among the four procedures for the percentage of voxels classified as
gray matter after warping of the images; however the techniques do differ in
the volumes of the white matter and cerebrospinal fluid. The multigrid fluid
mechanics approach tends to give volume estimates of all tissues that are clos-
est to the template brain used in this study. A more detailed examination of
the voxels in each tissue type reveals that the linear transformation is out-
performed by the three nonlinear methods. This is not at all surprising, given
that the nonlinear methods are both more complex and much more heavily
parameterized.

Turning to the effect of the spatial normalization procedures on the func-
tional images, at low resolution (highly smoothed data) all three nonlinear
methods result in slightly enhanced activation regions compared to the affine
transformation, but in general the four methods produce similar activation
maps. At higher resolution (less smoothing of the data) this changes, with the
activation maps obtained after each warping procedure showing very little
overlap, indicating that each method results in the detection of different areas
and patterns of activation.

Although their analysis is not conclusive – the authors do not make any
strong recommendation for one type of warping method over another – it does
seem apparent that the advantages to be gained by the use of simple, mod-
erately parameterized nonlinear methods can make them worthwhile when
compared to linear warping with an extremely small number of parameters.
The complexity of the brain and the differences among human brains are not
likely to be captured with only affine transformations, but it is likewise doubt-
ful that a normalization that uses millions of parameters and requires several
hours to implement (per subject) will be practical in many real data analysis
situations.

As pointed out by Kochunov et al. (1999), normalization by the use of
landmarks and (affine) transformations are what might be called global. That
is, the brain as a whole is described by a small set of parameters (landmarks),
which need to be selected in such a way that simple operations such as scal-
ing and rotating can align the image of interest with the target, or template
image. Another possibility is the use of regional normalization, which matches



5.5 Methods for Combining Subjects 91

more localized features at a much more refined level of resolution, often using
image intensity instead of landmarks. Such an approach is evidently compu-
tationally intensive, using heavily parameterized systems as we saw above;
hence Kochunov et al. propose a method for regional normalization that is
both quick (on the order of minutes instead of hours to align a single image)
and accurate (comparable to the more expensive regional procedures), which
they call octree spatial normalization (OSN).

OSN proceeds by successively splitting the volume of interest into octants;
thus, the whole image is first split into octants, then each of the first level
octants is further subdivided into octants, and so on. In each octant, at each
level, a similarity measure (such as a correlation, or sum of squared differences)
is calculated between the image of interest and the target, and the octant
of interest is then suitably deformed to match the target octant as closely
as possible (maximize correlation, or minimize sum of squared differences).
Thus this procedure, unlike methods that warp to Talairach coordinates or
some other template brain, is not landmark based. Any empty octants (those
consisting entirely of air voxels) are removed from the processing stream; since
brain voxels make up only about half of a typical image, this step alone can
result in considerable computational savings. The authors also suggest other
ways of optimizing computation.

Note that since at each step the volume is split into 8 equal cubes, the x, y,
and z dimensions must all be the same size (same number of voxels), which is
not typical for fMRI experiments, where x and y might be 64 each, and z only
20. Also, the length of each dimension must be 2n, for n a positive integer; n
will also give the number of processing steps in the algorithm. These restric-
tions are potentially limiting to the use of OSN, since they don’t correspond
to the way that the data are obtained in practice. One solution might be to
“pad” the images, so that a volume that was originally 64× 64× 20 would be
padded with zeros in the z dimension; since empty octants are removed, this
operation presumably would have little effect on the algorithm, although this
point isn’t addressed in Kochunov et al. (1999). Further modifications of the
basic technique, which make it more applicable to brain images, are reported
in Kochunov et al. (2000). Even with these modifications, some of which
increase processing time, the OSN method is considerably faster than other
heavily parameterized normalization regimes and achieves comparable accu-
racy. Furthermore, as would be expected, regional normalization outperforms
its global counterpart; indeed, while apparently not strictly necessary, the lat-
ter is often taken as a preprocessing step for OSN and other region-based
methods (see the examples in Kochunov et al. 2000).

The observation that registration techniques can be based on landmarks
or on image intensity, pointed out above, forms the motivation for the work of
Magnotta et al. (2003), who consider combining different types of information
to create a more reliable atlas and normalization procedure. Specifically, they
propose a method that uses anatomical landmarks, brain segmentation (of
tissue or of regions), and image intensity information to minimize the distance
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between a given image and the target image. First, a set of landmarks is
manually identified, as an initialization for the general algorithm. This gives
a global normalization in the sense discussed previously. Following this initial
normalization, the algorithm proceeds iteratively to refine the match between
the two images, using segmentation (into different tissue types and different
brain regions) and intensity information. Iterations of the algorithm update
transformed images of interest to the target, as well as transformed targets to
the image of interest.

This algorithm is compared to a rigid normalization, which uses only a
limited number of landmarks together with affine transformations (rotation
and translation); to the piecewise linear normalization that characterizes the
warping into Talairach space; and to a simpler version of the current proce-
dure, which uses only intensity information to minimize the distance between
two images (still utilizing both “forward” and “backward” transformations, as
in the full algorithm). Not surprisingly, the two methods that use only land-
mark information, namely rigid and Talairach normalization, do not perform
as well as the other two methods. For both of these the average amount of
overlap with the target is reduced and the variability of overlap across sub-
jects is greater when we look at specific regions or at the whole brain. The
introduction of intensity information results in a significant improvement in
most (but, interestingly, not all) regions: average overlap increases and the
variability decreases. Finally, the strongest results are obtained with the full
algorithm, which combines landmark and intensity information, although it
should be noted that the improvement is not consistent; for some brain re-
gions the difference between the two implementations is minimal (though still
statistically significant), as it is also for the entire brain.

Readers who are interested in learning more about the issues involved in
creating template systems and in translating an individual brain image to a
target image are referred to the edited volume by Toga (1998).

5.5.2 The Statistical Question

Once we have normalized the individual subject images methods using any
of the techniques from Section 5.5.1, we can consider the more purely sta-
tistical aspect of the problem, namely, creation of the group map from the
subject maps. This is, in essence, a question of combining information from
independent sources, where in our context each subject acts as an “indepen-
dent source.” Seen in this light, the statistical question is an old one, dating
back to at least the 1930s and work by Tippett and Fisher. Ideas from the
meta-analysis literature are also relevant, with subjects taking the place of
published studies of a phenomenon of interest.

We take as a starting point work by Lazar et al. (2002), who carry out a
survey of combining techniques from the statistics and psychology literatures
and apply a selection of the multitude of available procedures to the forma-
tion of fMRI group maps. Following Hedges (1992), the authors distinguish
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between two types of combining procedures: combining tests and combined es-
timation. The first type comprises methods that are based on individual test
statistics, which in the fMRI setting are the individual statistical parametric
maps obtained for each subject; for example, the output of the simple t analy-
sis from Section 5.2. For these methods a group map is created by calculating,
at each voxel, some function of the test statistic at that voxel over subjects
(hence the need for a normalization procedure, so that voxels in the same
location for different subjects will have an equivalent interpretation). Since
the functions that are calculated are often based on the p-values of the test
statistics rather than the test statistics themselves, these methods are also
called p-value techniques.

Many p-value techniques have appeared in the statistics literature; among
the most popular is one due to Fisher (1950),

TF = −2
k∑

i=1

log pi,

where there are k independent tests of the particular null hypothesis in ques-
tion, and pi is the p-value associated with the ith test. In our context, the “k
independent tests” are k subjects in an fMRI experiment, and the TF statis-
tic is calculated at each voxel independently. Fisher demonstrates that TF is
distributed as a χ2 with 2k degrees of freedom under the null hypothesis of
no effect (no activation in imaging studies). Hence, large values of TF , when
calibrated against the appropriate χ2 distribution, lead to rejection of the null
hypothesis.

Another early suggestion is found in Tippett (1931), namely to find at each
voxel TT = min1≤i≤k pi, the minimum p-value over the k subjects. The null
hypothesis is rejected at a given voxel if TT < 1− (1−α)1/k for a test of level
α. Generalizing Tippett’s idea, Wilkinson (1951) proposes looking at the rth
smallest p-value and rejecting the null if this is smaller than a constant that
depends on k, r, and α. Also in the order statistic family is the conjunction
test of Worsley and Friston (2000), TW = max1≤i≤k pi, which rejects H0 if
TW is less than α1/k. Note that this test requires the p-values at a given voxel
be small for every subject in order to reject the null.

Although many other p-value methods are available (see Lancaster 1961,
for a comprehensive review and Lazar et al. 2002, for specific suggestions in
the fMRI setting), we mention here only one other, simple ad hoc procedure
that is commonly used in the neuroimaging community, namely averaging the
t statistics computed for the individual subjects,

TA =
k∑

i=1

Ti√
k
,

where Ti is the value of the t statistic calculated for subject i at a particular
voxel. The null hypothesis is rejected for large values of TA as compared to
percentiles of the standard normal distribution.
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These statistics are all easily calculated, even over many hundred of thou-
sands of voxels and with a large number of subjects, a definite advantage
when dealing with neuroimaging data. On the other hand, p-value methods
may be unduly affected by the outcome of a single study; specifically, H0 at
a given voxel may be rejected, or alternately fail to be rejected, based on the
activation map of a sole, aberrant subject. See McNamee and Lazar (2004)
for a detailed discussion of this point.

The second approach to making group maps, combined estimation, refers
to procedures that come directly from the meta-analysis literature. As such,
they are model-based, specifically relying on the linear model that is already
prevalent in the analysis of fMRI data, and have been proposed in one form
or another by several authors. Two models are relevant here, the fixed ef-
fect model and the random effect model. For a theoretical discussion of these
models in the setting of group maps for fMRI see, as a recent comprehensive
example, Beckmann et al. (2003).

When the various studies are homogeneous in design, so that one may
reasonably assume that they are measuring the same phenomenon, the fixed
effect model, which specifies

yi = θ + εi,

where yi is the effect observed in the ith study, θ is the common mean, and
εi is the error. Here, the observed effects in all studies (subjects) are assumed
to vary around the common mean θ, with ε terms that are usually taken to
be independent, εi ∼ N(0, Vi). The normality assumption is probably not
warranted; see, for example, Thirion et al. (2007).

Defining the weight wi to be inversely proportional to the variance in the
ith study, θ is estimated by

θ̂ =
∑k

i=1 wiyi∑k
i=1 wi

.

θ̂ is unbiased for θ, has estimated variance 1/
∑

wi, and is approximately
normally distributed. Therefore, a test for the hypothesis that θ, the common
mean, is zero, is given by

TX =
θ̂√

1/
∑

wi

;

the null hypothesis is rejected for large values of TX . As with the p-value
methods, TX is calculated at each voxel separately.

Note that this combining statistic is based on the effect yi observed at
a given voxel for subject i, and not on the value of the t or F (or other)
statistic from the parametric brain map. For a simple block design with two
conditions, yi would be the difference in the average response. Note too that
the fixed effect model constrains generalizability of results to the sample of
observed subjects.
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Often, however, researchers are interested in extrapolating beyond the par-
ticular sample of subjects to a broader population from which those subjects
were drawn. More generally one may wish to pool the information available
from heterogeneous studies of the same hypothesis. Even when studies are
homogeneous, as required for the fixed effect model, intersubject variability
is often much greater than intrasubject variability, and it is desirable to take
account of both components of variance. For all of these reasons, the random
effect model, which takes into consideration these various objectives, is pre-
ferred in many cases to the fixed effect model. Indeed, as we have seen above,
it is one of the principal models traditionally used for the analysis of fMRI
data.

The random effect model in the meta-analysis context on which we draw
has the form

yi = θi + εi

θi = θ + ei,

where usually we assume εi ∼ N(0, Vi), ei ∼ N(0, σ2
θ) and all the ei, εi are

independent of each other. Each subject has a unique mean effect θi, and those
θi are in turn drawn from a hyperdistribution with mean θ. The observed
subject effect thus has two sources of variability: of the subject effect around
its mean, and of the effect mean around the overall common mean.

As with the fixed effect model, we can define an estimator of the overall
common mean θ as a weighted average of the yi:

θ̂∗ =
∑k

i=1 w∗
i yi∑k

i=1 w∗
i

,

where w∗
i = 1/(s2

i + σ̂2
θ), with s2

i and σ̂2
θ estimating the two components of

variance. The first one can be obtained simply from the data available on the
ith study (subject), but estimating σ2

θ is harder, often requiring computation-
ally intensive methods which make the random effect model time-consuming
and difficult to implement on fMRI data, where the test statistic has to be
calculated separately at each voxel. Some of the computational aspects of this
model for fMRI are addressed by Beckmann et al. (2003) and Friston et al.
(2005), who explore the use of a multistage approximation to the full analysis.

Once the variance components are estimated, it is then straightforward to
define a test statistic similar to the one given above for the fixed effect model,

TR =
θ̂∗√

1/
∑

w∗
i

,

rejecting the null hypothesis of no activation at a particular voxel for large
values of TR.

Note that the standard errors of the fixed effect estimate θ̂ tend to be
smaller than those for the random effect estimate θ̂∗, since the latter takes
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into account variability across subjects, which is ignored by the former. As
a consequence, the random effect model requires much more computational
effort to fit, compared to the fixed effect model; however, the ability to gen-
eralize beyond the sample to the population at large is considered to be of
greater importance, and hence the random effect model is almost always pre-
ferred in fMRI data analysis. When σ2

θ is zero, the two models coincide, so
the fixed effect model may be thought of as an “optimistic scenario” relative
to the random effect model. On the other hand, there is some evidence (Lazar
et al., 2002) that the random effect model, in particular in fMRI studies
with a small number of subjects, is too conservative, making it very difficult
to detect any interesting patterns of activation. Recent work (Thirion et al.,
2007) indicates that a sample of 25 to 30 subjects may sufficiently alleviate
the lack of sensitivity of the random effect model.

Many other statistical questions besides that of how to pool the available
information from the different subjects also arise. In the rest of this section,
we survey some of them.

An issue that comes up in much statistical analysis of fMRI data is that
of spatial smoothing, namely, “Should one smooth, and if so, how much?”
White et al. (2001) address this question in the context of creating group
maps. As noted by those authors, when smoothing the data prior to combin-
ing the maps from multiple subjects, “... the goal is to utilize a filter that
spreads the activation regions sufficiently to allow for an overlap of homolo-
gous activation sites during coregistration of group images, while preserving
spatial resolution” (p. 579). The idea is therefore to smooth to help alleviate
the anatomical problem of differential brain configuration, which may persist
even after warping onto a common atlas. On the other hand, one mustn’t
smooth so much that all fine detail is lost. White et al. (2001) explore the
effectiveness of applying different sizes of a Hanning filter (different amounts
of spatial smoothing) prior to combining the individual subject maps. Their
experiment is carried out for a simple block design finger tapping scenario,
with six test subjects.

As might be expected, White et al. (2001) find different results depending
on the size of the filter used on the individual images. When no smoothing is
performed, the group map picks up little or no activation; the activation that
is found tends to consist of one or two isolated regions comprising a small
number of voxels. This may be misleading to the extent that the isolated sites
are really part of the same functional region. Introducing even a small amount
of smoothing has several effects: first, the discrete regions merge; second, acti-
vation on the dominant side of the brain is mirrored by activation in the other
hemisphere (something that is not detected when no smoothing is applied);
third, the intensity of the activation in the discovered region increases. When
the filter size is increased to have a full width half maximum of greater than
approximately 8 mm, anatomically distant and functionally distinct sites also
begin to merge, highlighting some of the possible dangers of oversmoothing
in this setting.
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While the choice of filter size to be used in the preprocessing step of a
group analysis is thus not an easy one, it is worth noting that much of the dif-
ficulty can be bypassed by careful choice of combination technique. The work
described in Lazar et al. (2002), for instance, demonstrates a wide variety of
regional contiguity across combining methods when applied to the same data.
Where a random effect meta-analysis type model discovers only a few isolated
active voxels in the group map, as one example, a map created using Fisher’s
method and the TF statistic described above finds functionally meaningful,
and connected, regions of activation, without the need for presmoothing.

In creating a group map, no matter what the method utilized, an implicit
assumption is that the subjects are homogeneous enough that combining them
is warranted. Both the fixed and random effect models, for example, suppose a
common underlying mean from which all sample images are drawn. Although
this assumption is not as obvious, nor seemingly as critical, for some of the
p-value methods, it still isn’t negligible. It has been noted in the statistical
literature that TF is sensitive to “outlying” studies (in particular, to large
studies with an effect in the opposite direction from the effects in the rest
of the studies), and there, too, a presumption of “sufficient homogeneity”
should improve performance. Kherif et al. (2003) propose a method to assess
the homogeneity assumption based on distance measures.

The authors start with calculating the RV coefficient (Robert and Es-
coufier, 1976) between two matrices Y1 of dimension p×n and Y2 of dimension
q × n, corresponding to the data observed on two subjects. Thus there are n
observations on each subject, on p variables for the first and q for the second.
Next, after mean correcting the raw data, summary matrices Z11 = Y T

1 Y1 and
Z22 = Y T

2 Y2 are calculated, and the RV coefficient defined as

RV (Y1, Y2) =
tr(Z11Z22)√

tr(Z11Z11)
√

tr(Z22Z22)
,

a multivariate extension of the usual correlation coefficient. When the ma-
trices for the two subjects are similar (linearly related), the value of the RV
coefficient will be close to 1; when the matrices differ greatly, the coefficient
will be close to zero. Using both RV (Y1, Y2) and the similarity matrices Z11

and Z22, various distance measures can also be defined.
When p = q, as will typically be the case for fMRI studies (we will have

both the same number of time points and the same number of voxels for each
subject, after warping to a common coordinate space), it is also possible to
consider RV (Y T

1 , Y T
2 ). Kherif et al. (2003) note that RV (Y1, Y2) can be used

to assess spatial similarity between two subjects, while RV (Y T
1 , Y T

2 ) can be
used to assess temporal similarity. In the first instance, the focus is on the
similarity of the sites of activation in the brain, regardless of the temporal
evolution of the hemodynamic response; in the second instance, the focus is
on similarity in the fMRI time courses, regardless of the spatial distribution
of activity.
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The authors also extend the RV coefficient through allowing the use of
covariates by embedding the problem in a general linear model framework. If
X represents the matrix of regressors, the extension replaces Y1 and Y2 with
XT Y1 and XT Y2, respectively, and then proceeds as previously. As a final
modification they also introduce two corrections, one each for the spatial and
temporal correlations inherent in the fMRI data. They then calculate the RV
coefficient on the transformed data, and use the distance metric

D(Y ∗
1 , Y ∗

2 ) = || Z∗
11√

tr(Z2∗
11 )

− Z∗
22√

tr(Z2∗
22 )

||,

where Z∗
ii is the summary matrix for the matrix Y ∗

i , which is Yi after ac-
counting for possible covariates of interest and correcting for temporal and
spatial correlations in the data at the individual subject level. The distance
measure is calculated for both the spatial and the temporal modes of analysis,
as described in the previous paragraph.

Combined with techniques from multidimensional scaling and outlier de-
tection in regression, a variety of graphical and numerical methods can be
implemented to explore the similarities among the subjects in a study, to find
unusual or possibly outlying individuals, and so forth. Kherif and colleagues
demonstrate these procedures on a study of a mental calculation task per-
formed by a group of 10 subjects. They are able to identify a small number
of subjects whose temporal or spatial patterns of behavior are different from
those of the rest of the sample. For instance, whereas most of the subjects
in the study show task-related activation on both sides of the brain, some
of the subjects exhibit this only on one side; these subjects are detected as
being “far from the rest” in the spatial distribution of activity. Group maps
created using a random effect model differ qualitatively when based on the
entire sample versus discarding subjects who are influential in the temporal
or spatial domain (or both).

McNamee and Lazar (2004) also address the problem of subject similarity
and its impact on group maps by assessing the sensitivity of several of the
methods studied by Lazar et al. (2002). They use a jackknife approach,
(Quenouille, 1949; Tukey, 1958) treating the group map as the test statistic
of interest. Deleting each subject in turn, the maps are recalculated based on
a sample of size n − 1 rather than the original n, and discrepancy measures
defined for the difference between the complete group map and the leave-one-
out maps. The discrepancy measures are defined on the binary maps that
are obtained after testing each voxel for significance and include a count of
the number of significant voxels that are added by deleting a given subject,
a count of the number of significant voxels that are removed by deleting a
subject, and the percent overlap between a subject’s individual map and the
group map. Strictly speaking, this last is not a measure of the deviation of
the jackknifed map from the complete group map, but it does give another
indication of how important are the contributions of individual subjects to
the overall picture. Note that unlike the work by Kherif and colleagues, where
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the main interest lies in identifying unusual subjects, this is only a by-product
of the approach taken by McNamee and Lazar, who concentrate instead on
evaluating the combining methods.

Working on a test set of 11 subjects on a simple visual task, McNamee and
Lazar (2004) demonstrate that of the procedures they consider, the random
effect model is least affected by the deletion of any one given subject; in other
words, it is a very robust method. This is not surprising, but it is apparently
also an artifact of two other results: first, the group maps created by this
combining method are extremely sparse, since the random effect model is a
conservative approach to combining information due to having to account for
two separate sources of variation; second, the amount of overlap exhibited
by any single subject with the random effect group map is very small, indeed
most subjects in this particular study have no overlap between their individual
maps and the group map. On the other hand, and what also has been seen
in the statistical literature many times, the group map created by Fisher’s
method of combining p-values may be highly affected by a single subject
with unusual activation. This is manifested in the test set used by McNamee
and Lazar, in the form of one subject with extremely strong activation in a
region of the brain where no other subject has activity at all. The group map
that includes this subject exhibits the pattern, even though it is attributable
to only one individual. The authors hypothesize that the activity exhibited
by that one subject is in fact a reflection of head motion, emphasizing the
importance, also pointed out by Kherif et al. (2003), of carefully examining
both the group maps and the maps of individual subjects when interpreting
this type of analysis. Most other methods for combining individual maps fall
somewhere between TF and TR in terms of their values on the discrepancy
measures, and hence of their sensitivity to unusual (not necessarily outlying)
subjects.

The choice of combining method has not been extensively explored outside
of the work by Lazar and colleagues; the ad hoc procedure of averaging the
individual maps together and the random effect model have been most popu-
lar, the former because of its ease of implementation and the latter owing to
the general popularity of the random (or mixed) effect model in fMRI data
analysis. All methods proposed to date have both strengths and weaknesses.
The p-value methods, being relatively new to the fMRI community, have not
yet gained widespread acceptance, in spite of the fact that they are easy to
calculate (even for large numbers of subjects) and tend to be more liberal in
admitting activation, which would seem to be ideal for the exploratory nature
of much fMRI research. On the other hand, they are often more influenced
by individual subject behavior than is the popular random effect model, and
it may be difficult to interpret the results of a p-value-based approach as a
consequence, without further exploration of the individual level data. Also,
the plethora of p-value methods may be an impediment to their further adop-
tion, unless a strong recommendation can be given in favor of one over the
others. Finally, the p-value methods, for the most part, do not have obvious
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extensions to the problem of comparing groups of subjects, which is often one
of the scientific aims of a neuroimaging study.

In contrast with the p-value methods, the model-based combined estima-
tion methods require the means and standard deviations of each condition
from each subject; the individual t maps, for instance, do not suffice for these
operations (Beckmann et al., 2003). Thus, both in terms of data storage and
computation, these procedures, and in particular the random effect model, are
more demanding. On the other hand, it is of course relatively easy to use either
the fixed or the random effect model to perform group comparisons, simply by
introducing “group” as a covariate. In choosing between treating subjects as
fixed or random, both McNamee and Lazar, and Friston and colleagues, have
pointed out that the fixed effect model can be usefully implemented even on
a small number of subjects, whereas the random effect approach to subjects
requires much larger sample sizes, which may not always be feasible in fMRI
studies. Correspondingly, the conclusions that one can draw from treating the
subjects as random effects are stronger.

As a final consideration, it is worth mentioning that the theoretical prop-
erties of various combining methods, especially the p-value techniques, have
received a fair amount of attention in the statistical literature over the years.
Some of these methods enjoy certain statistical optimality properties not
shared by the others, and in particular Fisher’s method would seem to be
a natural recommendation, in spite of its extreme liberality, since it has been
shown to be an asymptotically optimal procedure for combining information
from independent sources,; see Littell and Folks (1973) and Berk and Cohen
(1979).



6

Temporal, Spatial, and Spatiotemporal Models

The methods considered in the previous chapter ignore, for the most part,
the temporal and spatial correlations in the fMRI data; at the very least they
underutilize the rich information available in the time courses, as well as failing
to take full advantage of spatial patterns. Ignoring this structure can lead to
loss of efficiency, bias, and misstatement of type I error (Worsley and Friston,
1995; Purdon and Weisskoff, 1998). In this chapter we examine the more
sophisticated models that exploit temporal correlation, spatial correlation, or
both. From a statistical perspective these models are closer to being useful
than the univariate, independence-based models of Chapter 5, although even
those provide practitioners with good (or good enough) summaries of the
manifested patterns of brain activity, as evidenced by the popularity of the
basic general linear model. The tradeoff, especially for the spatiotemporal
models that will be the focus of Section 6.3, is in more complexity of model,
translating in turn to higher computational costs. For data sets as large as
those that are typical in fMRI, this tradeoff is a nontrivial concern.

6.1 Temporal Models

We first examine models for the time course; we have already encountered
some such models in Chapter 5, in the context of estimating and classifying
the hemodynamic response function. The emphasis in this section is rather
on the time series nature of the voxel observations themselves and ways of
exploiting this information directly. There are two ways of analyzing time
series data: in the time domain itself, and in the frequency domain following
transformation of the data. Both have been used for fMRI time series.

A basic model for the time series can be obtained by extending the linear
model from Chapter 5 so that the error term is a stochastic process, such as
an autoregressive model of small order (Marchini and Ripley, 2000); thus at
time t the response Yt is modeled as
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Yt = Xtβ + Zt,

where Xt is the design matrix, as before, but now ε, which was assumed
previously to be, say, normal with mean zero and variance σ2I, is replaced
with the process Zt of mean zero and unknown covariance structure. Instead
of the identity matrix I, there is a general matrix V whose elements depend on
the autocovariance function between two time points. As noted by Marchini
and Ripley (2000), these types of models can be analyzed in the original time
domain, or the data can be Fourier transformed and analyzed in the frequency
domain.

Writing the covariance in the new model as σ2V with V written as KKT ,
a general class of procedures is obtained by premultiplying by a matrix D,
yielding DY = DXβ + DZ, where the dependence on t has been suppressed
(Marchini and Smith, 2003); ordinary least squares estimates of β follow stan-
dard theory. If V is known, the best linear unbiased estimator of β is achieved
when D = K−1. In that case, premultiplying by D is called prewhitening,
since application of the transformation removes the correlation structure, re-
sulting in errors that are white noise (Gaussian). Of course, in practice V is
not known, and so it must be estimated. A wide variety of methods for esti-
mating V have been proposed in the fMRI literature. In the next sections we
examine some of the these, in both the time and frequency domains.

6.1.1 Time Domain Analysis

As noted above, it is in some sense natural to extend the basic linear model
analysis, which collapses over the time dimension, to an analysis of the voxel
time series themselves. The error structure of the model will change to accom-
modate the temporal correlation. This approach has a rich and long history
in fMRI data analysis, going back to work of Friston and others in the early
1990s.

Worsley and Friston (1995) present an early and accurate accounting of
the time series analysis. Readers should be aware that two prior presentations
by Friston and colleagues (Friston et al., 1994; Friston et al., 1995) contained
various mathematical and statistical errors that are corrected in Worsley and
Friston (1995). The goal of Friston’s original work in this area was to estimate
the parameter β in a linear model Y = Xβ + e, where Y is the unsmoothed
time series, and the error vector e contains components that are independently
identically distributed normal with mean zero and variance σ2.

Framed in this way, the problem is simply one of allowing for serial correla-
tion in a regression setting, and solutions exist. Although an optimal estimator
is based on applying the Gauss-Markov theorem to unsmooth and decorre-
lated data, Friston and colleagues choose instead to smooth the time series,
noting that good performance of the former is “. . . very sensitive to the correct
specification of K” (where K is the smoothing matrix). Upon smoothing the
data first, the least squares estimator of β becomes β̂ = (XT

1 X1)−1XT
1 KY ,
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with X1 = KX . Worsley and Friston note that, because of the smoothing,
this estimator isn’t fully optimal, but it is unbiased, and in many situations
the loss of efficiency is not great. The usual least squares theory then produces
estimates of the variance and a test statistic that can be used to assess the
behavior at each voxel. By contrast, Wicker and Fonlupt (2003) carry out an
analysis of this type of model using generalized least squares (GLS) and an
empirically determined correlation matrix.

There is more than one way to model the time course directly in the time
domain. One such alternative route is taken by Bullmore et al. (1996b),
who use trigonometric basis functions, namely sines and cosines, to capture
the frequency information from the time series of signal intensities. For signal
Yt at time t, the fitted model is

Yt = γ sin(ωt) + δ cos(ωt) + γ′ sin(2ωt) + δ′ cos(2ωt)
+ γ′′ sin(3ωt) + δ′′ cos(3ωt) + α + βt + ρt.

In this expression, ω is the fundamental frequency for the data (collected in a
periodic experimental paradigm); the first three pairs of terms represent sine
waves at the fundamental frequency and the first two harmonics. The term
α + βt is a linear trend, and ρt is the error at the time point t. Since the
residual errors are correlated, Bullmore et al. estimate the parameters via
pseudogeneralized least squares.

To identify active voxels a two-stage approach, using temporal information
only in the first stage and spatial in the second, is used. More specifically, at
the first stage the authors calculate the fundamental power quotient at voxel
i, defined as

FPQi =
γ̂2

i + δ̂2
i√

2(se(γ̂i)4 + se(δ̂i)4)
.

They then find the significantly active voxels by the use of a permutation
test (see Section 10.3). In this way, distributional assumptions are avoided, at
the cost of having a computationally more expensive procedure. For testing
at the second stage, it is assumed that all voxels found in the first stage are
false positives. A measure Nvox is then defined, which counts the number of
voxels in each 8-connected cluster. Truly false positives should, in theory, be
isolated, whereas truly activated voxels should cluster together. Only voxels
that pass a threshold for both FPQ and Nvox jointly are considered active. As
noted by the authors, the two measures are not independent, and so looking
at them jointly serves merely to locate voxels of potential interest.

From the methods proposed by Bullmore et al. (1996b) additional detail
regarding the timing of activation can be extracted. Noting that there is in-
formation also in the signs of γ̂ and δ̂, they split the significant voxels into
four groups according to whether each of the two estimated parameters are
positive or negative. In their interpretation the sign of γ̂ is related to the con-
dition of the experiment to which the voxel is responding (positive for task or
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negative for rest) and the sign of δ̂ is related to the timing of activation (pos-
itive for anticipatory or negative for delayed); hence it is possible to classify
a voxel, for instance, as being active in delayed response to the task condi-
tion, or in anticipation of rest. For the data set they examine in this study
(a single subject performing a simple visual and linguistic task), most of the
active voxels show increased signal in delayed response to either the task (the
majority fall in this category) or rest conditions, and very few voxels show an
anticipatory reaction. Presumably for different types of tasks, one would find
different breakdowns of voxels into the four groups.

Locascio et al. (1997) use traditional time series methods, namely autore-
gressive moving average (ARMA) models for the fMRI time course, on a voxel
by voxel basis. At time t the signal intensity Yt is modeled as

Yt = α0 +
∑

αiCit + β1time + β2time2 +
θ(B)
φ(B)

εt,

where
∑

αiCit is a term representing contrasts of interest between the exper-
imental and baseline conditions; “time” counts the order of successive images;
B is the backshift operator BXt = Xt−1; θ(B) is the moving average operator
θ(B) = 1 − θ1(B) − · · · − θq(B)q for a moving average component of order
q; φ(B) is the autoregressive operator φ(B) = 1 − φ1(B) − · · · − φp(B)p for
an autoregressive component of order p; εt is white noise at time t. Since
the model incorporates both contrast and ARMA components, Locascio and
colleagues term this a “CARMA” model.

The CARMA models are fit to each voxel individually. At each voxel, an
essentially stepwise procedure is performed to search for the best AR (autore-
gressive) or MA (moving average) model of up to order 3. Higher orders could
of course be considered, as could mixtures of AR and MA components (Locas-
cio et al., 1997). The authors prefer to use AR over MA when both models
fit equally well or nearly so, since the former is more easily interpreted. Fi-
nally, the residuals from the fitted model at each voxel are subjected to a test
of white noise to determine if relevant time trends and autocorrelations have
been accounted for. Voxels must pass this test as well in order to be declared
significant. Significance in general is assessed for the contrasts of interest, on
the voxels that pass the white noise test, using permutation methods (see
Section 10.3).

A distinct advantage of this approach is that it allows for a different model
to be fit at each voxel, since AR and MA components are tested separately and
the best fitting order of the appropriate component is taken. These may differ
from voxel to voxel and recognition of this fact is desirable; most often, for
computational and conceptual ease the same model is fit at each voxel. Fur-
thermore, unlike many of the temporal models, that of Locascio et al. (1997)
can accommodate arbitrary experimental designs; it is not necessary for them
to be periodic or have any other special structure. However, this method is
purely temporal, with no attempt to borrow strength from neighboring voxels
and fit similar models to nearby physical locations, and it is not immediately
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clear how one could easily extend their procedure to have a spatial component
and still keep to the spirit of the analysis.

Other proposed models for the temporal correlation include AR(p) (Bull-
more et al., 1996a) and AR(1) with added white noise (Purdon and Weisskoff,
1998); estimation then proceeds, as in Locascio et al. (1997), under the as-
sumption that the prespecified model holds.

6.1.2 Frequency Domain Analysis

Now we move to the analysis in the frequency domain, as espoused for instance
by Lange and Zeger (1997) and Marchini and Ripley (2000). Let ωj denote
the Fourier frequencies, ωj = jδ/n, where n is the length of the time course, δ
is the sampling interval, and j = 0, 1, . . . , �n/2	. Then the Fourier transform
of a series w is given by

dw(ωj) =
1
n

n−1∑
k=0

wk exp(−i2πωjδk).

Hence in the frequency domain, the model for the time course can be repre-
sented as

dY (ωj) = dX(ωj)T β + dZ(ωj).

For large n, the “error terms” dZ(ωj) are approximately uncorrelated (Mar-
chini and Ripley, 2000).

For periodic stimulus designs, such as the standard block design tradition-
ally used in fMRI, analysis in the frequency domain is simpler than that in the
time domain, since the model will simplify considerably, relying only on the
Fourier frequencies that correspond to the period of the block design, the rest
being zero. Therefore, if we take the discrete Fourier transform of each voxel
time series, most of the frequencies will not, in fact, contain information about
the signal. Specifically, Lange and Zeger, and Marchini and Ripley point out
that the fundamental frequency of activation in the spectral domain contains
most of the information relevant for inference; additional information is found
in the harmonics. Parametric (Lange and Zeger, 1997) or nonparametric (Mar-
chini and Ripley, 2000) methods can then concentrate on the estimation of
the few relevant components, as opposed to the entire spectrum. In a simple
two-condition block design consisting of c repetitions of “control-stimulus,”
the relevant Fourier frequencies are Ω = {ωj : j ∈ (c, 2c, . . . , �n/2	)}.

Lange and Zeger (1997) start with the time domain model Y (t, i) =
X(t, θi)βi + Z(t, i) and

X(t, θi) =
∑

0≤s,t−s≤T−1

λ(s, θi)x(t − s),

for location i, time t = 1, . . . , T , λ(·, ·) the two-parameter gamma family
described in Section 5.3.1, and Z(t, i) mean zero random error. Upon ap-
plying the discrete Fourier transform to this model, it becomes dY (ωj , i) =
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dX(ωj, θi)βi + dZ(ωj , i) and dX(ωj , θi) = dλ(ωj , θi)dx(ωj). Using an iterative
algorithm of complex least squares, estimates are obtained for the β and θ
parameters at each spatial location separately.

As noted by some of the commenters on the paper by Lange and Zeger, the
approach has several technical drawbacks: the two-parameter gamma model
may not be flexible enough to capture the behavior of the hemodynamic re-
sponse function, although it is no doubt more flexible than some of the other
parametric models that have been proposed; there may in addition be is-
sues of parameter identifiability and convergence of the complex least squares
algorithm. Furthermore, their approach is only appropriate for periodic exper-
imental designs. Particularly as more and more researchers are moving to the
use of event-related studies, this is a serious limitation of the spectral domain
analysis.

In spite of the inherent limitations of analysis in the frequency domain,
it has continued to hold attractions for methodological researchers, who have
built on Lange and Zeger (1997) and extended their approach in various
directions.

Marchini and Ripley (2000) start with the time domain model Yt = Xtβ+
Zt, and assume that the time series has also been preprocessed to remove
trends and other confounding factors. Then the terms dX(ωj) vanish except
at the fundamental frequency and its harmonics, thereby reducing the model
to

dY (ωj) =
{

dX(ωj)T β + dZ(ωj) j ∈ Ω
dZ(ωj) otherwise

The authors note that if one takes the discrete Fourier transform of the
time series at each voxel, most of the frequencies will contain information
only about the underlying correlation structure of the stochastic process
at that voxel. Now, the periodogram at frequency ωj is exactly given by
I(ωj) = n|dY (ωj)|2, and so by studying the periodogram it is possible to
learn about the response to the stimulus at each voxel, or, more precisely,
which frequencies of the signal are evidence of response. Since much of the
variance is explained in the fundamental frequency for active voxels, this is
where Marchini and Ripley focus their inferential efforts. In particular, they
demonstrate that the value of the periodogram at the fundamental frequency
is related to the optimal estimator of β in the model for dY (ωj), and hence
tests for significance of the response to a periodic stimulus are based on this
value.

The test statistic they define is

Rj =
I(ωj)
g(ωj)

,

for ωj = j/δn and g(·) a smoothed version of the periodogram which is used
as an estimator of the spectral density. For periodic designs one need consider
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Rj only at the fundamental frequency and its harmonics, as described above.
The authors recommend using nonparametric methods such as smoothing
splines to get the estimate g(·) of the spectral density, which is asymptotically
unbiased. Under the null hypothesis of no activation, Rj at the fundamental
frequency is asymptotically standard exponential; in fact this is true at other
frequencies as well, save the edges, and so if inference on some of the harmonics
is also of interest, the same result can be applied.

An interesting aspect of the proposed method stems from the observation
that only at the fundamental and first few harmonic frequencies is there ex-
pected to be any response to the periodic stimulus. Hence, the values of Rj

at the other frequencies can be considered as drawn from the null hypothesis;
these therefore provide a large sample from the null to use as an empirical
distribution against which to compare the values of Rj at the frequencies
most likely to be of interest. This obviates the need to hew to the theoretical
exponential distribution, if, for example, it is not a good fit for a given data
set. The empirical distribution can be used instead for calibration of the test
statistic.

Müller et al. (2001), also working in the spectral domain, consider instead
a multivariate approach, in the hope of teasing out, in addition to regions of
activation, the functional connectivities among such regions. This is a delicate
question in the analysis of fMRI data (see also Sections 4.3.1 and 11.2). As in
Marchini and Ripley (2000), Müller et al. (2001) assume a periodic exper-
imental design and focus on the fundamental frequency. Using multivariate
time series methods in the spectral domain, they estimate two key parame-
ters for understanding the temporal connections between pairs of voxels: the
coherence and the phase lead.

Letting fjk(λ) be the cross-spectral density function at frequency λ, the
coherence is defined to be

ρjk(λ) =
|fjk(λ)|√

fjj(λ)fkk(λ)

and the phase lead is the function νjk(λ) in the expression

fjk(λ) = |fjk(λ)|eiνjk(λ).

Coherence in this context is analogous to correlation, namely it is a measure
of linear association between two time series at a particular frequency. Voxels
that have high coherence with each other are “correlated” in this sense, and the
expectation would be that coactivating voxels would form clusters with high
coherence. After the clusters with high coherence are identified, the method
proposed by Müller and colleagues computes the phase lead, again pairwise
between voxels, again for selected frequencies that are related to the periodic
experimental design. The authors describe the phase lead as a measure of
the amount of temporal displacement in the BOLD response for one region
relative to another. Thus, examination of the phase lead in theory can shed
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light on some aspects of connectivity, such as which regions activate earlier and
which later in reaction to a particular stimulus. Note that, while this analysis
may describe the temporal sequence in which different regions become active,
it does not indicate causality; simply because voxels in one region activate
before those in another, one cannot of course conclude that activity in the
former leads to activation in the latter.

According to Müller et al. (2001),working with a simple visual task, their
method performs comparably to the standard general linear model analy-
sis, picking out similar regions of activation (in both location and extent).
A purported advantage of their procedure is that some understanding of the
network, via the different lags in BOLD response for different regions, is ob-
tained. As mentioned above, however, it is still not possible from this approach
to infer causality in the network. Also, because the authors assume weak sta-
tionarity, the experimental design needs to be periodic (that is, a block design
experiment) or nearly so. Hence it won’t be an appropriate analysis path for
more advanced or complex experimental designs.

A somewhat different approach to the modeling of the time series is given
by Gonzalez Andino et al. (2000), who start from the assumption that time
series for voxels that are related to “signal” should look different from those
that are related to “noise” (or “nonsignal,” more generally). In particular, the
time series should be differentiable according to their complexity, with “signal”
voxels having less complex patterns made up of a few temporal components
(Gonzalez Andino et al., 2000). The measure they propose to use for the
purpose of distinguishing signal from noise time series is the Renyi entropy,
which makes minimal assumptions about how the signal is generated. There is
no need to assume normality or stationarity, and the HRF is not estimated. It
is only assumed that the characteristics of noise and signal time series differ.

A concept that is basic to their approach is the time frequency represen-
tation, or TFR; this is a two-dimensional plot showing how the frequency of
a series varies over time. Time series that contain organized signal will have
a few “hot spots” in the TFR, whereas those that are essentially noise will
have many such spots scattered at random. Thus the number of hot spots in
the TFR can be taken as a measure of the complexity of the time series, with
the rationale that many components are needed to describe a noise series and
only a few are needed to describe a series with a clear pattern.

To formally measure the complexity of a signal, the authors use the fol-
lowing definition of Renyi entropy:

Hα(Cs) =
1

1 − α
log2

∫ ∫ (
Cs(t, f)dtdf∫ ∫

Cs(t, f)dtdf

)α

,

where α represents the order of the entropy, and Cs(t, f) are the coefficients
of the TFR of the time series s. Based on earlier empirical studies by various
researchers, the value α = 3 is chosen. When the number of components in
the TFR is small (organized signal), this entropy measure will also be small;
for a large number of diffuse components (noise), the entropy will be high.
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On a simple motor task, Gonazalez Andino and colleagues find that values
of the Renyi entropy are clearly separated for voxels declared active and those
declared inactive by another method (correlation analysis). While this is only
one study, and based apparently on a single subject, the results are indicative
of the potential power of the approach. As is evident from the expression for
the Renyi entropy itself, there is no need to estimate the HRF, nor to assume
a reference vector (such as for the correlation method), meaning that this type
of analysis can, in principle, be applied also to event-related experiments of
arbitrary complexity. On the other hand, users do need to choose the time
frequency representation, of which there are many possibilities, and the order
α; it is not clear how sensitive conclusions are to these choices. Furthermore,
the authors do not offer a formal way of distinguishing between voxels to be
declared active and those to be declared inactive based on values of Hα(Cs)
when there is not a natural separation between the two groups. One could
presumably bring existing statistical methods to bear on this problem.

6.1.3 Effect of Ignoring Temporal Correlation

Purdon and Weisskoff (1998) report a simulation study that explores the
importance for precise statistical inference of accounting for the temporal
correlation in the fMRI time series. They look at two block design paradigms,
one of low frequency (blocks of 40 seconds) and one of high (blocks of 20
seconds), and three statistical procedures: the nonparametric Kolmogorov-
Smirnov test, the t test, and a Fourier-based F test.

For each combination of design and test, the authors calculate the false
positive characteristic, or FPC; this is a plot of the false positive rate in simu-
lated “null” data (data with no activation, representing noise or resting brain)
against the assumed level of significance. If a data set meets the assumptions
of a particular test, the FPC line should be straight with a slope of 1, since
in this case the proportion of false discoveries will match the preset signif-
icance level. Deviations from the test assumptions will manifest themselves
in a nonlinear FPC curve. Purdon and Weisskoff (1998) find that in the low
frequency design, for all three tests the FPC line curves upward, indicating
that more significant voxels are detected than is warranted by the declared
α level. For smaller values of α, the bias is worse than for larger values. In
the high frequency design, there are fewer false discoveries than in the low
frequency paradigm, which under some circumstances results in bias in the
opposite direction, that is, fewer significant results than would be expected
for a given level. The TR also influences the amount of bias in the results.

In short, as one might expect, if there are indeed temporal autocorrela-
tions present in the fMRI data, ignoring them introduces bias in the assumed
significance levels, resulting in tests that may be conservative or liberal in
direction, depending on the TR and the experimental design. Purdon and
Weisskoff also suggest a way of modifying their analysis and that of Worsley
and Friston (1995) to account for temporal autocorrelation.
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Woolrich et al. (2001) examine the effectiveness of several statistical meth-
ods for directly handling autocorrelation in the fMRI time series, namely col-
oring with a low-pass filter, correcting the variance, and prewhitening. All of
these are variations on the theme of premultiplying the general linear model
by a matrix D that will simplify calculations or the data; they differ in the
choice of matrix. In addition, the autocorrelation may be estimated using a
variety of approaches from the time series literature: parametric or nonpara-
metric techniques, or windowing/tapering. Finally, Woolrich and colleagues
explore the effect of different experimental designs: a regular block design,
and event-related studies with fixed, jittered, and random interstimulus inter-
vals.

For all experimental designs prewhitening is the most efficient method of
handling the autocorrelation, followed by variance correction and coloring.
For the block design experiment the differences in efficiency are minimal,
indicating that as long as the autocorrelation is accounted for, the particular
way in which this is done is not very important. For the event-related designs
with either fixed or jittered ISI, the differences between prewhitening and
variance correction are small, but coloring is clearly inferior, with the latter
achieving 70% of the efficiency of the former two; in the random ISI design,
coloring is only 20% as efficient as prewhitening, and variance correction is
80% as efficient.

Although prewhitening is the most efficient method according to this re-
search, it does require a robust estimator of the autocorrelation (Woolrich
et al., 2001). Hence in the second part of their study, Woolrich and colleagues
compare the estimation techniques mentioned above. They find that a simple
windowing works best, and, when applied locally to small neighborhoods, is
computationally efficient as well. However, even for the most effective method,
there is considerable bias far in the tail, in the regions of the distributions that
are of most interest for statistical inference, and especially when corrections
are made for multiple tests. This bias can be offset to some extent, as evi-
denced in the study, by applying a small amount of spatial smoothing. See
also Marchini and Smith (2003) for additional simulations and a theoretical
discussion which together further highlight the usefulness of smoothing in this
setting.

6.2 Spatial Models

In contrast to the large amount of work that has been done to model the
temporal aspect of fMRI data, the purely spatial aspect has seen much less
development (Hartvig and Jensen, 2000). As discussed in previous chapters,
the traditional approaches to the spatial correlation problem have been to
ignore it (assume independence) or to spatially smooth, perhaps in conjunc-
tion with another analysis. In part this is because the nature of the spatial
dependence, which clearly must exist, is much harder to decipher and hence
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to propose models for, than the temporal correlation structure. Physical lo-
cation alone is not enough to describe the spatial dependence; for example,
Broca’s area and Wernicke’s area are involved in language processing and may
be present in both hemispheres of the brain (although more developed on one
side than the other), hence it is possible, and even likely, that voxels that are
not in spatial proximity to each other would still show high correlation. Yet
the large number of voxels precludes calculating all pairwise correlations and
assessing them for patterns. A different approach is needed beyond simple
autoregressive spatial models.

Another possible reason for the relative dearth of purely spatial models is
that, unlike for temporal models where an analysis can be performed on the
time courses directly assuming independence of voxels, a spatial analysis that
ignores the temporal element still requires some prior processing. One could,
for example, construct a model concerned only with spatial relationships on
the basis of a linear model analysis of the time courses, or some other summary
of the temporal information. That is, the time course is analyzed before any
spatial model is built. The alternative, in analogy to the temporal analysis,
would be to fit a spatial model at each time point independently, and view the
results as a movie. While feasible computationally, this is hard to interpret
and I am not aware of this approach being put forth in the literature. By
contrast, it is not strictly necessary to smooth or execute any other spatial
processing before constructing a temporal model.

Interestingly, much of the work that has been done on purely spatial mod-
eling is Bayesian in nature. The reason for this is most likely that if one is
not going to smooth, and one still wants to take advantage of the neighboring
voxels, the Bayesian framework is the obvious choice for borrowing strength.
We will see other uses of the Bayesian approach for fMRI data analysis in
Chapter 9. Another possibility is to apply clustering techniques to the statis-
tical map. Both approaches have been proposed and we take them up in the
following sections.

6.2.1 Bayesian Spatial Models

An example of a (Bayesian) spatial model built on a statistical map that
summarizes over the time dimension is Hartvig and Jensen (2000),who suggest
a variety of spatial models based on mixtures. They write that “[t]hough the
model may be used as the spatial part of a spatio-temporal model, we will only
consider the problem of estimating the activation pattern based on a single
summary image (or volume) of voxel-wise activation estimates, also known as
a statistical parametric map (SPM)” (p. 234). Their analysis starts with the
intuitively pleasing idea that active voxels will tend to cluster together (see
also Forman et al. 1995, and the discussion in Chapter 10). Hence it makes
sense to consider clusters of voxels, or, more specifically, the activation status
in clusters or neighborhoods of voxels. For a given voxel i, then, we want
to borrow strength from its 8 immediate neighbors (all those in the same
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slice, with voxel i in the center of the square), or its 26 immediate neighbors
(all those in the same slice, or in the two adjacent slices, again with voxel i
in the middle of the cube); voxels that are in an “active neighborhood” are
themselves more likely to be active.

Denote the activation status of voxel i by A, where A = 1 indicates that
i is active and A = 0 indicates that it is not. Also, the activation statuses
of voxel i’s k neighbors (k = 8 or k = 26 for the two cases described above;
one could of course define neighborhoods with different characteristics, but
these have the advantage of simplicity) are denoted by Hartvig and Jensen
as A1, . . . , Ak. None of these A values are observed; rather the authors take
a Bayesian approach and estimate the posterior probabilities of each being 1,
based on a model for the prior and a likelihood function given the state of
activation.

What is observed in their scenario is the interim statistical map, for ex-
ample, the output from a simple t test performed at each voxel. The first step
is to specify a likelihood for this observed value, called x, given the activation
status A of the voxel. Hartvig and Jensen suggest a normal distribution with
mean zero when A = 0, and either a normal distribution with mean μ �= 0
or a gamma distribution when A = 1. This determination of the likelihood
expresses the mixture nature of the problem. Next, the prior is specified, and
this is the main focus of Hartvig and Jensen (2000). Once these two are de-
termined Bayes rule gives the posterior probability of a pattern of activation
and of a particular voxel being active (regardless of the neighbors). Letting
subscript C denote properties of the cluster configuration (i.e., which voxels
are active), the posterior probability for the entire pattern of activation is
given by

P (AC = aC |xC) ∝ f(xC |aC)P (AC = aC)

and the posterior probability of voxel i being active is

P (A = a|xC) ∝
∑

a1=0,1

· · ·
∑

ak=0,1

P (AC = aC |xC).

Now, in general this latter expression will be hard to calculate, since it
requires summing over all the possible activation patterns of the neighbors of
voxel i, therefore Hartvig and Jensen propose priors that result in a closed
form expression for the posterior probability. All of these priors are applied
to small, local neighborhoods, and aim to capture the notion that truly active
voxels should tend to “clump together.” Let S be the number of 1s in the
cluster under consideration. The three priors are:
1.

P (AC = aC) =
{

q0 S = 0
q1 S > 0
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2.

P (AC = aC) =
{

q0 S = 0
αγS−1 S > 0

3.

P (AC = aC) =

⎧⎨
⎩

q0 S = 0
α1γ

S−1
1 + α2γ

S−k
2 1 ≤ S ≤ k

q1 S = k + 1

The first prior has in effect only one parameter, and is thus particularly
easy to work with. It represents the prior belief that the active clusters are of
intermediate size. Single voxels are not believable, but neither are neighbor-
hoods that are very large.

The parameter γ in the second prior is a measure of correlation among
neighboring voxels. The other free parameter can be rewritten in terms of the
probability of a voxel being activated. The third prior induces symmetry in
the way active and nonactive voxels are treated. It can be written in terms of
the probability of a voxel being activated, plus four parameters that describe
the correlation across voxels.

Based on simulations and a real data analysis of a visual processing task
performed by a single subject, the authors recommend the second of their
three priors, applied to a small neighborhood (3×3 for a slice, or 3×3×3 for
a volume). This combination of model and neighborhood performs the best,
in terms of power and of minimizing classification error. The mixture model
is also comparable to nonparametric spatial smoothing methods (see their
Figure 5) in the appearance of the activation maps, although the latter does
result in somewhat smoother clusters. Note that the procedures described here
are all local; that is, the activation probability of a given voxel depends only on
the behavior of its immediate neighbors. However, since the model is applied
at every voxel, contiguous regions that span the brain, for instance bilaterally,
can be formed. The local fitting reduces the computational burden, as do the
closed form expressions that the authors derive for the posterior probabilities.

A very different Bayesian analysis is implemented by Smith et al. (2003)
(see also Smith and Fahrmeir 2007).Their point of departure is the basic linear
model, as described in the previous chapter. In their analysis the time course
at voxel i is modeled as the sum of a baseline trend (which is not of direct
interest), an “activation profile,” and error. The second term, the activation
profile, is the focus of the analysis. Smith and colleagues assume a latent
variable, γi underlying voxel i, so that γi = 1 if voxel i is active and γi = 0
otherwise. The regression parameter for the activation profile in the linear
model then represents the amplitude of activity, being nonzero only if γi = 1.

In this configuration, the vector γ that summarizes the activation pattern
is the parameter of interest. The authors suggest imposing spatial correlation
and incorporating information (for instance, anatomical) via a prior that has
the Ising form; this is a common prior in spatial statistics (Besag, 1986; Besag
et al., 1991). The Ising prior for γ is
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π(γ) ∝ exp

⎧⎨
⎩

n∑
i=1

δiγi + θ
∑
i∼j

ωijI(γi = γj)

⎫⎬
⎭ .

Here, the first term in the sum is called the external field; anatomical or
expert prior information enters the model through this part of the prior. The
second term in the sum models the spatial correlation: the sum over i ∼ j
is over the neighbors of voxel i; ωij are weights for the interaction between
neighboring voxels. Finally, the parameter θ is used to control the amount
of spatial smoothing. The components of the γ vector are independent when
θ = 0 and become more spatially correlated as θ increases. Specification of
the model is completed by setting priors on the other elements of the linear
model and on the activation amplitudes given γi = 1. For each voxel, Markov
chain Monte Carlo is used to obtain the posterior probability of activation,
and the posterior distribution of the activation magnitude.

Based on simulation and analysis of a real data set, the authors note that
their Bayesian procedure seems to find more isolated voxels than a compa-
rable frequentist (linear model-based) analysis. On the other hand, they find
increased sensitivity, apparently due to the use of anatomical prior informa-
tion, to details of activated brain structures. This feature of the method makes
it potentially well-suited for mapping of the brain before surgery. In that case,
as the authors point out, it is important to have precise, individually tailored
inference, especially as regards the regions that are involved in particular cog-
nitive tasks.

6.2.2 Clustering for Spatial Modeling

The use of clustering to localize and characterize spatial patterns of activation
can blur the distinction between purely spatial and spatiotemporal models.
Approaches that cluster the fMRI time course (Baumgartner et al., 2001) or
models for the hemodynamic response (Gibbons et al., 2004), for example,
are really more spatiotemporal than spatial. Since clustering methods require
a dimension along which to measure closeness or similarity of behavior, this
is to some extent unavoidable in functional neuroimaging problems: if one is
looking for voxels in the brain that cluster together, it is natural to consider the
behavior of those voxels over the course of an experiment. This leads, in turn,
to clustering over the time course. Hence, the most statistically natural way
of applying clustering techniques in the fMRI context gives a spatiotemporal,
rather than a spatial, analysis. Such analyses will be taken up in Section 6.3.

One might then ask if there is an informative way of clustering that leads
to a more purely spatial model. From the previous discussion, it is evident
that to answer in the affirmative we require a summary of the experiment-
wise behavior of each voxel, much as in the Bayesian approach of Hartvig
and Jensen (2000). That is, we wish to cluster on features of the data other
than the time course, but those features must be such that they capture the
activation patterns at the voxel level.
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Given the difficulty of building spatial models that don’t also have a strong
temporal component, it is not surprising that this approach has received little
attention in the literature. Indeed, only recently (Bowman and Patel, 2004)
has an attempt to tackle the problem appeared. Although the methodology
of Bowman and Patel (2004) was developed and tested on positron emission
tomography (PET) data – another imaging modality – many of the statis-
tical issues are the same; the authors furthermore indicate that the analysis
can be used for fMRI data as well. The essence of their approach is to clus-
ter parameter estimates obtained from a general linear model, or contrasts
based on those estimates. They additionally suggest a “multiple classification
approach” whereby many clustering algorithms are evaluated simultaneously.
Following the evaluation, either the algorithm that produces the single best
classification is chosen, or, if there is no such algorithm, a conglomeration of
several is used instead.

Among the algorithms that come under test are hierarchical procedures
(single linkage, complete linkage, and so forth), K means, and fuzzy cluster-
ing. In order to evaluate the performance of the various algorithms, Bowman
and Patel propose a new measure, which they call the relative information as-
sociated with a particular partition, or RI. One rationale for the new measure
is that most absolute measures of cluster performance will improve simply
by the addition of more clusters. RI, by contrast, attaches a penalty to the
number of clusters. It is assessed relative to a “reference clustering” solution,
the procedure which yields the least probable partition of the data. The rel-
ative performance of the possible classifications is evaluated using RI, which
leads either to the choice of a particular scheme, or a pooled procedure, with
RI providing the weights. If the latter is chosen, a voxel is not uniquely (dis-
cretely) identified as belonging to a particular cluster; rather it is summarized
by a weighted average of its plausible class memberships.

Not unexpectedly, the multiple classification approach produces good re-
sults, since it combines the outcomes of the individual algorithms, or picks
the best among them. However, it should be noted that clustering algorithms
are in general computationally intensive, especially on large data sets such as
fMRI, even collapsing along the time dimension. Use of the multiple classifi-
cation procedure adds a level of computational complexity. The authors also
find in some of their simulations that RI still tends to favor a large number of
clusters for some clustering methods; this despite the attempt to incorporate
a bias towards parsimony.

6.3 Spatiotemporal Models

Spatiotemporal models for fMRI data aim at incorporating both time and
space effects. In terms of building statistically valid and realistic models, these
spatiotemporal approaches are the most natural way to handle functional
neuroimaging data. However, both computational and conceptual barriers
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have historically prevented the development and widespread application of
this idea. Computationally, the task of fitting a full spatiotemporal model to
fMRI data is a formidable one, involving hundreds of thousands of voxels over
hundreds of time points. Estimation of model parameters and their standard
errors can be challenging in this scenario. Conceptually, as we have already
seen, the spatial correlation in particular is difficult to summarize in a form
that admits a simple statistical model.

With advances in computing power, simultaneous models for the spatial
and temporal elements are becoming more feasible. Two schools of thought
are commonly found: clustering of time series (as introduced in Section 6.2.2)
and “direct modeling.” Time series clustering is nonmodel based in that no
parametric model is specified for the spatial relations; rather, these are elu-
cidated by the detected clusters. By contrast, with direct modeling one at-
tempts to fit spatial models, often with the aid of prior information provided
by neuroscientific rationale or previous experiments. The two approaches are
thus fundamentally different in perspective and assumptions about the spatial
component in particular.

6.3.1 Clustering fMRI Time Series

A relatively straightforward way to incorporate time and space into the sta-
tistical analysis is to apply clustering techniques to the time series data. In
this application there are various questions that need to be addressed, includ-
ing: What should be clustered – the raw time series or some function of these?
What clustering algorithm or family of algorithms should be used? How many
clusters are needed and how should this be decided? All of these have received
attention in the fMRI clustering literature.

Regarding the first question, there are two main perspectives. One, as ex-
emplified by the work of Baumgartner and colleagues (Baumgartner et al.,
1997; Baumgartner et al., 1998) clusters the time series themselves, looking
for similarities in behavior. This seems to be the dominant approach. Other
authors (Goutte et al., 1999) claim that clustering the time series is unsta-
ble, and that the resultant clusters will not necessarily reflect similarity of
responses to the stimulus. Goutte et al. (1999), for example, recommend clus-
tering instead on the correlation function of the series with the experimental
paradigm. Also on this topic, many authors have noted that since most voxels
are inactive, if all of the voxels in the brain are tossed at a clustering algo-
rithm, the clusters that come out will not be able to easily distinguish active
from inactive locations. In other words, the algorithms will not be likely to
find clusters that are made up of solely active voxels, or even more generally,
clusters of activation. Hence most researchers in this area recommend doing
some sort of screening first, to eliminate voxels that are clearly not active.
This is done in different ways and taking different features of the data into
account, as we will see in more detail below.
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Choosing the “best” or “right” number of clusters when this is not known a
priori is also a problem that warrants attention. In fMRI data it is reasonable
to assume that most of the identified clusters will be made up of inactive vox-
els, even if some screening procedure is implemented before clustering. If the
number of clusters is too small, active voxels are likely to be clumped together
with inactive ones, and the clusters that result will not be easily interpretable.
If the number of clusters is too large, the active voxels may be split across
several clusters, which may or may not have a physiological intepretation. In
general, this is a delicate question; we consider several potential solutions in
the sequel.

We first briefly survey works in which the fMRI time courses are clustered
directly. These investigations differ mainly in the details of implementation:
what clustering algorithm is used; how the number of clusters is decided;
and whether or not there is prescreening to remove inactive voxels from the
analysis.

1. Clustering Algorithm. The most popular clustering algorithms in fMRI
data analysis are K means (for example, Balslev et al. 2002) and fuzzy
clustering (for example, Baumgartner et al. 1998; Fadili et al. 2000),
although hierarchical methods (Stanberry et al., 2003) have also been
considered. Filzmoser et al. (1999) use a combination of K means and
hierarchical clustering; first they use a hierarchical approach to narrow
down the number of clusters (hence avoiding in part the need to specify
this in advance) and then take those identified clusters as the starting
point for a K means clustering.

2. Number of Clusters. Hierarchical clustering methods such as average, sin-
gle, or complete linkage do not require prior specification of the number
of clusters, although a clustering threshold must be picked. Fuzzy cluster-
ing and K means require that the number of clusters be chosen ahead of
time; thus researchers need in any case to confront this question. Aside
from the two-stage approach of Filzmoser et al. (1999) mentioned im-
mediately above, a posteriori validation of detected clusters by statistical
testing (Baumgartner et al., 1998), cross-validation (Balslev et al., 2002),
and iterative unsupervised learning with a fuzzy clustering algorithm

(Fadili et al., 2000) are some possibilities that have been suggested in the
literature. But the problem remains inherently difficult.

3. Reduction of Brain Volume. Most authors recommend reducing the set
of voxels on which the algorithms are applied, due to the fact that the
proportion of active voxels in the brain is relatively small. Without a
prescreening step there is the concern that even the active voxels will get
clustered among the noise, rather than forming clusters of their own; see,
however, Gibbons et al. (2004)for one example of clustering where only air
voxels are masked out, yet meaningful clusters of activation are detected.
Reduction of the voxel set is achieved by segmentation to strip away the
white matter and cerebrospinal fluid, so that only voxels in the gray matter
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are clustered (Fadili et al., 2000) or crude thresholding according to values
of a simple test statistic (Goutte et al., 1999; Fadili et al., 2000; Balslev
et al., 2002).

Minimal spanning trees (MST) (Hartigan, 1975))have also been used for
analyzing fMRI time courses (Baumgartner et al., 2001), thereby providing
another spatiotemporal approach based on clustering ideas. The MST is a
multidimensional generalization of an ordered list; Baumgartner et al. (2001)
suggest that it can thus serve as a means of investigating the temporal evolu-
tion and connectivity among groups of spatially clustered voxels. The starting
point of such an investigation is therefore voxel time series that have already
been clustered by some other method.

Once the clusters are identified, their MST algorithm proceeds by combin-
ing all clusters together and ordering all of the voxels according to Euclidean
distance from a root node; the root node has depth of zero by definition, and
the depths of the other time courses are defined by their distances from the
root. Voxels can then be ranked according to distances and interest centers
on whether or not the time courses from different clusters are distinguishable.
This is determined by examining the runs structure of the MST, where a run
is a consecutive sequence of voxels from the same cluster. The total number of
runs and the length of the longest run give information about the separability
of the clusters. For instance, if there are many short runs, this means that
the observations from different clusters have similar temporal behavior, since
their distances from the root time course are similar, and the clusters aren’t
separable. By contrast, a small number of long runs indicates that the obser-
vations from different clusters have different depths, i.e., different temporal
behavior. Ideally, the voxels from different clusters would completely separate
into one run for each cluster. Baumgartner et al. (2001) demonstrate this
separability on several simulated and real data sets.

Coactivation is inferred when no such separation results from the MST
ranking of the time courses. In this instance the temporal behavior of different
regions or clusters of voxels cannot be distinguished: voxels that are physically
distant from each other exhibit similar response to the stimulus. In terms of
the characteristics of the relevant tree, time courses from one region are ranked
near time courses from other regions. No separability is possible. When the
ranks are plotted back onto a brain image, we expect to see in this case an
intermingling of voxels from different regions.

Figure 6.1 shows the minimal spanning tree constructed from voxel time
courses from two previously identified clusters; one cluster, containing n1 = 19
voxels, is believed by the researcher to be related to the experimental task,
whereas the other, containing n2 = 12 voxels, is believed to be noise. As can
be seen, the two clusters are completely separated in the tree. The complete
cluster separation is also apparent in the ordered index plot (Figure 6.2). One
conclusion that can be drawn from this representation of the data is that the
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interpretation of the clusters as containing voxels with different behaviors is
justified.
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Fig. 6.1. Minimal spanning tree built from voxels belonging to two pre-identified
clusters. The first cluster contains 19 voxels and is thought by the researcher to be
related to the task. The second cluster contains 12 voxels and is believed to be noise.
While the complete separation of the clusters apparent in the tree cannot validate
these claims, it does confirm that the time courses of the voxels in the two clusters
exhibit very different behaviors.

Finally, Figure 6.3 shows the results of applying three hierarchical clus-
tering algorithms – complete linkage, average linkage, and single linkage – to
the combined data set from the two clusters. All methods identify the two
clusters correctly, although they differ slightly in the details of the structure
(which voxels within a cluster are deemed “closest” varies from algorithm to
algorithm).

Stanberry et al. (2003) also use the idea of the minimal spanning tree,
through its connection with the single linkage hierarchical analysis, and “den-
drogram sharpening.” Dendrogram sharpening is a way of reducing the data
that are input to the clustering algorithm in order to produce more dis-
tinct clusters. The data that are discarded during the sharpening stage are
then classified into one of the clusters identified by the single linkage algo-
rithm. Sharpening involves looking at every parent node in an initial dendro-
gram based on all of the data, starting at the root node. Any branch of the
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Fig. 6.2. Ordered index plot, based on the minimal spanning tree for the two
clusters. The ordering is based on distances between time courses. The voxels in the
two clusters are completely separated from each other.

dendrogram that has a minimum number of nodes is a candidate for sharpen-
ing; child nodes that are smaller than a preset size are eliminated. Hence the
amount of data reduction is governed by two tuning parameters – the minimal
size of a parent node to be a candidate for sharpening (denoted ncore), and the
maximal size of the child nodes (denoted nfluff). For example, with ncore = 10
and nfluff = 3, all the children of size 3 or smaller will be discarded from every
node of size 10 or more. Size refers to the total number of descendants of a
node. The algorithm proceeds from the root up, discarding as it goes. Addi-
tional data reduction is achieved by a prescreening step; the distance measure
in their algorithm is the correlation between time courses and any voxel that
doesn’t have a high correlation (greater than 0.5) with at least four other
voxels is discarded even prior to the sharpening. In the examples shown by
Stanberry et al., vast reductions in the size of the data set are achieved by
these two tools, and single linkage clustering applied to the time courses of
the survivors often reveals clear structure.

To demonstrate some of the ideas behind this approach, consider a simple
simulated data set made up of n = 15 observations, 8 of which are drawn from
a bivariate normal distribution with mean (0, 0) and covariance matrix I, and
7 from a bivariate normal with mean (1.5, 1.5) and covariance matrix I. Hence
there are two clusters but with some overlap; see Figure 6.4. The dendrogram
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Fig. 6.3. Hierarchical clustering applied to the combined data set of n = 31 voxels.
All three methods clearly and correctly identify the two clusters from which the
voxels are drawn.

for this data set based on the single linkage algorithm is in Figure 6.5. There
are two clear clusters identified in the figure, but some of the observations from
the second distribution (observations 9 and 15) are misclassified as coming
from the first.

For this example we set the parameters nfluff = 2 and ncore = 5. The
root node is of size 15, so it will be analyzed. It has two children, the left
of size 10 and the right of size 5. Both are greater than 2, so will be further
considered. The right child is of size not greater than 5, so it will be retained
in its entirety. The left child is subject to sharpening. It has children of size 1
(left) and 9 (right). The left child is of size smaller than 2, so it is discarded.
The right child has children of size 2 (left) and 7 (right), so again the left
child is discarded. The right child is a candidate for additional sharpening.
Its children are of size 3 (left) and 4 (right); both are greater than 2, but less
than 5, and so are kept. The three observations {6, 7, 8} are deleted; these are
denoted in Figure 6.4 as open circles with dots inside of them.

The dendrogram for the sharpened data set is given in Figure 6.6. Although
observations 9 and 15, from the second distribution, are still misclassified as
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Fig. 6.4. Scatterplot of simulated data; 8 points (open circles) are taken from
the standard bivariate normal and 7 (stars) from the bivariate normal with mean
(1.5, 1.5) and covariance matrix I . Two clusters are discernible in the data, with
some amount of overlap. The three open circles with dots inside of them are points
that are discarded by the sharpening algorithm.

coming from the first cluster (they were not discarded by the sharpening), the
two identified clusters are now more distinct than they were previously.

Goutte et al. (1999) is a good example of clustering on something other
than the time courses themselves. As noted above, these authors suggest that
clustering on the correlation function of the fMRI time series with the ex-
perimental paradigm can yield more meaningful groupings. Let T denote the
length of a time course and let yj be the measured time series at voxel j. Then
the correlation function, which is used by Goutte and colleagues as the metric
for the clustering algorithms that they evaluate, is defined as

xj(t) =
1
T

T∑
s=1

yj(s)p(s − t),

with p(·) the stimulus series (for instance, the boxcar typical of a block design).
This is the usual convolution of the observed series with the stimulus, now
evaluated at each time point instead of being summarized into a correlation
coefficient. The correlation function is also used as the screening device to rid
the data of “clearly inactive” voxels prior to clustering. In this instance the
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Fig. 6.5. Dendrogram for simulated data, using single linkage algorithm. Two clus-
ters are identified; however, not all observations are classified correctly.
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Fig. 6.6. Dendrogram of sharpened data set. The observations are numbered ac-
cording to their original indices.
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maximum value of the function is considered; if that maximum isn’t large,
the voxel is discarded. Finally, the clustering algorithms (K means and the
hierarchical group-average agglomerative method, or “Ward’s method”) are
applied on the reduced data sets.

A drawback of the K means algorithm, as we have already seen, is that it
requires that the number of classes be known, or at least specifiable, a priori.
This will not usually be the case in fMRI studies, in particular the exploratory
ones. Ward’s method does not have this problem, as hierarchical algorithms
in general allow the user to consider different numbers of clusters; however,
a choice as to the “best” number still needs to be made, and this choice is
perforce subjective in nature, although one may try to make it more objective.
Goutte et al. (1999) propose one way of doing this, by considering changes
in the “within-class inertia,” that is, the average distance of a voxel from
the center of its cluster. As this inertia decreases, the clusters become more
homogeneous. But, the measure also decreases simply because the number of
clusters increases. Hence, on its own the within-class inertia is not sufficient;
one could look at a plot of the inertia against the number of clusters and use
this like a scree plot, seeking a point where the decline levels off, however
this would again be a subjective way of picking the number of clusters. The
authors suggest instead that one look at the curvature (second derivative) and
find “bumps” or anomalously high values, an indication that, when moving
from k to k − 1 clusters, a dramatic change in homogeneity occurrs.

Using this combination of ideas, Goutte et al. (1999) succeed in finding
physiologically and functionally meaningful clusters on data collected from a
single subject, with the very evocative flashing checkerboard paradigm. While
this result is encouraging for the potential of simple spatiotemporal analyses
to produce reasonable models of the working brain, a more convincing vali-
dation would be carried out using tasks that are inferentially challenging. Of
course, as we have seen already – and will continue to see – new statistical
methodologies tend to be tested first using stimuli that evoke a strong and
well-localized response; unfortunately the next step, namely testing them on
more complicated tasks, is often overlooked.

Lu et al. (2003) introduce a “region growing method” for the problem;
these methods are popular in the image segmentation literature and hold
some advantages for fMRI data as well, since they exploit the idea that true
activation tends to occur in clustered regions. In contrast with clustering
techniques, however, the number of clusters does not need to be known in
advance; rather this is one output of the algorithm.

The method described by Lu et al. (2003) has two steps: region growing
and region selection. In the first step, region growing, each voxel acts as a
“seed” voxel around which a region is grown. Thus, there are initially as
many regions, or clusters, as there are voxels, and obviously any particular
voxel may belong to more than one region. Voxels that neighbor the seed are
added to its region according to a homogeneity criterion, which in this case is
taken to be the ordinary Pearson correlation between the voxel time series and
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the average time course of the voxels already in that region; if the correlation
is above a specified threshold, the new voxel is added to the region, otherwise
it isn’t. For each seed this process is continued until no more voxels can be
added to its defined region.

In the region selection step the grown regions are pared down successively.
First, the largest region (in terms of number of voxels) is located; regions that
are derived from the voxels in this region are eliminated. Then, one continues
finding the current largest region and discarding regions that are grown from
its constituent voxels until all remaining regions are above a specified threshold
in size.

Finally, some postprocessing of the regions left after the second step may
be necessary, for example, merging overlapping regions into one bigger cluster.
The authors also suggest removing regions that do not seem to be task-related,
either due to anatomical considerations or lack of correlation with the experi-
mental paradigm, but this seems rather dubious in that such an approach will
bias the resultant statistical map.

6.3.2 Direct Modeling

The second approach to full-blown spatiotemporal fitting of fMRI data is
direct modeling. Here, both temporal and spatial components are modeled
explicitly. Due to the computational complexity of this approach, it has only
become feasible relatively recently. It still is not the most prevalent analysis
even though from a statistical perspective it is, perhaps, the most complete
and correct. Within the rubric of “direct models” are included models based
on regression and wavelets, and Bayesian models, among others. In short, a
wide variety of analyses are available.

Purdon et al. (2001) attack the analysis of fMRI data as a spatiotemporal
system identification problem, seeking the relationship between the input (a
sensory or cognitive stimulus) and the observed output (the measured fMRI
response to that stimulus). Their model is “physiologically inspired” (p. 912),
based on BOLD fMRI studies of animals and on simulations, and it comprises
three components: the hemodynamic response, the noise (which itself is made
up of physiologic noise and scanner noise), and a drift. Model-fitting uses local
spatial regularization on the parameters so that estimation is not done on a
voxel by voxel basis.

The hemodynamic response part of the model follows known or assumed
patterns of change in the blood oxygenation following stimulus presentation,
as described in previous chapters. In particular, Purdon et al. (2001) allow for
the characteristic delay, peak, decline, and undershoot of the BOLD response.

The noise part of the model has two components: white for the scanner
noise and AR(1) for the low-frequency physiological noise. Equivalently, as the
authors note, this formulation of the noise can be thought of as ARMA(1,1).
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The drift part of the model is linear in time, and accounts for slow drifts in
the external field, as well as small amounts of motion that were not corrected
in any motion correction step.

At each voxel there are noise parameters and signal parameters that need
to be estimated. Denote the entire vector of parameters at voxel v by θv. The
authors set an overall fitting criterion that is separable, i.e.,

J(θ) =
V∑

v=1

Jv(θv);

the criterion at a given voxel v is a spatially locally weighted log-likelihood,

Jv(θv) =
∑

q∈Nv

Kh
v−qLq(θv).

Here, Lq(θv) is the Gaussian log-likelihood based on the time series at voxel
q, K is a kernel function, h controls the size of the neighborhood on which the
kernel function is concentrated, Nv is the neighborhood of voxel v. Finally,
estimation proceeds iteratively, alternating between the noise and signal pa-
rameters. Thus these are separately spatially regularized.

An interesting feature of the approach is that, since noise and signal pa-
rameters are regularized separately, one can choose to focus on subspaces of
the whole parameter space and hence improve estimation of those subspaces
by borrowing strength from neighbors. It might be computationally expensive,
and time-consuming, to regularize fully on all parameters, and the iterative
procedure affords the user some measure of control. In the article Purdon et al.
(2001) concentrate on regularizing the AR(1) noise parameters, for instance,
but they note that their algorithm can be arbitrarily partitioned, “allowing
different parameter subsets to be regularized with different degrees of spatial
smoothing” (p. 915).

Compared to the commonly used approach of spatially smoothing the
fMRI data prior to statistical analysis, the authors show on both simulated
and real data that local regularization is able to better estimate both the
signal and the noise. In particular, estimates of noise are smoother under the
analysis of Purdon and colleagues; at the same time, estimates of the signal
aren’t blurred, as they tend to be with presmoothing. Note that the estimation
of the noise is improved relative to either presmoothing or no regularization
due to the regularization on the noise parameters. In later work (Long et al.,
2004) the spatial component is incorporated via wavelets.

A similar idea of local spatial regularization is proposed by Katanoda et al.
(2002). These authors extend the basic linear model described in the previous
chapter to involve a multiple regression. In this multiple regression the model
for each voxel involves the time series of its neighbors, as well as its own time
series. The model is built as follows. Assume for simplicity a simple “on-off”
block design experimental paradigm. Recall the simple linear model for the
response for voxel v at time t:
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yv,t = βvx(t) + εv,t,

where x(t) is 0 or 1 depending on whether the task was “off” or “on” at time
t. Now, consider instead the multiple regression for voxel v that includes also
neighbors v1, . . . , vp: ⎛

⎜⎝
yv,t

...
yvp,t

⎞
⎟⎠ = βv

⎛
⎜⎝

x(t)
...

x(t)

⎞
⎟⎠ +

⎛
⎜⎝

εv,t

...
εvp,t

⎞
⎟⎠

Note that this model includes as dependent variables the time courses for
the voxel v of interest, and also of its neighbors. Since each voxel has different
neighbors, each model is different and the estimated β coefficients are different
as well. Hence the spatial aspect of the data is (at least partially) accounted
for by using local neighborhood structure to fit the coefficient at each voxel. In
addition, Katanoda et al. posit a separable model for the spatial and temporal
correlation, namely Cov(εva,t, εvb,s) = σaσbρ1(a, b)ρ2(t − s), where σ2

a is the
variance of εva,t (and likewise σ2

b ); ρ1(a, b) is the correlation between εva,t and
εvb,t; and ρ2(t − s) is the temporal autocorrelation of ε at lag t − s. In this
formulation, the temporal and spatial components are separately modeled,
which is a considerable simplification.

Estimation of model parameters is carried out in the frequency domain,
i.e., the data are subjected to a Fourier transform and then analyzed. This
manipulation, as we have seen previously, can simplify some of the calcula-
tions required for estimating the various parameters. Generalized least squares
(GLS), taking account of neighboring structure, is used for obtaining the pa-
rameter estimates.

The authors compare their “neighborhood GLS” to ordinary least squares
(OLS) and GLS carried out on a voxel by voxel basis, as well as a “neighbor-
hood OLS” method. On simulated data both neighborhood methods perform
similarly. When areas of activation are large, the neighborhood algorithms
tend to have better power than the voxel-wise methods. The pattern of activa-
tion (spherical or cubic in the simulations) is also, more surprisingly, relevant
to the performance of the different algorithms. Interestingly, the neighborhood
methods, which in theory should be borrowing strength across voxels, do not
always have better power than voxel-wise methods. And incorporating the
spatial and temporal autocorrelations via the GLS analysis does not always
lead to improvement over OLS.

On real data from a simple finger tapping experiment, the neighborhood
GLS model does seem to give better results than the single voxel methods, in
the sense of discovering larger, more coherent areas of activation, and fewer
scattered, small areas (which are often assumed by the scientists to be spuri-
ous). It also seems to outperform the neighborhood OLS, from the opposite
direction, namely finding tighter, more focused regions of activation. By con-
trast, the regions detected by the neighborhood OLS approach appear quite
diffuse (see, for example, their Figure 4).



128 6 Temporal, Spatial, and Spatiotemporal Models

Continuing in the least squares vein, McIntosh et al. (2004) propose the
use of partial least squares specifically for event-related fMRI experiments,
although their method is apparently suitable for block designs as well, with
some modifications. Partial least squares is a multivariate extension of multi-
ple linear regression. “Partial” refers to computing the best least squares fit
but only to part of a covariance (correlation) matrix. The “part” in question
is specified to be related to the experimental design or to subject behavior,
depending on the goals of the study and the analysis.

Consider a multiple linear regression in general form, Y = Xβ + ε. Par-
tial least squares is related to other multivariate extensions of this basic
model, such as discriminant analysis, principal components analysis (PCA),
and canonical correlation analysis (CCA), as follows. All search for so-called
prediction functions, functions of the dependent or independent variables that
reveal multivariate structures in the data. Whereas most of these methods
extract factors from the Y T Y or XT X matrices only, and not from the cross-
product matrices, with partial least squares the factors are extracted from
Y T XXT Y , i.e., they involve simultaneously the dependent and independent
variables. This allows for many more factors than when either set of variables
is taken on its own.

The implementation of the spatiotemporal partial least squares (ST-PLS)
advocated by McIntosh and colleagues for fMRI has two core elements: (i)
rearranging the data array into a matrix to reflect the multivariate nature of
the PLS approach; (ii) singular value decomposition on the rearranged matrix,
or some transformation of it, to extract the factors. For simplicity, suppose
that there is a single subject, an experiment with c conditions and k trials
per condition. In the data-rearranging step, a matrix is created that has a
row for each of the c × k combinations of condition and trial. The columns
are the measured signal at each voxel and each time point. Starting with the
first voxel, the first t columns make up the time series for that voxel; the next
t columns are the time series for the second voxel; and so on. Hence with v
voxels and t time points, there are v × t columns in the matrix. This data
matrix contains both spatial and temporal information in the columns and
information about the experimental design in the rows.

Two versions of ST-PLS are presented. In the first the data matrix is mean-
centered and factors are extracted by applying a singular value decomposition
to this new matrix. In the second the original data matrix is transformed by
a set of orthonormal contrasts representing effects of interest. The covariance
matrix of these contrasts is then calculated and the singular value decompo-
sition is applied to that matrix instead.

Taking the first approach as exemplar (there is in practice little differ-
ence between the two versions of ST-PLS), the result of the singular value
decomposition is a set of factors, sometimes called “latent variables.” These
factors relate brain activity and experimental design due to the layout of the
rearranged data matrix. Two sets of weights identify (i) groups of voxels that
are most related to the effects expressed by the different factors, and (ii) the
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degree to which different tasks are related to patterns of BOLD response.
In addition, the analysis yields “brain scores” and “design scores” for each
factor. Brain scores indicate the strength with which different subjects (in a
multiple subject study) express the patterns detected by each factor, while
design scores do the same for tasks.

One of the difficulties of factor analysis, principal component analysis,
and the like, is the choice of number of factors to retain. This is also, of
course, an issue for the ST-PLS algorithm. The authors address the problem
via permutation testing, to decide on the number of significant factors, and
bootstrap to evaluate the significance of weights on the significant factors.

McIntosh et al. (2004) validate their approach on a multiple subject study
involving two types of task, one of visual processing and one of auditory pro-
cessing. They conduct two types of ST-PLS: task analysis to detect spatiotem-
poral patterns in the stimulus response; and behavioral analysis to examine
the spatiotemporal structure of brain behavior and reaction time on the tasks.
From the first analysis they find two significant factors. The first is attributed
to the main effect of task versus rest; the temporal pattern indicates peak ac-
tivity 6-10 seconds after stimulus presentation, consistent with what has been
found in many other studies; the spatial pattern reveals those areas of the
brain that are most similar to the expressed temporal trend of the hemody-
namic response. The second significant factor yields the interaction between
type of stimulus (auditory or visual) and condition (task versus baseline).
Again, it is possible to interpret this factor in terms of the spatiotemporal
patterns in the data.

From the second analysis, the behavioral ST-PLS, only one significant
factor is discovered; the authors interpret this factor as the overall correlation
of reaction time with brain activation in both tasks. They find clear temporal
fluctuations in the correlation pattern. Also coherent areas of slower or faster
reaction time, as reflected in the factor weights, can be seen.

The potential of multivariate methods, in particular principal and inde-
pendent components analyses, which have been heavily used with fMRI data,
will be explored more fully in Chapter 7.

Lastly, we turn to Bayesian spatiotemporal inference. Gössl et al. (2001)
introduce a series of hierarchical Bayesian models that can account for spatial
and temporal effects individually or simultaneously. As their base likelihoods
they consider either the usual linear model for the response as a function
of baseline drift and the stimulus convolved with the hemodynamic response
function, or a state space model (Gössl et al., 2000). We’ll consider the latter
model as an example of their general approach.

The state space model is written as

yit = ait + zitbit + εit

for voxel i at time t, where ait is the baseline trend, zit is the stimulus con-
volved with the HRF, bit is the activation effect; εit ∼ N(0, σ2

i ) and
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ait = 2ait−1 − ait−2 + ζit, ζit ∼ N(0, σ2
ζi

)

bit = 2bit−1 − bit−2 + ηit, ηit ∼ N(0, σ2
ηi

).

Once the models have been specified, it remains to set the prior distri-
butions. Of course there are many ways to do this and still incorporate spa-
tiotemporal structure. For relative ease of computation, Gössl et al. recom-
mend imposing spatial or spatiotemporal Markov random field priors for the
parameters at the second stage of the hierarchical model. Take for instance
the stimulus effect parameters bit and let bi be the vector attributed to voxel
i. Under the assumptions outlined above, it is possible to write

π(bi|λi) ∝ exp
(
−1

2
λibT

i Qbi

)
,

where λi is the precision. The Q matrix imposes smoothness on the bi vector
over time. These are both derived from the second-order random walk model
for bit. The result from this step of the analysis is coefficients at voxel i that
vary slowly and smoothly over time.

For the spatiotemporal model, Gössl et al. (2001) introduce both additive
and nonadditive approaches. In the additive model, the effect bit is written as

bit = αi + βit,

where αi is constant over time but not location, and βit varies over both time
and location. The prior for αi is a spatial smoothness prior of the form

π(αi|λ) ∝ exp

⎧⎨
⎩−1

2
λ

∑
i∼j

(αi − αj)2

⎫⎬
⎭ ,

where i ∼ j denotes the neighbors of voxel i. For βit the temporal random
walk prior π(bi|λi) defined above is used, with suitable modifications.

As noted by Gössl et al., this still models on an individual voxel basis, hence
it does not take full advantage of the strengths of the Bayesian framework.
These are more fully realized in the nonadditive model, in which the spatial
and temporal random field priors are combined via the Kronecker product of
their respective precision matrices. This yields

π(b|λ) ∝ exp

⎧⎨
⎩−1

2
λ

∑
i∼j

∑
t

(Δ2bit − Δ2bjt)2

⎫⎬
⎭ ;

here Δ2bit is the second differences of bit, or Δ2bit = bit − 2bit−1 + bit−2. This
prior allows both spatial and temporal smoothness to be enforced, so that
there are not too sudden transitions in either dimension. Further fine tuning
of the priors is suggested by Gössl and colleagues to enhance smoothness
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in space or time over that which occurs naturally through the random field
specification.

Finally, whatever prior model is used, hyperpriors on the parameters λi

and σ2
i are set; as is common practice, these are taken to be conjugate but rela-

tively diffuse, while still ensuring propriety of the resultant posterior distribu-
tions. The use of conjugate priors means that the full conditional distributions
have simple forms, and Gibbs sampling will give the required posteriors.

Penny et al. (2005) formulate a similar Bayesian model to that of Gössl
et al. (2001). At voxel i they assume a general linear model with autoregressive
errors, i.e.,

yi = Xwi + εi

and
εi = Eiai + zi.

In these models, the regression coefficients are given by wi and ai, X is a
matrix of covariates, Ei is a matrix of lags, zi is normal with mean zero and
precision λi.

The prior for the regression coefficients w is normal with mean zero and
(spatial) precision that is unique for each covariate; furthermore, the prior
factors over the different regressors, so that covariates may have differing
amounts of smoothness. The priors on the spatial precisions and the λs also
factor, with each component being a diffuse gamma. Note that this last factor-
ization therefore implicitly assumes that the variances of neighboring voxels
are independent. While this is most likely an unrealistic assumption, it un-
derlies the standard general linear model analysis, as we have seen and as the
authors also point out. Lastly, a factorized (again over voxels) diffuse normal
prior is placed on the autoregressive parameters.

The major difference between the work of Penny et al. and the work of
Gössl et al. is in the form of the priors. The random field priors proposed by
the latter result in relatively computationally intensive sampling procedures,
even though the straightforward Gibbs sampler can be used. By contrast, the
factorized priors of Penny et al. allow for the development of approximate
posterior distributions via the variational Bayes theory, from which the rel-
evant parameters can be more efficiently sampled. The drawback of course
is that we are then sampling from an approximation to the posterior, rather
than the true posterior itself. It is not clear how important this is in practice;
results reported by Penny et al. on simulated and real data indicate that their
procedure is effective at picking out true (in the case of simulated data) or
reasonable (in the case of the real data) areas of activation.

There is still much scope for the application of Bayesian methods in fMRI.
We return to this topic in Chapter 9.
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6.4 Software Issues

Unlike the basic linear model analysis described in the previous chapter, which
is featured prominently in all of the major software packages (see Appendix
A), temporal, spatial, and spatiotemporal models are still mostly the output
of particular laboratories and researchers. As such, they have largely not yet
been codified into any of the standard analysis packages. Instead, individual
researchers tend to write their own code, usually in MATLAB (Mathworks
Inc.) or C, to implement the algorithms they have developed. Due to the
collaborative nature of fMRI work, this code is often freely available from the
authors. Readers are encouraged to seek out the programs that are of interest
to them directly from the investigators.
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Multivariate Approaches

In this chapter we look at fMRI data from the multivariate perspectives of
component and correlation analyses. The former include principal components
analysis (PCA) and independent components analysis (ICA); the latter in-
clude canonical correlation analysis and maximum correlation analysis. ICA
is by far the most popular of these methods. All of the procedures of this
chapter share the feature that they are “data driven” rather than “model” or
“hypothesis driven.” The implication is that the researcher does not need to
specify a priori all the possible effects and behaviors of interest; indeed, the
components that are produced as a result of the various decompositions will
often lend themselves to unexpected interpretations. For instance, in addition
to components that are task-related, with associated time courses that follow
the experimental paradigm (and which could be predicted in advance), the
methods can discover components that correspond to transient effects, and
even some that don’t relate specifically to the task, but are consistently found
across subjects or cluster spatially, indicating their “veracity” as elements of
interest (see, for instance, Calhoun et al. 2001a). This seems to be especially
true of ICA, and is perhaps one explanation for its popularity (Hu et al.,
2005).

In contrast to the methods we explored in the previous chapters, which
were essentially voxel-based even when spatial structure was taken into ac-
count, the techniques of the current chapter aim to find or characterize the
multivariate nature of the data, seeking out subspaces or high dimensional
directions of common behavior. These directions may be in space, time or
both, depending on how the analysis is performed. For example, a multivari-
ate analysis might uncover regions of the brain (clusters of voxels) with similar
temporal behavior; such temporal behavior may be related to the experimen-
tal task, but could also arise from noise or other artifacts. This is, evidently,
another way of describing the spatial and temporal dependencies in the brain.
As such, these multivariate methods are a potentially useful alternative to the
models of the previous chapter.

N.A. Lazar, The Statistical Analysis of Functional MRI Data,
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7.1 Description of Methods

7.1.1 Principal Components Analysis

Principal components analysis (PCA) is a classical multivariate statistical
tool, developed primarily by Hotelling (1933). The goal of PCA is to find lin-
ear combinations of the original variables that parsimoniously describe the de-
pendence structure of the data. Given random vectors X1,X2, . . . ,Xp drawn
from a multivariate distribution with mean the vector μ and variance the
matrix Σ of rank r ≤ p, the usual estimator of Σ is the sample covariance
matrix S. The first principal component is the linear combination aT

1 X with
maximal sample variance aT

1 Sa1 among all coefficient vectors with length 1
(i.e., such that aT

1 a1 = 1). It is easy to show, using a Lagrange multiplier
argument, that a1 is the eigenvector corresponding to the largest eigenvalue
of S (Morrison, 1978). Furthermore, that largest eigenvalue is the variance
aT

1 Sa1 of the first principal component.
The second principal component is the linear combination aT

2 X with max-
imal variance subject to the constraints that aT

2 a2 = 1 and aT
1 a2 = 0, that is,

the coefficient vector has length 1 and is orthogonal to the coefficient vector of
the first principal component. Similar to the results for the first component, it
can be shown that the second component is the eigenvector corresponding to
the second largest eigenvalue of S, and that the sample variance of the second
component is that eigenvalue. Subsequent principal components are obtained
in this way, such that the coefficients of each successive linear combination
are orthogonal with all the others.

A consequence of the derivation is that the first principal component ex-
plains that largest proportion of the variance in the sample, the second prin-
cipal component explains a smaller proportion than the first but the largest
among all remaining components, and so forth. That is, each successive com-
ponent explains a smaller portion of the total sample variance. Another, geo-
metric, interpretation of the principal components is also commonly exploited.
Under this interpretation we think of the first principal component as being
the principal axis of the p-dimensional scatter cloud of the data (the “longest”
direction of the cloud, that is, the one with most variability); this defines
a rotation of the data from their original orientation. The second principal
component is chosen from the remaining p − 1 minor axes to be orthogonal
to this principal axis, and it is the longest of the remaining axes in the p− 1-
dimensional subspace. Consecutive components are chosen in similar fashion,
as orthogonal axes to those already defined. Once all have been picked the
data have been rotated into a new set of coordinates, given by the values
in the appropriate eigenvectors (see Morrison 1978, for more detail). Figure
7.1 shows 500 points drawn from a bivariate normal distribution, with vector
mean zero, variance 1 in each direction and correlation 0.7. The solid line
is the first principal axis, capturing the direction of greatest variability. The
dashed line is the second principal axis, which is orthogonal to the first and
captures the direction of greatest remaining variability.
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Fig. 7.1. 500 points drawn at random from bivariate normal with correlation 0.7.
The solid line shows the first principal axis and the dashed line shows the second.

7.1.2 Independent Components Analysis

Independent components analysis (ICA) is a modern multivariate technique
that has become very popular in recent years. The prototypical ICA prob-
lem is the so-called “cocktail party problem” (Hyvärinen and Oja, 2000), in
which one wishes to take the general hubbub of a party (for instance, the
various people who are speaking all at once) and identify its independent
sources (that is, separate out the speech of each of the guests from that of
the others), using microphones placed around the room. More generally, ICA
looks for linear combinations of the original data, assumed to be non-normal,
that are maximally independent. In this, it is similar to PCA, but with a
number of important differences. First, PCA is based on the covariance of the
data, whereas ICA uses also information available in higher moments (hence
it doesn’t assume normality, a typical PCA assumption). Second, an explicit
goal of PCA is dimension reduction; this is not an aim of ICA and indeed the
dimension may be increased if the number of “sources” identified is greater
than the dimension of the original data.

A common approach for ICA is the so-called “noise-free model” for the
random vector X. Here, one wishes to estimate the model

X = As,
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where s contains independent latent variables and A is a mixing matrix that
defines how the latent variables combine to make up the observed vector X.
Note that only X is observed; both s and A need to be estimated. Often, the
number of mixtures (the observed X values) is the same as the number of
independent components (although this isn’t necessary), so that A is a square
matrix. In the cocktail party example, this would mean that the number of
microphones in the room and the number of guests at the party are the same.

On the face of it, this problem doesn’t admit a solution, since neither the
latent variables s nor the mixing weights in A are observed or known. But,
in fact, the noise-free model is identifiable if (i) the independent components
are non-normal (one of the components may be normal but the rest may not);
(ii) the dimension of the data X is at least as large as the number of indepen-
dent components; (iii) the matrix A is of full column rank. Additionally, for
uniqueness of results it is usually assumed that X and s are centered and that
s has variance 1. In contrast to PCA the resultant independent components
are not naturally ordered, although it is possible to order them (Hyvärinen
and Oja, 2000).

The assumption of non-normality is key, as shown in Hyvärinen and Oja
(2000). For, if the independent components are normally distributed and the
mixing matrix is orthogonal, then the joint density of the components of X is
a symmetric (spherical) normal and A is not uniquely identifiable. Estimation
of A (or its inverse) is based on maximizing the non-normality of the inde-
pendent components that would result; different measures of non-normality
(for instance, kurtosis) can be used toward this goal. In general terms, an
ICA algorithm proceeds as follows: We are looking for a linear combination
of the Xi, call it y = wTX. If w were a row of A−1, then y would actually
be one of the independent components. Defining z = AT w it is easy to show
that y = zT s, so that y can also be thought of as a linear combination of
the latent variables. By the Central Limit Theorem, y is “more normal” than
any of the si (as a linear combination of independent random variables); y is
“least normal” therefore when it exactly equals one of the si and z has only
one nonzero element. The goal becomes to find the vector w that maximizes
the non-normality of y = wT X, and this in turn gives the first independent
component. Other components are found by maximizing the non-normality in
successive (uncorrelated) subspaces.

Application of ICA involves two main preprocessing steps: data reduction
and whitening. PCA is often used for the data reduction step in such a way
that the majority of the variability in the data is captured; the rationale is
that even if the number of required components is large, it will still be smaller
than either the number of time points or the number of voxels in a typical
fMRI study. PCA is also used to prewhiten the data. Whitening transforms
the search space to be orthogonal. A variety of algorithms, which constrain
the results to be uncorrelated and take advantage of the higher order features
of the data, are then available to actually perform the ICA.
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7.1.3 Canonical Correlation Analysis

Canonical correlation analysis, or CCA (Hotelling, 1936), is a way of quan-
tifying the correlation between sets of variables. More specifically, suppose
we have two random vectors, X and Y. With canonical correlation analy-
sis, we seek the linear combinations aT

1 X and bT
1 Y so that the correlation

cor(aT
1 X,bT

1 Y) is maximized. The random vectors aT
1 X and bT

1 Y are the
first pair of canonical variables. We then seek linear combinations aT

2 X, bT
2 Y

maximizing the correlation subject to the constraint that they be uncorre-
lated with the first pair of canonical variables; this gives the second pair of
canonical variables. The procedure is iterated, with each successive pair of
canonical variables being uncorrelated with the previous pairs, up to k pairs,
where k is the dimension of the smaller of X and Y.

Let the covariance matrix of X and Y be

Σ =
[

ΣXX ΣXY

ΣY X ΣY Y

]

in the obvious notation for the submatrices. Then it can be shown that the
coefficients of the jth pair are given by

(ΣXY Σ−1
Y Y ΣY X − cjΣXX)aj = 0

and
(ΣY XΣ−1

XXΣXY − cjΣY Y )bj = 0,

where cj is the jth largest root (the eigenvalue) of the equations |ΣXY Σ−1
Y Y ΣY X

− λΣXX | = 0 or |ΣY XΣ−1
XXΣXY − λΣY Y | = 0.

If the eigenvalues are unique, then clearly the coefficient vectors aj and bj

will be as well, and the corresponding linear combinations will be uncorrelated
with other canonical variates. The method of canonical correlation analysis is
a useful exploratory tool and has been used as such in the behavioral and social
sciences, historically. An advantage of the approach is that the transformation
of the original variables into the new scale reveals the correlation structure
between the sets; this would not always be apparent if the simple pairwise
correlations between components of the two sets were calculated instead.

7.2 Multivariate Analyses

For the multivariate analyses described above, an important and relevant fea-
ture of fMRI data is that they can be described in two computationally and
mathematically equivalent ways: considering the time course of each voxel,
or considering the level of activation in the brain at each time point (Ander-
sen et al., 1999). The distinction revolves around whether the multivariate
analysis focuses on the common temporal or spatial structure in the data.
The number of voxels in either a two-dimensional slice or a three-dimensional
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volume is much larger than the number of time points at which data are
collected and observed, and it is the latter that determines the amount of in-
dependent information available for detecting common structures in the data.
Hence, considerable computational savings can be achieved by calculating, for
instance, principal components on the temporal scale and then transforming
to the spatial (Andersen et al., 1999). This computational duality between
the spatial and the temporal domains implies that the large number of voxels
does not present as much of a challenge to inference as it does for standard
univariate methods. In the typical univariate approach calculations are car-
ried out on a voxel by voxel basis (or, perhaps, over conglomerations of voxels,
but still the number of locations is large); in the multivariate approach, cal-
culations can be carried out using time, rather than space, as the variable of
interest, and hence the number of voxels is not as important in determining
the computational burden.

7.2.1 Principal Components

Much of the research on the use of PCA for functional neuroimaging has been
done in the setting of positron emission tomography (PET), rather than fMRI.
See, for example, Friston et al. (1993),in which principal components analysis
is performed on the voxel time series, thereby elucidating spatial regions with
common patterns of temporal behavior. This simple use of PCA sheds light
on functional connectivities in the data (Friston et al., 2000b), a question of
much interest in current fMRI research. Since most research on PCA for fMRI
data has been rather specialized, the rest of this section is devoted to those
topics: nonlinear PCA, functional PCA, kernel PCA, and the choice of the
number of components.

Nonlinear PCA

In this section we consider a nonlinear version of the most basic principal com-
ponents analysis, introduced in the fMRI context by Friston and colleagues
(Friston et al., 1999b; Friston et al., 2000b).

The motivation for the extension to the usual PCA proposed by Friston
and colleagues was the observation that the conventional analysis imposes
biologically implausible constraints on the solutions. The first constraint is
that the decomposition be into linearly separable components; the second
constraint is that the components be orthogonal and account successively for
the greatest amount of remaining variance. Friston et al. (2000b)note that the
first constraint, of linearity, is the more severe, since it precludes the possibility
of interactions among brain systems. By contrast, cognitive neuroscientists
broadly believe that brain systems do interact with each other, and in quite
complex ways at that. Hence the desirability of a decomposition that allows
for interactions and other more complex relationships among the components.
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In essence, nonlinear PCA takes the idea of finding the linear combination
through the data that explains the most unexplained variability, while being
orthogonal to already-detected directions, and replaces it with a general curve;
that is, instead of looking for a linear combination of the original variables,
one seeks a general function such that the average distance of points from the
curve is minimized. Friston and colleagues consider only a particularly simple
extension, namely, the linearization up to second order – via Taylor expansion
– of the nonlinear function.

Let f(·) denote the general function. Assume there is a small number J of
“input sources” contributing to the observed data, and let there be in total n
voxels. The observed data at voxel i over time is taken to be a function of the
sources, yi(t) = fi[s(t)]. Taylor expand this up to second order around some
“expected value” s̄(t), to obtain

yi(t) ≈ fi(s̄) +
∑

j

∂fi

∂uj
uj +

∑
j,k

∂2fi

∂uj∂uk
ujuk,

where u(t) = s(t)− s̄(t). This system is solved in a neural network framework,
casting it as a general linear model.

The “first order modes” correspond to the typical components found by a
PCA. The “second order modes” allow for nonadditive relationships between
components. Friston et al. (1999b) demonstrate the method on a task that
combines motion and color processing. They find two main principal compo-
nents, one that is mostly an effect of motion (accentuated by the presence of
color cues) and one that is mostly an effect of color processing. These com-
ponents in turn are localized to the appropriate anatomical regions for the
respective types of processing. The second order mode shows where the two
types of processing interact.

Functional PCA

Viviani et al. (2005) take the perspective that fMRI data can be considered
as functional data in the sense of Ramsay and Silverman (1997), that is, the
voxel time courses are taken as functions that evolve over time, such that
each time course is a continuous function, an integral whole, which is sampled
at discrete TR intervals. These are usually estimated by fitting with a set
of basis functions. Many standard statistical techniques, such as analysis of
variance, have functional counterparts; for analysis of variance, as an example,
the data are curves observed at each level of the covariates, rather than single
observations. Likewise with functional PCA, the analysis is carried out in
a way that treats the data at each voxel as a continuous function of time,
and the eigenanalysis is performed on these functions. Viviani et al. (2005)
examine the usefulness of functional PCA as an exploratory tool.

Functional PCA therefore requires two steps:
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1. Smoothing (estimating) the time series. Here, each voxel time series is
estimated or smoothed via a series of basis functions. As in all such ap-
plications, there are decisions to be made regarding the choice of basis
function (Fourier, spline, B-spline, and so on) and value of the smoothing
parameter. Advantages and disadvantages of some of these choices specif-
ically for functional PCA of fMRI data are discussed in Viviani et al.
(2005). Regarding smoothing, if no smoothing is applied, there will be
little or no difference between ordinary PCA and functional PCA, since
the time series functions will be simple interpolation. On the other hand,
oversmoothing will eliminate the signals of interest. Hence it is crucial to
pick the amount of smoothing carefully. The choice of basis function, as
usual, is less critical.

2. PCA on the estimated functions. Once the voxel time series have been
estimated or smoothed, PCA is then applied on the resultant functions.
More specifically, each voxel time series is expressed as a linear combi-
nation of a small number of basis functions; the PCA decomposition is
carried out in the usual way on these linear combinations.

The authors demonstrate the capabilities of functional PCA on three case
studies, one of working memory (block design), one of episodic memory (block
design) and one of finger tapping (event-related design). In all three cases the
first component of the functional PCA captures important features of the data
related to the experimental design, that is, the signals of interest. Ordinary
PCA picks these up in the second component, if at all; the first component
mostly seems to reflect noise, or at any rate is not easily interpretable. Most
of the variance is explained by one component in the functional approach; the
cutoff for the number of components in the ordinary PCA is much less clear.
Finally, the patterns of activation revealed by functional PCA, in all three
cases, more closely match the results of previous examinations of the tasks in
question, giving them more scientific plausibility. These case studies highlight
the potential of the functional data analysis approach for fMRI more broadly;
this is an area that is still in need of development.

Kernel PCA

As noted by Thirion and Faugeras (2003) ordinary PCA assumes that the
underlying structures of interest are uncorrelated both spatially and tempo-
rally. This assumption is not likely to hold for fMRI data. Hence they propose
a modification of the basic PCA procedure, in which as a first step each
voxel time series is analyzed univariately (for instance, using the general lin-
ear model), resulting in a temporal characterization of that voxel’s behavior.
Next, the voxel-based models are subjected to a multivariate analysis, and
specifically in this case “kernel PCA.” The goal of the kernel PCA is to pre-
serve the temporal patterns extracted in the first modeling step, something
that is not attainable with ordinary PCA because of the assumption that
components are uncorrelated.
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Let the original data be represented by n voxel time courses, each of length
T , denoted X1,X2, . . . ,Xn (so that each Xi is in fact a vector). After model-
fitting at each voxel univariately, let the resultant data be Z1,Z2, . . . ,Zn.
Based on either of these representations it is trivial to calculate the covari-
ance or correlation matrix. For a given pair of time series, the correlation will
be 1 if they are positively linearly correlated, it will be −1 if they are nega-
tively linearly correlated, and it will be zero if they are not correlated. As the
correlation approaches zero from either above or below, the strength of the
linear relationship between the two time series decreases.

The kernel PCA approach adopted by Thirion and Faugeras introduces
nonlinearity by penalizing values of the correlation coefficient that are far
from 1. If Cov(Xi,Xj) is the ordinary covariance matrix and Cor(Xi,Xj) is
the correlation matrix, then the modified covariance matrix, call it Cov∗, is
obtained as Cov∗(Xi,Xj) = Cov(Xi,Xj) ∗ φ(Cor(Xi,Xj)). Different forms
of the function φ(·) result in different types of penalty. A scaling factor de-
termines after what level of decorrelation will two time courses be considered
uncorrelated. Note that in this configuration, the values 1 and −1 need not
be treated symmetrically, as they usually are in discussions of correlation. For
instance, in their implementation the authors wish to treat strong negative
correlations as indicating time courses with distinct patterns of behavior; that
is, if the correlation between Xi and Xj is close to −1, those time courses ex-
hibit opposite reactions to the stimulus and so should be treated as orthogonal.
Principal components analysis is carried out on the new covariance matrix,
Cov∗.

With the choices of using a prior temporal model or not, and of performing
ordinary PCA or kernel PCA on the time courses, the authors have four
methods to compare: No temporal modeling and ordinary PCA corresponds
to the standard PCA of fMRI data; temporal modeling with kernel PCA
corresponds to the complete analysis path advocated by Thirion and Faugeras.
Various challenges arise in applying any of the four methods: the number of
components needs to be determined; for the kernel methods the scaling factor
needs to be picked or estimated; the methods are computationally intensive,
especially the kernel approaches, unless some data screening is first carried
out, retaining only voxels that have the most interesting signal (in which case
the question remains of how many voxels to keep for the subsequent analysis).
Based on simulations, furthermore, it appears that the kernel method may
perform poorly if the temporal modeling step is left out. This is an interesting
finding that probably deserves more attention.

The complete analysis path of Thirion and Faugeras (2003) bears some
similarity to statistical techniques such as “factor analysis regression.” There,
a dimension reduction is effected via factor analysis, which results in the
creation of new variables. These are then used as the explanatory variables in
a regression model. We will see this idea again in the next section, under the
rubric of “ICA regression.” For both of these the decomposition comes first,
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followed by the linear model; in the approach of Thirion and Faugeras, the
steps are reversed – first the linear model, and then the decomposition.

Picking the Number of Principal Components

Deciding the appropriate number of components in a PCA is a difficult prob-
lem in any setting and is still a question of active research in the general
statisics literature. Hansen et al. (1999) discuss the issue in the context of
fMRI. When PCA is being used as a dimension reduction technique, one
would wish to have as much variance as possible contained in as few com-
ponents as possible. Likewise for exploratory purposes it might be desirable
to reduce the data to a small number of principal components, as this will
generally be easier to interpret. However, for other uses of PCA it is not clear
that having a small number of components is appropriate. Anecdotal evidence
indicates that there are situations where one might wish to retain a relatively
large number of components, as even in the lower components there is often
important signal.

In the general statistical literature there have been many proposals for
choosing the number of principal components. Some of these are ad hoc, for
example, examining a scree plot of the proportion of variance explained by
each successive component and deciding where it “levels off”(Jolliffe, 2002).
Others have more of a theoretical basis, for instance, using the bootstrap to
understand the PC distribution. As with smoothing for functional PCA, here
too there is an essential tension between fidelity to the data (leading to less
smoothing or retaining more principal components) and generalizability or
interpretability (leading to more smoothing or retaining fewer components).
Hansen et al. (1999) take generalizability as the criterion to help guide the
choice of the number of principal components to retain.

Given data x from a model parameterized by θ (possibly vector-valued),
training and generalization errors are defined as (Hansen et al., 1999)

E(θ) =
1
N

N∑
j=1

ε(xj |θ),

and
G(θ) =

∫
d(x)p(x)ε(x|θ),

respectively, where N is the size of the training set, ε(x|θ) is the cost or error
function associated with a particular procedure, and p(x) is the probability
density of x. Minimizing the generalization error G(x) yields the desired pro-
cedure, in this instance, the number of principal components. Note that G(x)
is not observable and hence it must be estimated.

The authors propose two ways of estimating G(x), one which they term
“analytical” and the other “empirical.” The analytical estimate is based on
the relationship
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Ĝ = E +
dim(θ)

N
,

which holds for large training sets (Hansen and Larsen, 1996). The training
error is estimated from the training set in a particular split of the data. The
empirical estimate is obtained directly from the testing set in a particular split.
See Hansen et al. (1999) for explicit formulae using the negative log-likelihood
as the cost function and normality assumptions on the data.

Based on two case studies, a finger tapping experiment and a flashing
checkerboard study, the authors find that the analytical estimate is too gen-
erous, suggesting retention of a relatively large number of components com-
pared to the empirical method. Of the components that are retained by the
empirical estimator, some reflect signal that is related to the experimental
paradigm, as would be expected.

7.2.2 Independent Components

As noted above, ICA is perhaps the most popular of the multivariate methods
currently being used for the analysis of fMRI data. It was introduced in the
late 1990s by McKeown et al. (1998), and both temporal and spatial versions
have appeared in the literature (see, for example Biswal and Ulmer, 1999,
for temporal ICA; Calhoun et al., 2001b, for spatial and temporal ICAs;
Calhoun et al., 2003b, for temporal ICA; McKeown et al., 1998, for spatial
ICA), although the latter is by far the dominant mode of analysis (Calhoun
et al., 2003a).

Suppose there are n voxels, each with a time course of length T . For
spatial ICA, X is a T × n matrix, strung into a vector, and the signals are
the n voxels; hence there are T instances of each signal. The decomposition
described above, X = As, now indicates that A is a T × T mixing matrix,
and s is a T × n matrix that contains the T independent components. The
rows of s are spatially independent images, and the columns of A are spatially
independent time courses associated with those images. Recall that both of
these are estimated by the ICA algorithm.

For the temporal ICA, everything “flips.” Hence, X is now n × T , the
transpose of the matrix used for the spatial version. A is the n × n mixing
matrix and s is the n × T matrix of n independent components. Temporally
independent time courses are in the rows of s and their associated temporally
independent images are in the columns of A. Since n, the number of voxels, is
much larger than T , the length of the fMRI time courses, the temporal ICA
is much more computationally intensive.

Although in many circumstances the two approaches will yield similar re-
sults, in terms of the extracted time courses and spatial maps of activation,
Calhoun et al. (2001b) show that it is possible for them to diverge. They
designed four visual paradigms, each consisting of two spatiotemporal com-
ponents. The two components were either spatially dependent, temporally
dependent, spatially and temporally dependent, or spatially and temporally
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uncorrelated. On both simulated and real fMRI data, the ICA algorithms per-
form as would be expected a priori; namely, with strong spatial dependence
in the signal, spatial ICA cannot recover the original sources. Likewise, with
strong temporal dependence, temporal ICA fails. The algorithms succeed at
separating out the sources when there is no dependence in the appropriate
dimension. Thus, where the underlying signal has dependence of one type or
another (or both), the respective ICAs will both differ from each other and
fail to give correct results (when compared to a linear model analysis, for
example).

While this result is not at all surprising, it is a useful demonstration of both
the strengths and weaknesses of the ICA approach. In particular, the choice
of whether to perform the analysis in the spatial or temporal domain should
rely on prior knowledge about the tasks performed in a given experiment.
For instance, if the areas activated by the tasks are assumed to be spatially
independent, spatial ICA should be suitable and informative. It shouldn’t be
used if the activated areas are assumed to overlap (as one example of possible
induced dependence). Of course, researchers won’t always have even this level
of knowledge when performing an initial statistical analysis, a rather severe
limitation of ICA.

Validation of ICA Results

Independent component analysis really refers to a system of different algo-
rithms with the same goal of separating the signal into its independent sources.
A disturbing side effect of this fact is that different algorithms could poten-
tially yield different components, and hence differing interpretations of the
same data. Furthermore, since most of the algorithms have a stochastic ele-
ment, different runs of the same algorithm will give different results (Himberg
et al., 2004).

Two recent studies have addressed the question of validating ICA for neu-
roimaging studies. In the first, Esposito et al. (2002)examine two of the popular
algorithms used for spatial ICA – Infomax and fixed-point based. Both algo-
rithms attempt to minimize the mutual information in the components of s,
i.e., to make those components as independent as possible. They accomplish
this in different ways. With Infomax, the output entropy of a neural network
with as many outputs as the number of components is adaptively maximized.
The outputs are nonlinear functions which must be suited to the particular
application at hand; for fMRI data, sigmoidal functions have been found to
be effective (McKeown et al., 1998).

The fixed-point algorithm uses the concept of normalized differential en-
tropy, or negentropy. One interpretation of negentropy is as a measure of
non-normality. Hence maximizing the negentropy finds directions of maximal
non-normality in the data, one of the objectives of ICA. Negentropy can be
used to estimate the independent components one at a time, or simultaneously.
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The algorithm is non-adaptive, using most or all of the available observations
at each updating step of the unmixing matrix.

The authors find, using simulated data and real data from simple motor
and visual tasks, that both algorithms perform well in the sense of identifying
components that reflect true (for simulated data) or expected (for real data)
patterns. However, neither algorithm dominates the other; depending on what
criterion is used for comparison, either may give “better” results.

Another form of validation has to do with statistical reproducibility and
consistency of results. As noted above, there is a stochastic element of the
ICA algorithms, which implies that different runs on the same data will give
different results. Himberg et al. (2004) use computational and graphical tech-
niques to help evaluate the “algorithmic and statistical reliability” of ICA. By
“algorithmic reliability” they mean the consistency with which an algorithm
converges to the same solution; this they assess by starting each run with
different initial values. By “statistical reliability” they mean an assessment of
the significance of the output and this they accomplish via bootstrap.

Visualization plays a role in the assessment since the results from each run
are clustered and the clusters plotted using a software called Icasso developed
by the authors for this purpose (see Himberg et al. 2004, for details). Projec-
tion methods allow each estimated component from each run to be represented
as a point; a reliably estimated component should produce a cluster of points
over the repeated runs. The assumption is that a reliable cluster corresponds
to a real component. A real component should therefore be represented by
a small, tight cluster that is relatively isolated from other clusters. On the
other hand, points that do not correspond to real independent components
should be scattered throughout the space, and do not belong to any particular
cluster. Himberg et al. (2004) introduce a cluster quality index to help users
of Icasso locate potentially interesting clusters for further examination. This
is defined as the difference between the average intracluster similarities and
the average intercluster similarities. As a cluster becomes more diffuse (less
compact and isolated), the value of the index decreases; an “ideal cluster” is
a single point, and it has an index value of 1.

The authors give two examples of the Icasso software methods, one a mag-
netoencephalogram (MEG) of the whole brain, where the measurements of the
brain were disrupted by outside signals such as eye blinks or other muscular
activity; the other an fMRI study of finger tapping with the dominant hand.
In the MEG study the most reliable components detected by the analysis
correspond to sources such as eye movement, biting, and so forth – artifacts
that are known to disturb the signal of interest. In the fMRI study the most
reliable components correspond to the task, to head motion, and to vascular
activity. Finally, both analyses find reliable components that don’t have any
immediate interpretation, but appear (based on the associated time courses
or localization in the brain) to be real (and not just consistently estimated),
and hence worthy of further investigation.
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ICA Regression

As noted by McKeown (2000) and Hu et al. (2005), and described briefly in the
introduction to this chapter, an advantage of ICA is that it can automatically
find components that correspond to effects of interest, without these needing
to be prespecified. This is useful in particular for experimental studies or
clinical groups of patients, where the scientist does not know what to expect
in advance, and hence creating the appropriate covariates for the general linear
model approach is difficult, if not impossible (Hu et al., 2005). The advantage
is not without a price, however, namely that ICA does not have a framework
within which to assess the significance of results. We have already seen one
way of handling this issue, i.e., validation studies such as that of Himberg
et al. (2004). In this section we consider a different idea – combining ICA
with the standard fMRI general linear model.

McKeown (2000) exploits the structural similarity between the simple gen-
eral linear model X = Gβ + ε, where G is the design matrix and ε are in-
dependent, identically distributed normal errors, and the ICA specification
X = As, where A is the mixing matrix and s are the (latent) independent
components, to write X = Gβ. Formally, this is equivalent to the linear model
without the error term, but the interpretation and solution differ. Now, in-
stead of being fixed by the experimenter, G corresponds to the mixing matrix
A, and hence is found by the ICA algorithm. Furthermore, equating β with
s, β is not estimated but instead is obtained from s = A−1X.

The ICA model as just described derives from the noise-free ICA, imply-
ing that there is no residual error. Thus, framing the model in this way does
not, in fact, allow for the assessment of statistical significance. To get around
this problem, McKeown considers two possibilities. The first is to simply dis-
card some of the independent components as predictors and treat them as
random noise. McKeown observes that small components behave “more nor-
mally” and so this approach might make sense. However, if the eliminated
components contain important non-normal features, then the model would be
misspecified. The second idea he proposes is therefore to keep all of the inde-
pendent components, but to group them into two classes. One class consists of
components that are task-related; these are combined into a single regressor,
thereby releasing degrees of freedom for error. The other class contains the
other components, which are the data-driven confounds.

A critical question in this analysis then becomes how many task-related
components need to be included in the composite regressor? At one extreme,
all of the components except for one are confounds; this is ordinary noise-free
ICA. At the other extreme, all of the components are combined into the task-
related effect; this is the standard general linear model. In between are the
various models that have some task-related effects and some confounds. The
question of the number of components in the combined regressor is therefore
one of model selection. McKeown suggests choosing the optimal number of
task-related components via a modified version of the PRESS criterion, which
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is a leave-one-out predictive summary statistic. Clearly, though, other model
selection criteria could be employed for this task.

Some of these same issues are explored in Hu et al. (2005), who note a
number of potential weaknesses of McKeown’s hybrid ICA. First, the ICA
regression in McKeown (2000) is built around spatial ICA. Hu and colleagues
suggest that temporal ICA is more natural, since with tICA the components
are time courses, and this fits easily into the general linear model framework.
Next, they point out that hybrid ICA models task-related activity with one
static image and one task-related time course (since the task-related compo-
nents are combined into one in order to create degrees of freedom), which may
miss subtleties in the response. Finally, the linear model used in McKeown’s
hybrid ICA is the simplest one, ignoring spatial and temporal dependencies
in the response.

As an alternative, Hu et al. propose what they call a “unified approach,”
built on the same general principles as hybrid ICA but differing in some
of the details of implementation. Their idea, as in McKeown (2000), is to
partition the components into signal and noise subspaces and thereby create
regressors for the general linear model. At each voxel a statistical test based on
fitting the linear model with the particular signal components as explanatory
variables determines whether or not the signal is significantly expressed. Note
that the assumption of ICA is that the components are all “true causes” of
the observed signal and hence globally they are all expressed in the data. In
any given region, by contrast, they may or may not be expressed. One would
expect, for example, that task-related components would express mostly, or
exclusively, in task-related regions.

However, instead of spatial ICA, as in McKeown (2000), they use tempo-
ral ICA. The order of the model is chosen by BIC rather than by the PRESS
criterion, and the regressors are those components that have the highest cor-
relation with the experimental paradigm (rather than combining the chosen
components optimally into a single regressor). Finally, since the inputs to the
model are time courses, the result of the general linear model analysis is to
identify spatial regions in which the independent components are expressed.

Hu et al. (2005) compare their unified approach to a standard general
linear model analysis. On simulated data they find that under most conditions
that they examine the ICA linear model is more powerful than the classical
model. For small type I error, the two approaches are comparable, with the
usual general linear model performing better (smaller false positive rate) when
the levels increase. Analysis of real data confirms the higher sensitivity of
the unified approach. Unfortunately, the other interesting comparison, with
McKeown’s hybrid ICA, is not performed.

Group Analysis with ICA

Moving beyond single-subject analysis, Calhoun et al. (2001a) propose a
model for group inferences using ICA. As we have seen already in Section 5.5,
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combining individual subject results into a group map presents some inter-
esting statistical challenges. The computational aspect is often problematic,
due to the large amounts of data that are involved in creating a group map.
Hence an important part of the Calhoun et al. procedure is data reduction.
In fact, there are two data reduction steps. The first is part of the preprocess-
ing performed on the individual subjects; here, any necessary cleaning of the
data (such as motion correction) is carried out, the data are translated into
Talairach coordinates, and an initial dimension reduction via PCA is used to
decrease the number of time points in the images, while preserving as much
of the variability as possible.

The reduced individual data sets are then concatenated into a n× (k × l)
matrix, where n is the number of voxels in each image, k is the number of
subjects, and l is the number of time points after PCA reduction in the tem-
poral dimension. l is the same for all subjects. Next, the second dimension
reduction is carried out on the combined data matrix; a model selection crite-
rion such as the Akaike information criterion (AIC) or the Bayes information
criterion (BIC) is used to determine the number of sources (components) in
the grouped data. Again using PCA the aggregated data are reduced down
to this new dimension. ICA is performed on the reduced concatenated data.
Finally, time courses and spatial maps at the group and individual levels are
reconstructed, and the spatial maps are thresholded.

Calhoun et al. show that the mixing matrix in their group ICA is “approx-
imately separable across subjects” (p. 143). The implication of this separabil-
ity is that the time courses for different subjects are distinct. That is, there
is no assumption of a common underlying temporal pattern, hence different
subjects can have different activation time courses. However, this approach
does impose a common space of observations (hence the need to transform
the images into Talairach coordinates prior to analysis). In subsequent work
(Calhoun et al., 2003b), the authors extend their methodology to allow for
different temporal delays (latencies of activation onset) in each source.

Apparently independently of Calhoun and colleagues, and at approxi-
mately the same time, Svensén et al. (2002) also proposed an extension of
ICA from individual to group settings. In contrast to Calhoun et al., Svensén
et al. perform a spatial ICA, concatenating the data from individual subjects
into an n × (l1 + l2 + · · · + lk) matrix, where n is the number of time points
collected for each subject over the course of the experiment and li is the num-
ber of voxels for subject i after masking out the air. Masking out air voxels
is an effective way of reducing the dimension of the data, since for many sub-
jects as much as 50% of an image is made up of voxels outside of the brain.
Furthermore, as noted by Svensén et al., with their approach there is no need
to transform the images into Talairach coordinates.

The analysis of Svensén and colleagues results in a single set of time courses
that is common to the group as a whole (that is, the mixing matrix is com-
mon to all subjects, rather than being separable), and a set of individual
spatial maps. This is the “flip” of the output of the Calhoun et al. analysis.
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There are several consequences of this. First, there is the implicit underlying
assumption that common time courses for the entire group are appropriate.
Svensén et al. justify this by noting that subjects who are combined follow the
same experimental paradigm, and so it makes sense to have common temporal
components. On the other hand, this means that components with different
temporal behavior across subjects will not be extracted. Some of this will be
noise, but it is possible that real, subtle, differences among subjects will be
suppressed. By contrast, since the spatial patterns are individual, the analysis
can pick out components in this dimension that are characteristic of only a
subset of the subjects, or even of single subjects.

A more formal comparison of these two approaches is given by Schmithorst
and Holland (2004). They use the term “subject-wise concatenation” to
describe the approach of Calhoun and colleagues, “row-wise concatenation
(across time courses)” to describe the method of Svensén et al., and they
consider in addition across-subject averaging prior to performing ICA, as a
computationally simple alternative to the other two. The three group methods
are tested on a series of simulated data, with the number of “subjects” ex-
pressing each of 20 sources varying from 1 to 20, and one simulation with 100
“subjects.” The first simulation includes a set of runs with only the 20 com-
mon sources, and a set of runs with these plus individual sources representing
differences among subjects (subjects having components that are unique to
them, due for example to head motion); the second simulation is run on the
set of components with the unique sources, and common components being
present in from 1 to 20 subjects out of the 100.

For the simulations without any individual components, all three methods
are found to perform more or less comparably with respect to estimation of
the time course. Subject-wise concatenation offers a distinct advantage over
the other two methods with respect to the accuracy with which sources are
estimated, when the number of subjects in which a component appears is
small (fewer than 10). When the unique sources are added in, row-wise con-
catenation suffers a serious degradation in accuracy in terms of estimating
both the sources (even those present in all subjects) and the associated time
course. The subject-wise concatenation method is not strongly affected by the
presence of unique components, performing almost as well as in the first set of
simulation runs. Across-subject averaging followed by ICA falls somewhere in
between the other two. When the number of subjects expressing a component
is small, and there are in addition components that are uniquely expressed,
this method performs poorly, at the level of row-wise concatenation. However,
for large number of subjects expressing the common sources, across-subject
averaging is comparable to subject-wise concatenation. Likewise, when (i) the
total number of subjects is large (100), (ii) there are unique components,
and (iii) a common component is expressed in 1 to 20 of the 100 of the sub-
jects, subject-wise concatenation remains quite robust, unless the number of
subjects with the source is very small. Averaging across subjects has more
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difficulty with this particular scenario, unless the common component is
present in a relatively large number of subjects.

Based on their simulation results, Schmithorst and Holland (2004) con-
clude that row-wise concatenation is not a feasible method for group inference,
since it is both computationally expensive and its performance is dominated
by that of the other two procedures. Between those two, subject-wise con-
catenation is the more accurate, but it is also more computationally intense.
Furthermore, for large studies, across-subject averaging followed by ICA per-
forms almost as well if the common sources are present in a sufficiently signif-
icant fraction of the subjects, and it is less demanding of computing time and
resources. It thus appears to represent a viable alternative, although there are
clearly many more parameters that could be manipulated to test the accuracy
of all three group analysis techniques.

Esposito et al. (2005) approach the problem via similarity measures to
study the commonalities among the independent components calculated for
each of the subjects; components can then be clustered using any of a number
of standard techniques.

In more detail, Esposito et al. (2005) first carry out ICA on each subject
individually. They define a flexible and general similarity measure between
components i and j as

SM(i, j) = λRs(i, j) + (1 − λ)Rt(i, j),

where Rs(i, j) is the spatial correlation coefficient between components si and
sj , Rt(i, j) is the temporal correlation between the time courses associated
with si and sj , and λ is a weight between 0 and 1, which allows the researcher
to control the emphasis that is placed on spatial or temporal similarity. The
matrix of similarity values is transformed into a matrix of dissimilarities, or
distances, via DM(i, j) =

√
1 − SM(i, j); this is the input for the clustering

algorithm.
In the initial implementation of their method, Esposito et al. use a “super-

vised hierarchical clustering algorithm, linking the components to each other
only when differently labeled (i.e., belonging to different subjects)” (p. 197).
A new cluster is created when the within-cluster distances are below the cur-
rent value of a threshold, and the cluster is “representative” of a group of
subjects according to a minimum group size specified by the user (this is done
instead of fixing the number of clusters). Researchers thus have a fair amount
of discretion in guiding the algorithm, via an interactive visualization tool de-
veloped by the authors, the SOM toolbox. A final step that is incorporated into
the graphical representation is a projection of the similarity/dissimilarity ma-
trix onto a two-dimensional space using methods related to multidimensional
scaling.

The main features of the “self-organizing ICA” are tested on two real
studies of simple visual stimulation (flashing checkerboards presented either
to the entire visual field at once, or alternately to the left and right sides,
in both instances interspersed with periods of rest) to six healthy subjects.
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For both experiments the self-organizing ICA detects components related to
the paradigm – a single, simple boxcar time course component in the first
study, and two time course components in the second study, corresponding to
stimulus presentations to the left and right visual field. Other components,
representing transient effects, noise, and so forth, are also found, as is typical
with ICA.

Group inference using ICA is an active area of research. In particular,
extensions to multigroup settings for the comparison of several groups of sub-
jects are still needed; see Beckmann and Smith (2005) for a first step in this
direction.

Modifications to the Basic ICA Approaches

Given that ICA is becoming such a popular tool in the analysis of fMRI data, it
should come as no surprise that researchers continue to propose modifications
to the basic spatial and temporal methods, in order to better take advantage
of the characteristics of neuroimages. In this section we survey a few of these
modifications, but readers who are interested in ICA as an analysis path
should consult the current literature for new ideas.

Stone et al. (2002) introduce two new ICA methods, spatiotemporal ICA
(or stICA), and skew-ICA. Their motivation for the first modification is the
observation that carrying out the ICA in the spatial dimension or the tempo-
ral dimension, as is standard practice, results in physically impossible forms
for the “dual” dimension, in order to achieve independence in the extracted
signals. For instance, in temporal ICA we seek the set of independent time
courses and the corresponding set of images (the “dual” in the terminology
of Stone et al.) is unconstrained. The lack of constraints on the set of im-
ages means that tICA might yield components that are meaningless in terms
of the underlying science. Likewise for spatial ICA. Hence they propose the
stICA procedure to maximize independence over space and time simultane-
ously, without necessarily achieving independence in either dimension indi-
vidually. Such an approach acknowledges that there may be small amounts of
spatial or temporal dependence in the sources.

The second modification, skew-ICA, is motivated by the observation that
“source images are likely to consist of spatially localized features surrounded
by an homogeneous background” (p. 408). The corresponding density function
that describes such sources is a skewed distribution. Typical analyses use a
source distribution with heavy tails (high kurtosis); the authors surmise that
long tails might be more realistic. The goal of skew-ICA is to allow for this
possibility.

In all, three new variants are proposed: stICA, skew-sICA, and skew-
stICA. As before, let the number of voxels in an image be n and the length of
the time course be T . Furthermore, suppose that the dimension of the decom-
position is k, a number much smaller than either n or T . All three methods
work with this reduced-dimension data set, call it X̃ in the notation of the
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authors, and it is the result of applying a preliminary PCA to the original
data, X . That is, X ≈ X̃ = UDV T , and they write the right hand side of the
last equality as Ũ Ṽ T .

For the basic stICA procedure the underlying assumption is that each
eigenimage in Ũ is a linear combination of k spatially independent images
S, and each eigentime-course in Ṽ is a linear combination of k temporally
independent sequences T . There are then two unmixing matrices, call them
WS and WT , such that S = ŨWS , T = Ṽ WT , which can be found by simul-
taneously maximizing a function of the spatial and temporal entropy of the
signals. Stone and colleagues suggest a function of the form

hST = αhS + (1 − α)hT ;

this allows the preferential weighting of either the spatial or the temporal
component.

Skew-sICA replaces the high-kurtosis probability distribution function
characteristic of ICA with a skewed distribution for the spatial sources. Stone
et al. (2002) use an exponential decay model. The rest of the ICA procedure is
as for the standard sICA. Finally, skew-stICA combines the two above ideas,
maximizing the weighted entropy function, with hS replaced by the skewed
distribution model.

On both real and simulated data, stICA alone is shown to suffer from
some of the same defects as other analyses considered by the authors (general
linear model, PCA, sICA, tICA), namely, it extracts time courses that are
inconsistent with the known experimental paradigm and does not correctly
identify the spatial sources. Skew-sICA is somewhat better at extracting the
time courses and much improved at identifying the spatial components. Skew-
stICA further improves over skew-sICA, both spatially and temporally.

Most analyses of fMRI data consider the magnitude information primarily
or exclusively. However, there may also be activation-relevant information in
the phase images (Calhoun et al., 2002). To account for this, Calhoun et al.
(2002) suggest ICA in the complex domain, with three variants: allowing the
time courses to be complex-valued and the images to be real, allowing the
images to be complex-valued and the time courses real, and allowing both the
time courses and the images to be complex-valued.

Notably, they continue to use standard (real-valued) algorithms, rather
than algorithms already existing in the ICA literature for handling complex
data. They achieve this by a suitable organization of the data. For example,
when both time courses and images are complex, they write the fundamental
noise-free ICA model X = As as[

XRe XIm

XIm −XRe

]
=

[
ARe

AIm

]
[sResIm]

The real and imaginary parts are separated into distinct (scalar-valued) sub-
matrices, and ordinary ICA algorithms can be applied. When only one dimen-
sion (spatial or temporal) is complex, the model is similarly rewritten.
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Compared to a magnitude-only ICA, Calhoun et al. show that ICA in the
complex domain, in any of the three variants, detects 10% to 25% more con-
tiguous voxels above a set significance threshold. The time courses extracted
from the magnitude-only ICA are smoother than those from the complex
domain analyses, apparently due to the fact that voxels with task-relevant
phase changes will be detected as active, even if the changes in magnitude
are weak. The fully complex variant poses some challenges of interpretability,
since phase information will get mixed among the images and time courses,
therefore the authors suggest an analysis with one dimension being complex,
to capture the phase information, and the other real.

7.2.3 Canonical Correlation

An early use of CCA for fMRI data is found in Friman et al. (2001), for
block design experiments. As X they take a local neighborhood of nine voxels:
the voxel of interest and its eight adjacent voxels in the same slice. Thus the
dimension of X is 9. As Y they take a sinusoidal basis function set comprising
the six elements (sin(ωt), cos(ωt), sin(3ωt), cos(3ωt), sin(5ωt), cos(5ωt)), where
t = 1, . . . , T with T the length of the time series at each voxel and ω =
2π/m, where m is the length of a block, assumed to be the same for rest
and task conditions. Their specific choice of Y is the Fourier series expansion
(truncated) of the square wave describing a block design. The dimension of Y
is therefore 6 and there are six canonical correlations that can be calculated;
the authors concentrate on the largest only. This largest canonical correlation
is assigned to the center voxel in each neighborhood, yielding a statistical map
of correlation values.

To complete the analysis it then remains to determine which voxels are
active. For the particular choice of X and Y given here, the largest canonical
correlation measures how well the voxel time series in each 3×3 neighborhood
matches with the idealized square wave of the block design. If the correlation
is large, that neighborhood is similar to the experimental paradigm, and the
central voxel (to which the largest canonical correlation is assigned) would
be declared active. This is one criterion, namely to conclude that a voxel is
active if the largest canonical correlation is higher than some threshold. Note
however that incorrect inferences could be reached as a result of the conven-
tion to assign the highest correlation to the center voxel of each neighborhood
(Nandy and Cordes, 2004a). The problem is exacerbated by the fact that
assessing statistical significance of the largest canonical correlation is diffi-
cult (the distribution is not tractable even under assumptions of normality
and independence, both of which are unrealistic for fMRI data; see also the
discussion in Nandy and Cordes 2003a).

Friman and colleagues therefore define two additional criteria for deter-
mining activation status of voxels, using the coefficients from the CCA for
the sinusoidal basis set. These are shape and response delay. Shape captures
the notion that active voxels in a block design experiment should exhibit a
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repeating “on-off” pattern that is roughly synchronized with the timing of
the task and rest blocks. Voxels that don’t show this behavior are probably
not activating in response to the stimulus presentation. Response delay is the
maximum allowed delay between presentation of the stimulus and the start
of the hemodynamic response. As we have seen in previous chapters, there is
typically a small delay, on the order of 2-6 seconds, between the stimulus and
the onset of the measured response in the brain. So some delay is expected in
an active voxel, but it should not be too long. Voxels that do not meet the
criteria for shape and delay are eliminated from future consideration.

When compared to standard univariate analyses (t or F tests) on a sin-
gle subject performing a simple finger motion task, the results of the CCA
appear smoother and have fewer isolated active voxels (which most likely are
spurious). Furthermore, in this one example the canonical correlation analy-
sis reveals subtleties that are not apparent in the other maps. On the other
hand, the authors discuss the possibility that the detected regions are too
large, an artifact of assigning the largest canonical correlation value to the
center voxel in a neighborhood; this problem, they theorize, will be especially
serious near blood vessels. Nandy and Cordes (2004a) propose an adaptive
assignment scheme instead, and show via simulation and a real data example
that indeed the convention adopted by Friman et al. can result in regions that
are artificially large.

In other work, Nandy and Cordes (2003a) address the intractability of the
distribution of the maximum canonical correlation. First, they suggest using
a test statistic that is a function of all the canonical correlations, instead of
just the largest. The likelihood ratio test for all of the canonical correlations
being zero (hence that X and Y are independent, under an assumption of
normality) is Wilks’ Lambda:

Λ =
k∏

i=1

(1 − r2
i ),

where r1 ≥ r2 ≥ · · · ≥ rk are the canonical correlations calculated on the
sample. In fact one typically works with a function of Λ that is asympotically
χ2 in distribution. Using just the maximum, one can achieve only a bound on
the significance level by setting r2, . . . , rk to zero. Nandy and Cordes use the
same test statistic as do Friman et al., without setting the smaller canonical
correlations to be zero.

Their second modification is to perform a nonparametric analysis, noting
that most of the assumptions underlying the parametric analysis of Wilks’
Lambda, in particular the assumption of temporal independence of observa-
tions within a voxel, are violated. To carry out the nonparametric analysis,
they collect a so-called “null” data set, in which the subject is resting in the
scanner with eyes shut (awake, but not performing any task). The test statis-
tic is calculated at each voxel in the null data set, resulting in an empirical
distribution against which the statistics calculated for the task data can be
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calibrated. Convergence of the empirical distribution function to the true dis-
tribution relies on independent samples, and the voxels in the brain are not
spatially independent; it is necessary therefore to select subsets of the voxels
from the null data that may reasonably be assumed to be independent, for
instance, voxels that are far away from each other.

With these modifications to the simple CCA, Nandy and Cordes show that,
especially for studies with weak activation (for instance, tasks that do not
elicit a robust response), the multivariate methods outperform the standard
univariate analyses. However, the differences are not as great when the elicited
response is strong and consistent and may be in favor of either approach.
This is not surprising, since one would expect that any reasonable statistical
analysis should be able to detect clear, strong activation patterns. Also, not
unexpectedly, they find that the distribution of the test statistic in Friman
et al. (2001) differs greatly from theirs; neither distribution coincides with the
asymptotic distribution, although that of Nandy and Cordes is much closer.

Maximum Correlation Analysis

Friman et al. (2002a) develop a technique related to CCA, which they call
maximum correlation modeling, or MCM. Around each voxel, consider the
eight neighbors (so that each voxel is at the center of its own 3 × 3 neigh-
borhood). Out of those nine voxels, one creates five new time series: x1(t) is
the time course of the center voxel; x2(t) is the average of the voxels to the
immediate left and right of the center; x3(t) is the average of the voxels in
the upper left and lower right corners; x4(t) is the average of the voxels above
and below the center; and x5(t) is the average of the voxels in the upper right
and lower left corners. These five new time courses are combined linearly via
weights w1, w2, w3, w4, w5 which are non-negative, sum to 1, and such that w1

(the weight applied to the center voxel) is larger than the others. Finally, the
correlation of this spatially smoothed time course with the convolution of the
stimulus trail (block design) and the difference of two gamma model for the
HRF, is calculated. One seeks the values of the weights and the parameters
of the model such that the correlation is maximized.

Recall from the discussion in Section 5.3.1 that the difference of two gamma
model has several parameters; to make the estimation problem computation-
ally feasible, Friman et al. fix some of the parameters and impose constraints
on others, so that the optimization is performed only over the weights wi and
two of the parameters in the difference of gammas model, namely the delay in
the hemodynamic response and the size of the undershoot (poststimulus dip).
The parameter estimates that result from solving the optimization problem
are interpreted as yielding the “optimal” spatial filter (via the weights that
are assigned to the center voxel and its neighbors) and hemodynamic response
model (via the delay and undershoot of the HRF).

Friman et al. (2002b) also propose an exploratory use of CCA to sepa-
rately detect temporal and spatial directions of maximal autocorrelation. The
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motivation for this approach is the twofold observation that (1) in the time
domain, “interesting” (that is, potentially active) voxels should exhibit au-
tocorrelation, whereas inactive voxels are more likely to be white noise and
(2) in the spatial domain, active voxels should appear in clusters whereas sin-
gleton active voxels are more likely to be spurious. Hence for the temporal
analysis, X in the CCA is taken as a time course and Y is taken as that same
time course shifted by a lag of 1; for the spatial analysis, X is taken as a voxel
and Y is taken as the sum of its four immediate adjacent neighbors (to the
left, to the right, above, and below). Compared to both spatial and temporal
versions of PCA and ICA, the CCA method is computationally efficient and
seems to find directions of high “interestingness.” Interpreting the components
that are revealed by the analysis can be challenging, a well-known problem
of multivariate methods such as PCA or Factor Analysis. In spite of this, in
the example Friman and colleagues present they are able to interpret the first
two or three temporal components and likewise with the spatial, relating them
directly to aspects of the experimental design in the first case (e.g., the boxcar
function of the block design experiment) and to brain structure in the second
(e.g., areas involved in the experimental task). Later components do not have
such obvious meaning attached to them.

7.3 Software Issues

Since the methods discussed in this chapter are relatively new to neuroimag-
ing, they are not fully integrated into any of the major software packages.
Many researchers, particularly those developing modifications on the stan-
dard approaches, also write their own code, which is usually available on
their websites for free download. Much of this code is written in MATLAB,
R/Splus or Fortran, and hence should be relatively accessible. Readers who
are interested in specific techniques are urged to explore the appropriate sites
for additional information. Links are not included here as the web addresses
are prone to change without notice.
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Basis Function Approaches

The methods examined in this chapter have in common that they model the
response of interest via some set of basis functions. The most popular approach
by far is to use wavelets (Chui, 1992; Daubechies, 1992; Vidakovic, 1999).
Wavelets have found a variety of applications in the fMRI literature and these
are surveyed here together. Other basis functions, such as sets informed by
anatomical considerations, and typical families such as splines, have also been
explored by fMRI researchers, but in a much more limited capacity. Finally,
polynomial and trigonometric basis functions are sometimes used as additional
predictor variables in the general linear model.

This chapter focuses on wavelets and anatomically informed basis func-
tions. The former are of interest because they have wide applicability to fMRI
data beyond being an extension of the basic linear model; indeed, wavelets
have been used for creating activation maps, as a resampling technique, for
data compression, and for modeling. The latter are of specific interest be-
cause they represent attempts to directly use prior anatomical information,
and hence to derive a set of functions that have intrinsic physiological mean-
ing and interpretation (as opposed to trigonometric or spline functions, for
example).

8.1 Wavelets

The attractiveness of wavelets for the analysis of fMRI data has been per-
suasively argued by Bullmore et al. (2003), who enumerate the following
advantages: wavelets are multiresolutional, i.e., they can model phenomena
at different scales; they are adaptive to nonstationary or local features; the
wavelet transform has a decorrelating (“whitening”) effect and this may be
statistically convenient for modeling purposes; the wavelet transform is useful
for data compression and denoising; the discrete wavelet transform is very fast
computationally, even compared to the fast Fourier transform; the brain has
a fractal nature, and wavelets are an effective way of modeling such processes.

N.A. Lazar, The Statistical Analysis of Functional MRI Data,
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The last point would seem to argue for the use of two- or three-dimensional
wavelet decompositions for the spatial part of the spatiotemporal problem;
however, in practice, wavelets have most often been used in fMRI to model
the temporal structure of the data, i.e., long-range temporal dependence.

Wavelets are a family of orthonormal basis functions obtained by transla-
tion and dilation of a “mother” wavelet ψ with

∫
ψ(t)dt = 0 and a “father”

wavelet or scaling function φ with
∫

φ(t)dt = 1 in the following manner:

ψj,k(t) =
1√
2j

ψ

(
t − 2jk

2j

)

and

φj,k(t) =
1√
2j

φ

(
t − 2jk

2j

)
.

Here, j = 1, 2, . . . , J indexes the scale (dilation) Sj = 2j and k = 1, 2, . . .K
indexes the location (translation). Wavelets are additionally characterized by
their smoothness, or the number R of vanishing moments (of the mother
wavelet). Wavelets come in many forms, or families. Two simple examples of
mother wavelets are the Haar and “Mexican hat,” shown in Figure 8.1.
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Fig. 8.1. Haar (top panel) and Mexican hat (bottom panel) mother wavelets.

The successive translations and dilations of the mother and father wavelets
yield a set of basis functions. At each scale Sj the data are then decomposed
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into “detail coefficients” dj,k and “approximation coefficients” aj,k, which are
orthogonal to each other; they are found by taking the inner product of the
data and the scaled and translated mother and father wavelets respectively.
The detail coefficients summarize variability in the data at the given scale
j, while the approximation coefficients are residuals after the information
at scale j and all finer scales has been removed. The original data can be
reconstructed without loss by adding the approximation at the coarsest scale
J and the details at all scales up to and including J , that is,

X =
J∑

j=1

∑
k

dj,kψj,k +
∑

k

aJ,kφJ,k.

Often, many of the detail coefficients are small and therefore we might
in fact want to set them to zero for modeling purposes as their contribution
is minimal. In this manner wavelets encourage a sparse representation of the
data. Since they are localized in both time and frequency, wavelets can model
abrupt changes in the signal (for instance, local spikes) even with a small
number of coefficients. Wavelet thresholding has been extensively studied by
Donoho and Johnstone (1994).

Extending wavelet analysis from one dimension to two, or more, is straight-
forward (Ruttimann et al., 1998) by the use of tensor product basis functions.
This involves applying the one-dimensional composition separately to each
direction of the multidimensional data. It is therefore easy in principle to
perform a wavelet analysis for fMRI data in space, time, or both.

The set of detail coefficients has other uses in wavelet analysis as well. For
instance, the correlation between coefficients at different or the same scales
can be shown to decay exponentially if the number R of vanishing moments
satisfies R > 2H+1, where 0 < H < 1 is the Hurst parameter, a measure of the
long-range dependence in the data. This proves the decorrelating effect of the
wavelet transform. Furthermore, the sample variance of the detail coefficients
at the jth scale can be used to get a simple estimate of H (Park et al., 2007).
See Bullmore et al. (2003) for quick derivations of these two results.

8.1.1 Creating Activation Maps with Wavelets

Analysis of fMRI data with wavelets dates back to the late 1990s (Ruttimann
et al., 1998). In this work Ruttimann et al. (1998) use wavelets to address
the problem of multiple hypothesis testing; Chapter 10 contains an in-depth
discussion of the statistical issues and some of the varied solutions that are
available in the fMRI literature. Here we thus focus on the wavelet aspect of
the application.

The authors start with the (possibly unrealistic) assumption that the noise
in an image is independently, identically distributed (i.i.d.) normal, and hence
the wavelet coefficients of the noise are also i.i.d. normal. Let the common vari-
ance be denoted σ2. The method proceeds in two steps. In the first step each
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level and direction of the (now two-dimensional) wavelet transform undergoes
an overall test of significance using the assumption under the null that

Kj∑
k=1

(
dj,k

σ

)2

∼ χ2Kj ,

with Kj being the number of coefficients at level j of the wavelet decom-
position. If the null hypothesis is not rejected at a given level, that level is
not investigated further. For the levels at which the first null hypothesis is
rejected, in the second step each coefficient is then subjected to an individual
hypothesis test. Finally, an activation map can be constructed by applying
the inverse wavelet transform on the coefficients that survive both levels of
hypothesis testing. The two-step procedure reduces the total number of tests
that needs to be carried out, and the authors control type I error by a Bon-
ferroni correction at each stage. As we will see in Chapter 10, in general the
Bonferroni correction is too conservative for fMRI data, due to the extremely
large number of voxels that must be tested. However, performing the analysis
in the wavelet domain and screening out some coefficients in the first stage of
the Ruttimann et al. approach, mitigates this problem to a certain extent.

A disadvantage of performing the entire analysis in the wavelet domain
is lack of easy interpretability, since the effects that are detected are not in
the original image space (Van De Ville et al., 2004). Hence, Van De Ville et
al. advocate splitting the procedure back into two parts, approximation and
detection, carried out in the two domains, wavelet and spatial, respectively.
They propose what they term an “integrated framework” in which the links
between the two domains are incorporated as constraints to limit the solution
set. As such, there are two threshold values, one for the wavelet domain and
one for the spatial domain; these are chosen to control the overall type I er-
ror rate and to minimize the difference between an unprocessed reconstruction
(that is, reconstruction of the raw wavelet coefficients without any preprocess-
ing) and the thresholded reconstruction. The first step of processing is in the
wavelet domain, where the linear model is applied to the wavelet transformed
data (see Section 8.1.2). The standardized wavelet coefficients are thresholded
according to the value determined for this step and the data reconstructed
back into image space. A wavelet-reconstructed standard error map is also
built for image space, and the second threshold is applied to the standardized
values in image space.

The authors present some initial results on simulated, null, and activa-
tion data, and note that the approach tends to be conservative. Regions of
activation that are detected are somewhat sparser in extent and smaller in
amplitude than regions found by a linear model with some presmoothing. By
considering two different wavelet bases, they also note that the effectiveness of
the method does depend quite crucially on the choice of basis. This question
is left relatively unexplored in the initial work, however. The choice of wavelet
order is also not examined in this paper, but, as we shall see below, this is
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a relevant factor in other wavelet analyses and hence warrants exploration in
this context as well.

8.1.2 Wavelets for Modeling

A more traditional application of wavelets would have them used as part of
the modeling procedure for fMRI data. Several authors have considered this
possibility. As noted by Fadili and Bullmore (2002), among others, there is
experimental evidence that the error structure in fMRI data might contain
long-term dependencies and a model that accounts for this more complicated
behavior will result in improved inference. Here, wavelets are applied to model
the temporal structure of the data, rather than the spatial. Since certain types
of long-term dependence exhibit so-called “self-similar” (or fractal) proper-
ties, and these can be “whitened” by applying a discrete wavelet transform,
wavelets provide a natural basis for characterizing and modeling these pro-
cesses (Fadili and Bullmore, 2002). Fractional Gaussian noise and fractional
ARIMA models are examples of models for long-range dependence that are
amenable to a wavelet representation. Park et al. (2007) have shown that frac-
tional Gaussian noise is a realistic model for long fMRI time series of resting
data, bolstering the relevance of the wavelet modeling approach.

Based on these ideas, Fadili and Bullmore (2002) propose a wavelet-
generalized least squares algorithm. They start with the basic voxel-level linear
regression model

Y = Xβ + ε,

where X , as before, is a matrix of predictors (for example the convolved
hemodynamic response, and relevant covariates) but now ε is assumed to
have a long-term dependence structure such as fractional Gaussian noise. This
model is then shifted to the wavelet domain by taking the discrete wavelet
transform of both sides of the equation, resulting in

Yw = Xwβ + εw.

The advantage of transforming the data into wavelet domain is that the
variance-covariance matrix of the errors is approximately diagonal, which fa-
cilitates inference. A novel feature of the Fadili and Bullmore analysis is that
the parameters of the long-range dependency process (for instance, the Hurst
parameter of fractional Gaussian noise) are estimated simultaneously with
the parameters of the linear model. The procedure they suggest is iterative,
cycling between estimation of the β components and estimation of the pa-
rameter that characterizes the error structure. All estimation is done within
a maximum likelihood framework.

Using simulated data, Fadili and Bullmore show that their wavelet-
generalized least squares estimates possess desirable and theoretically derived
properties such as unbiasedness and asymptotic normality. Compared to or-
dinary least squares, the new method has the advantage of yielding, as part
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of the procedure, an estimate of the long-range dependence parameter. Its
behavior on the simulated data is also better. Compared to generalized least
squares, which requires prior knowledge or specification of the entire variance-
covariance matrix of the errors, the wavelet least squares approach is simpler,
since it makes the assumption that the off-diagonal elements are zero. On the
simulated cases presented by Fadili and Bullmore, this assumption does not
introduce serious bias compared to the GLS estimates. Wavelet-generalized
least squares is more robust than OLS to changes in the value of the long-
range dependence parameter (not surprisingly) and controls the type I error in
hypothesis tests of the regression parameter β at nominal levels, whereas OLS
is led astray by the presence of long-range dependence in the error structure
(again, not surprisingly). An autoregressive model of short-term dependence
is intermediate in performance between OLS and the models that assume
long-range memory behavior.

8.1.3 Wavelet Resampling

Another use of wavelets in fMRI has been for resampling, or wavestrapping
(Bullmore et al., 2001; Breakspear et al., 2004),in order to obtain valid statisti-
cal inferences for activation detection. The wavelet resampling method, which
again exploits the whitening characteristic of the discrete wavelet transform,
was introduced by Bullmore et al. (2001). In fact, their procedure is re-
markably simple. First, one takes the discrete wavelet transform of an fMRI
time series, adjusted to have mean zero. Next, one resamples the coefficients
at each level of detail; since this is done without replacement, one obtains
a permutation of the wavelet coefficients. Finally, one executes the inverse
wavelet transform of the permuted coefficients to get a reconstructed time
course that has the same second-order properties (variances and covariances)
as the original.

Note that one cannot merely permute or resample the components of the
time series, as this will destroy the correlation structure (Friman and Westin,
2005). Hence, one must either carry out the resampling in such a way as
to preserve the structure (for instance, block resampling), or decorrelate the
data first (for instance, model prewhitening or transforming into a domain –
wavelet or Fourier – in which elements become exchangeable).

Bullmore et al. report that, on null and simulated data, this procedure
controls adequately for type I error, although it tends to be somewhat conser-
vative. Looking at activation data acquired in both block and event-related
paradigms, and on magnets of differing field strength (1.5T and 3T), they also
find that the wavelet resampling approach is robust to a variety of imaging
conditions. This is not the case for another resampling method also considered
in the study (permuting the time courses after they have been prewhitened by
autoregressive models of low or moderate order), which is shown to be highly
sensitive to field strength and experimental paradigm.
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Validity of wavestrapping as an inferential tool depends heavily on the lack
of correlation among coefficients at the same level of detail. But, if the original
data are highly correlated and the time courses are not long, application of
the wavelet transform may not sufficiently decorrelate the detail coefficients
(Breakspear et al., 2004). In that case the simple resampling scheme needs to
be modified, for instance, resampling can be done in blocks (this is similar to
modifications of the basic bootstrap that are necessary when handling time
series data). Furthermore, if one wishes to account for spatial structure, as in
fMRI data, one should not necessarily resample each voxel independently, as
done in Bullmore et al. (2001).The question then arises, How best to resample
the coefficients in each direction at each level, independently or together?
These issues are addressed in Breakspear et al. (2004), an extension of the
basic ideas formulated in Bullmore et al. (2001).

Breakspear et al. (2004) build a two-step wavestrapping procedure that
aims to preserve both spatial and temporal second-order structure present in
the original data. In the first step each slice at each point in time is spatially
permuted. The same resampling (permutation) at the same scale is applied to
each slice and time point. At different scales the resampling is independently
performed. This part of the algorithm may involve certain spatial constraints
(for instance, separation of brain voxels from air). In the second step the
time series from each voxel is temporally permuted. Again, at a given scale
the same resampling is applied at each voxel. All resampling is done in the
wavelet domain, so before the first step a two-dimensional decomposition is
carried out, and before the second step, a one-dimensional decomposition.

Although the basic idea behind wavestrapping is relatively easy and
straightforward, as with any resampling scheme “the devil is in the details”
and many technical issues need to be resolved, or at least explored, prior to
implementation of this approach. These include, but are not limited to, the
choice of wavelet family, the order of the wavelet, the number of vanishing mo-
ments to impose, resampling in multiple directions jointly or independently,
dealing with edge effects. Detailed discussions of these points and more can
be found in Bullmore et al. (2001) and especially in Breakspear et al. (2004).
See also Bullmore et al. (2003) for an overview of wavestrapping fMRI data.

As noted above, transforming to the wavelet domain in order to get ex-
changeable elements to resample is not the only way to preserve relevant
structure in the original data. One can also transform into the Fourier do-
main; at each frequency the components are approximately independent and
so the same rationale as for wavestrapping holds. However, Breakspear et al.
(2004) point out that the multiresolution characteristics of the wavelet ba-
sis make it, perhaps, better suited for data such as fMRI, where small local
changes exist alongside larger-scale variations. A more formal, if limited, com-
parison of these two resampling domains is presented by Laird et al. (2004).
The authors look at two variations on Fourier resampling, and three wavelet
resampling schemes. The Fourier methods exactly preserve the temporal and
spatial autocorrelation structure of simulated data; wavelet resampling using
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either the same permutation at each voxel or different permutations at each
voxel does well at preserving the temporal structure, but only the former ef-
fectively preserves spatial structure. A two-dimensional wavelet resampling
scheme does not preserve spatial or temporal structure as effectively as any of
the other methods. When wavelet resampling is used, somewhat larger areas
of activation in a real data set are detected, compared to Fourier resampling.
Finally, based on analysis of sensitivity and specificity of wavelet and Fourier
resampling, Laird et al. (2004) conclude that the former is superior as a
method of statistical inference.

Friman and Westin (2005) compare the bias in the thresholds obtained
by three resampling methods: prewhitening with an autoregressive model and
then resampling, wavelet resampling, and Fourier resampling. These three re-
sampling paradigms are applied to block and event-related designs, and the
resamples carried out on the original or residual (after regressing out the
BOLD response) data. They find that the Fourier method is the most biased
of the three, and the whitening method the least, with wavelet resampling in
between. The bias is worse for block designs than for event-related; wavelet
and Fourier methods are biased upward when applied to the original data (sig-
nificance thresholds are too high) and downward when applied to the residual
data (significance thresholds are too low). Although this would seem to in-
dicate the overall superiority of prewhitening resampling and event-related
designs, we should note that the resampling method is sensitive to the choice
of model; in particular, if the data are prewhitened with an incorrect model,
this will again introduce bias.

These two works are only initial studies of the relative strengths and weak-
nesses of wavestrapping. More research in this area, and a deeper exploration
of wavelet resampling in general, is warranted.

8.1.4 Assessing Wavelet Methods

Some of the technical issues involved in using wavelets for the analysis of fMRI
data have been explored by Desco et al. (2001), who test different families,
orders, and levels on a computer-generated phantom. This phantom allows
them to manipulate characteristics of the data, such as extent and strength
of activation, amount of noise, and effect of presmoothing. Wavelet packets
from the Gabor, Daubechies, Lemarie, and Symlet families are evaluated, and
compared as well to a more traditional t test analysis.

Several comparisons are made. First, the authors consider the ability
of each method to recover the known true activation pattern when various
amounts of noise (ranging from 5% to 20%) are added in. Without presmooth-
ing, the performance of the t test deteriorates severely as more noise is added;
at the highest levels of noise, the recovered image (voxels deemed significantly
active) is made up of random, isolated voxels. The wavelet methods all fare
better, even in the presence of noise and without presmoothing. Presmoothing
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improves the quality of the recovered images in all cases, although high levels
of noise continue to pose difficulties for the standard analysis.

A second comparison involves looking at receiver operating characteris-
tic (ROC) curves, which plot sensitivity (true discoveries) against specificity
(true nondiscoveries) at different levels of significance. Area under the ROC
curve is a standard way of assessing the relative quality of methods. Using
this criterion, all the wavelet methods outperform the t test, no matter the
extent or level of activation, or the amount of noise added to the data. With-
out presmoothing, the differences are more noticeable; presmoothing brings
the various methods into much closer agreement. Indeed, when the data are
presmoothed, the areas under the ROC curves are similar for low and high
amounts of noise (5% versus 20%), regardless of method of analysis.

Looking at specificity, sensitivity, and ROC curves within a family for
different orders of wavelet, wavelets of lower order tend to give better results
than those of higher order. As for the choice of family, the Gabor family
of wavelets is found to be optimal, but this might be due to the shape of
the simulated areas of activation (all circular). Notably, true brain regions
of activity are unlikely to be round, and so this family might not dominate
others on real fMRI data.

Different wavelet methods for testing the hypothesis of activation at each
voxel are compared in Fadili and Bullmore (2004). They look at the problem
as one of shrinkage of the wavelet coefficients and consider three algorithms
for effecting this shrinkage: frequentist shrinkage with control of the false dis-
covery rate (FDR) (Benjamini and Hochberg, 1995); frequentist shrinkage
with recursive testing (Ogden and Parzen, 1996); and Bayesian shrinkage.
Although the three algorithms obviously differ in their details of implemen-
tation, all have the same goal, namely to identify a subset of the wavelet
coefficients that contains the important signal and to threshold out the rest.
The retained coefficients are then used to reconstruct the brain image via the
inverse wavelet transform.

The three shrinkage algorithms are compared along a number of dimen-
sions on simulated and real data; the real data consist of a resting data set
(representing the “null” hypothesis in some loose sense) and an event-related
finger movement experiment. Type I error control is evaluated using the null
data. All three algorithms give good control of the type I error, with the
FDR approach being somewhat conservative and the Bayesian somewhat lib-
eral. Sensitivity is assessed using simulated data, with area under the ROC
curve the criterion for comparison. Bayesian shrinkage is the most sensitive,
although the advantage is slight. FDR is more sensitive than recursive shrink-
age, in general, except at the smallest amplitudes. As the amplitude of the
signal increases, the sensitivity of all the algorithms increases, as would be
expected, and the ordering Bayes > FDR > recursive is preserved.

When implementing the wavelet transform, users can determine the amount
of smoothness or regularity via the number of vanishing moments and the
level to which the decomposition will be carried out. Fadili and Bullmore also
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explore the effects of these choices. For fixed level of decomposition and signif-
icance level α, the false positive fraction (the proportion of wavelet coefficients
that are falsely retained) observed in the null data decreases as the number
of vanishing moments increases, for all three methods. Desco et al. (2001)
report this same conclusion. Keeping the number of vanishing moments fixed
and letting the level of decomposition vary, Fadili and Bullmore find that the
observed false positive fraction decreases as the decomposition level increases.
As noted by the authors, as the level of the decomposition decreases, the num-
ber of wavelet coefficients increases, i.e., more hypothesis tests are carried out,
and so such a finding is expected.

Finally, on the activation data set, all three thresholding algorithms yield
broadly similar results. Bayesian shrinkage is somewhat more sensitive, pro-
viding, in the words of Fadili and Bullmore, a “richer or more sensitive char-
acterisation of the cerebral response... ” (p. 1123); this reflects also the higher
sensitivity of the Bayesian method on the simulated data. Also consistent with
the simulated data results, FDR control yields a slightly more conservative
picture on the activation data, compared to the other two approaches.

8.2 Basis Functions Informed by Anatomy and
Physiology

Whereas wavelets offer a general set of basis functions capable of effectively
modeling most data curves, other researchers have proposed instead to use
families of basis functions that are driven by the anatomy of the brain. In
this section we consider two of these approaches. Neither is yet a standard
analysis stream for fMRI data.

The first focused effort to use physiological information to create basis
functions for the analysis of fMRI data is due to Kiebel (Kiebel et al., 2000).
An important component of this approach is the use of anatomical images

together with the functional ones. The anatomical images are preprocessed
to reconstruct the cortical surfaces on a so-called “flattened” representation.
With this representation the original “folded” cortex is first inflated, so that
all of the sulci and gyri are on the surface (we can think of this as taking
the crumpled handkerchief of Chapter 1 and blowing air into it in such a
way that the relative positioning of the valleys and peaks is preserved). The
inflated surface is then pulled out flat, again preserving the basic structure
of the folded cortex. The transformations from one reconstruction to another
are accomplished by discretizing the maps and manipulating the vertices that
define each element of the partition. See Kiebel et al. (2000) for more detail
and some references on this procedure.

Letting Y denote the functional observation in voxel space, and VG the
vertices of the reconstructed gray matter in the flat map, the goal of the
authors is to estimate a smooth distribution that best explains the observed
data. They write this in general model form as
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Y = g[f(VG)] + ε.

The smooth distribution f(·) is estimated by a linear combination of local,
smooth, partially overlapping basis functions defined on VG. g is an operator
that integrates the basis functions, transforming them from the space of ver-
tices back into voxel space. The basis functions are defined on the cortical flat
map with a two-dimensional coordinate system as follows: the basis function
bj
F with center at coordinate (xj , yj) is

bj
F = c1 exp

{
−[(x − xj)2 + (y − yj)2]

2w2

}
,

a circular Gaussian. c1 is a normalizing constant and w is a user-specified
window, the width of the Gaussian basis function in the x and y directions.
The basis functions are patterned in a hexagonal layout; with (xj , yj) the
center of bj

F , the centers of the six neighbors are given by (x + d/2, y + d0),
(x + d, y), (x+ d/2, y− d0), (x− d/2, y + d0), (x− d, y), and (x− d/2, y− d0),
with d the fixed distance between basis function centers and d0 = d sin 60o.
Figure 8.2 gives an example with d = 4, and hence d0 = 2

√
3.

Fig. 8.2. “Honeycomb” neighborhood for anatomically informed basis functions.
Here d = 4 and d0 = 2

√
3. Starting with the function centered at the point labeled

(x, y), the hexagonal neighborhood is defined. Note that there is a slight overlap of
neighbors. Successive neighborhoods are built from the neighbors of this first point
in the same fashion.

Suppose then that nB basis functions are defined in this manner. Via the
integration operator g described above, the bj

F are tranformed into voxel space,
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and it is this set of basis functions that is used to model the functional data
summarized in Y . Let the number of functional voxels be nV (this is also the
number of basis functions in voxel space after the transformation). Then the
model that is actually fit is

Y = Aβ + ε,

a linear model. In practice, Kiebel et al. implement a ridge regression ap-
proach to estimate β, i.e., β̂ = (AT A + λI)−1AT Y which is necessary if the
basis functions have substantial overlap. If the overlap is small or none, λ is
set to zero.

Note that all of the above applies to a single vector of functional data.
The next steps of the analysis consist of assembling the estimated parameter
vectors for each Yi into one matrix, which is then subjected to further analysis,
either univariate or multivariate, to make inference about response patterns
over time. The method therefore consists of fitting two linear models to the
data, the first in the spatial domain and the second in the temporal. Fitting
the analysis into the linear model framework means that the extension to
multiple subjects is relatively straightforward. A canonical cortical surface
that is representative of all subjects is used instead of the individual flat
maps. The rest of the analysis proceeds as before (Kiebel and Friston, 2002).

More recently, Harms and Melcher (2003) implement a general linear
model with a set of basis functions that are meant to reflect temporal features
of the BOLD response. They call this basis set OSORU, for “onset, sustained,
offset, ramp, undershoot” – the main features of the hemodynamic response
as we have seen it described in previous chapters; see Figure 8.3 for a graphical
depiction of these basis functions. These basis functions make up the design
matrix in the general linear model. Compared to other basis functions that
can be used with the general linear model, such as sinusoidal (discussed in
Chapter 5) and wavelets (discussed in the previous section), the OSORU set
admits a direct interpretation.

The onset component represents the initial reaction to the stimulus, peak-
ing at around 6 seconds after presentation, and returning more or less to
baseline by 14-16 seconds. Harms and Melcher characterize this as a transient
response, in contrast with the sustained component, which is a convolution
of the onset with the stimulus stream (coded as 0-1 for a block design, for
instance). The offset component is a similarly transient response to the ter-
mination of the stimulus, represented as a time-shifted version of the onset.
The ramp is an approximately linear response observed for some stimuli, and
characterizes “signal recovery” following the decline of the onset component.
The undershoot is a third transient component. In the basis function repre-
sentation it is defined, like the other functions, as a positive deviation from
baseline. Hence, its manifestation in the model when a significant undershoot
exists is expected to be via a negative coefficient.

The particular choice of basis function derives from the observed phe-
nomenon that for some types of stimuli different temporal patterns of
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Fig. 8.3. The OSORU basis functions; the solid line is onset component, the short
dashed line is sustained component, the dashed dotted line is offset component, the
dotted line is ramp component, and the long dashed line is undershoot component.
The last component, when it plays a role, is expected to have a negative coefficient
in the model due to its positive representation in the basis set. In this example, the
stimulus is on for the first 30 seconds. Adapted from Harms and Melcher (2003).

activation may be manifested. Harms and Melcher, for example, note that
for repeated noise bursts in a block design experiment, when the repetition
rate is low the response is sustained, but when it is high, the response is
“phasic” (that is, shows peaks at onset and offset) in the same cortical areas.
Thus it is desirable to have a set of basis functions that is flexible enough to
capture both of these sorts of behavior. Incorporating the OSORU basis into
the general linear model framework gives this flexibility, since the regression
coefficients will reflect the relative importance of each component of the ba-
sis set, at each voxel, and so different shapes of hemodynamic response can
thereby be modeled. Obviously wavelets or other functions have this flexi-
bility as well, but Harms and Melcher emphasize ease of interpretation and
physiological meaning. This is because they are not interested primarily in
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modeling the hemodynamic response, as in other approaches we have already
considered; rather their focus is on trying to understand the neural activity
behind the fMRI response. For this purpose it is advantageous to have basis
functions that are directly interpretable. On the other hand, the specific set
of functions is largely paradigm-dependent; while the general shapes might be
appropriate for a wide range of studies, the details of latency times, plateau,
and so forth will differ from experiment to experiment. Indeed, Harms and
Melcher use a subset of their data to precisely define the OSORU basis func-
tions. The need to tailor the basis functions to the experiment is a potentially
serious drawback of this method.

In addition to carrying out the general linear model with the OSORU
functions as elements of the design matrix, Harms and Melcher also define
a “waveshape index” (WI) to characterize temporal patterns as sustained,
phasic, or intermediate between the two extremes:

WI =
1
2

(
On + Off

Mid + max(On, Off)

)
;

WI ∈ [0, 1]. In this equation, On and Off are the estimated coefficients of the
onset and offset components from the linear model, and Mid is the magnitude
of the sustained component plus one-half the coefficient of the ramp compo-
nent. Large values of WI indicate that the onset and offset are of comparable
size, and are, in addition, big relative to the midpoint value. This will be the
case for phasic responses. Values of WI near zero indicate a response that is
dominated by the sustained or ramp component.

For the noise burst data that motivated this work, Harms and Melcher
find that the OSORU basis detects more activity in the relevant cortical areas
than does a general linear model with only the sustained component, which
is roughly equivalent to a standard t test. It is comparable to the sinusoidal
basis consisting of the first through fourth harmonics, detecting slightly more
activation under some circumstances. The “sustained only” analysis misses
voxels that have a phasic response, as would be expected. Both the OSORU
and the sinusoidal basis sets are capable of detecting these voxels, again as
would be expected. Using essentially a partial F test to assess the relative
importance of the different components in the basis function set, they find
that all five are important for fitting the responses in a preponderance of the
active voxels in auditory cortex.

8.3 Summary

Basis functions, and in particular wavelets, have found a variety of uses in
fMRI data analysis. Although some authors have attempted to compare the
merits of the different technical choices relating to the implementation of these
approaches (for instance, the family or order of wavelets), there is still scope
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for exploration and development. Other basis function families have not found
as wide expression in fMRI data, even though they have proven useful in other
areas of application. Splines, for example, have been applied in preprocessing
steps, as we saw in Chapter 3 (Tanabe et al., 2002), but only rarely for
modeling. Orthogonal polynomials are another rich family that has not been
exploited by the fMRI community, despite effectiveness in other neuroimaging
modalities (but see Clark 2002, for an application of orthogonal polynomial
regression to event-related fMRI data). Further developing these relatively
unexamined methods and incorporating anatomical knowledge as in Kiebel
et al. (2000) or Harms and Melcher (2003) remain research directions of some
promise.
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Bayesian Methods in fMRI

In some ways the Bayesian framework is ideal for the analysis of functional
MRI data. As we have seen in previous chapters, the data are often described
in a hierarchical manner, with voxel-level models being embedded in subject-
level models, which in turn may be nested in a group-level model. The hier-
archical nature of the standard general linear model approach fits well into
the Bayesian setting (Friston et al., 2002). Spatiotemporal models are an-
other class that well describe functional neuroimaging data, and these too
lend themselves quite naturally to a Bayesian analysis. Indeed, in Chapter 6
we saw several examples of Bayesian spatial or spatiotemporal analyses (for
example, Gössl et al. 2000; Hartvig and Jensen 2000; Gössl et al. 2001;
Smith et al. 2003). In addition, the basis function approaches that incor-
porate anatomical information, as discussed in Section 8.2, have a distinctly
Bayesian “flavor” even if they aren’t explicitly Bayes methods.

The well-known criticisms of classical significance testing – the non-
intuitive meaning of a p-value, the lack of symmetry between the null and
alternative hypotheses (such that the null can never be accepted), increas-
ing sensitivity with sample size so that a “statistically significant” result can
always be found given enough observations – have lately come under discus-
sion in the neuroimaging community as well (Friston et al., 2002). As is true
for many applied fields, the result of frequentist hypothesis testing (namely,
declaring voxels to be significantly active or not) is not necessarily the out-
put that is most easily interpretable or even of interest to neuroscientists.
Instead, the posterior probability of the effect being over a specified threshold
is possibly a more intuitive measure (Friston and Penny, 2003).

Finally, over the past decade and a half, as fMRI has become more
widespread, as well as other imaging techniques, neuroscientists have started
to accumulate a wealth of information about brain activation in general. For
instance:
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1. Various robust experimental paradigms such as flashing checkerboards,
finger tapping, eye movement tasks (saccades), are known to elicit consis-
tent and reliable activation in particular brain regions.

2. Activation is unlikely to be localized to single, isolated voxels. Instead,
true activation should be found in contiguous clusters.

3. Individual differences in the extent and amplitude of activation within an
affected region are to be expected, as are fluctuations for a given individual
at different scanning sessions.

4. The magnitude of the response is typically about 2% - 5% of the intensity
at rest (baseline).

5. The parameters guiding the hemodynamic response may vary from voxel
to voxel, or from brain region to brain region.

These pieces of knowledge can be used to build up prior distributions for a
Bayesian analysis, in a classic application of the principle that one obtains
posterior inference by updating prior knowledge (in this instance, the data
gathered over years of fMRI studies) in light of new data. Use of prior infor-
mation has the added benefit that it constrains the high dimensional fMRI
parameter space (Genovese, 2000).

Despite the apparent suitability of Bayesian methods to fMRI data, this
line of research has only recently begun to take root in the literature. Part of
the issue, not unexpectedly, is computation. The large quantities of data and
the complex relationships within and among voxel time series, have precluded
widespread implementation of Bayesian analysis, due to the complicated forms
of the likelihood and priors. The works we saw in earlier chapters are distin-
guished by the fact that they all attempt to make simplifying assumptions
or find computational shortcuts that would make the analysis feasible. Where
this has not been done (for instance, Genovese 2000), in an attempt to develop
a fully Bayes analysis, the resultant methods have not been adopted by the
neuroimaging community.

A compromise position, advocated for example by Friston (Friston et al.,
2002;Friston and Penny, 2003)is the use of empirical Bayes methods, whereby
the parameters of the priors are estimated from the data, rather than them-
selves being subject to prior specification as in a fully Bayes model. Friston
and Penny (2003) show how to embed the empirical Bayes approach in the
hierarchical general linear model framework, as implemented for example in
the software SPM (see Appendix A) and solved using standard statistical tools
such as restricted maximum likelihood and the EM algorithm.

Clearly, Bayesian methodology holds promise for fMRI, and equally clearly,
there is still much that statisticians can contribute in this area. In this chapter
we look at some of the ways in which researchers have tried to tackle the var-
ious components inherent in a Bayesian analysis: specification of fully Bayes
models and of priors, and computational shortcuts or approximations to ease
the burdens imposed by the large scale of the data.
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9.1 Fully Bayes Models

The first fully Bayesian model for fMRI data appears to be Genovese (2000)
(Worsley, 2000). Almost contemporaneously, however, Kershaw et al. (1999)
propose a very similar model; they use noninformative (Jeffreys) priors for all
parameters, thereby avoiding the computational issues. By choosing a prior of
convenience, rather than one that allows for a true summary of prior informa-
tion and beliefs, one could argue that this work is not fully Bayes. Significantly,
from an historical perspective, these works only address the voxel time course,
with voxels taken to be independent (no spatial prior). Within a year or two
of Genovese’s paper, several models incorporating spatial information already
had appeared.

At every voxel, Genovese models the observed signal at time t as

Y (t) = μ + d(t) + a(t; μ, γ, θ) + σε(t),

where

1. μ is the baseline signal for the voxel, or, the average signal over time in
the absence of activation and noise; the prior for μ is a scaled t1 centered
at a fixed value, μ0.

2. d(t) is the drift in the measured signal over time; it is modeled as a spline,
where the number of knots may be large or small, and their location fixed
or random; when the number of knots is not known, this is given a Poisson
prior, and the locations have a prior that is derived from the Dirichlet.

3. a(t; μ, γ, θ) is the activation profile, which captures the shape of the hemo-
dynamic response; the hemodynamic response function may include up to
eight components: lag-on, attack, rise, lag-off, decay, fall, dip, and skew
(see Figure 9.1); θ determines the shape of the response to a single stimulus
presentation and γ specifies the amplitude of the signal change relative to
baseline; the θ parameters for attack, decay, lag (on and off), and dip have
independent gamma distributions, and the priors for rise, fall, and skew
are uniform over their respective ranges; the γ parameters are constrained
to be non-negative and have a gamma prior when strictly positive.

4. ε(t) is the noise, characterized as white; the prior on σ is inverse-gamma.

An advantage of this modeling framework is that it allows researchers to
ask, and answer, questions beyond those of localization (“Where are the active
voxels?”). Genovese, for example, studies monotonicity of response, tackling
the question of whether or not the strength of the response increases with the
difficulty of the task. This is a very hard question to answer using frequentist
techniques, but of course one of the strengths of the Bayesian logic is that once
the posterior distributions of the parameters are obtained they can be manip-
ulated to answer a wide range of questions about the parameters. Kershaw
et al. (2001) likewise use Bayesian methods to test linearity of the hemody-
namic response in event-related studies. In addition, the model parameters are
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Fig. 9.1. Schematic of hemodynamic response function as given in Genovese (2000).
The task is performed from the start of “a” to the start of “d.” The parameters of
the model, some of which may be omitted for a given analysis, are the time of lag-on
(“a”) and the length of attack (“b”) following stimulus presentation, the strength of
the rise (“c”), the time of lag-off (“d”) and the length of the decay (“e”) after the
stimulus or task has ended, the strength of the fall (“f”), the size of the dip (“g”),
and the shape of the skew (“h”).

easily interpreted in terms of the physiology of the hemodynamic response.
Compared to the fixed models of the HRF (for instance, the canonical differ-
ence of two gammas), Genovese’s approach is more flexible, allowing features
such as the poststimulus undershoot to be present in some voxels but not
others. This feature is also shared by the basis function approaches from the
previous chapter.

On the other hand, no spatial information is incorporated in this anal-
ysis, as commented on by several of the discussants to this paper (some of
whom suggested simple ways of including spatial priors). And the method
is extremely computationally expensive. Genovese (2000) points out (p. 702)
that it required time on the order of one day to process the data from a single
subject. This is clearly a prohibitive barrier for neuroscience researchers.

Advances in computing memory and power only partially solve the prob-
lem; writing four years after Genovese, Woolrich et al. (2004c) cite a running
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time of six hours to process a single slice of data using their fully Bayes model.
This model, like that of Genovese, posits a model for the hemodynamic re-
sponse function, but, unlike that of Genovese, also introduces a spatiotemporal
noise component.

The noise process is decomposed into two parts: nonstationary determin-
istic (large-scale variation) and stationary short-scale stochastic variation.
The former is removed via high-pass filtering and is not considered in the
model. The latter is modeled as a multivariate normal, with mean zero and
variance-covariance matrix Σ. Since Σ is over all time points and all voxels,
it is very large, hence infeasible to estimate without some simplifying as-
sumptions. Woolrich et al. use a family of space-time simultaneously specified
autoregressive (STSAR) models, combining a temporally fixed spatial AR(1)
with a spatially varying general order temporal AR. That is, they model the
short-scale variation at voxel i and time point t as

sit =
∑
j∈Ni

βijsj,t−1 +
P∑

p=1

αpisi,t−p + εit,

where Ni is the neighborhood of voxel i, βij is the spatial autocorrelation be-
tween voxel i and voxel j at a time lag of 1, αpi is the temporal autocorrelation
between time point t and time point t − p at voxel i, and εit is normally dis-
tributed with mean zero and variance that depends on the voxel, but is fixed
over time. Through the β parameter, this model can accommodate spatial
stationarity or nonstationarity.

For the prior specification on this part of the model, Woolrich et al. (2004c)
assume prior independence among the parameters α, β, and φ (the precisions
of the εs). Several options for the distribution of α and β are considered;
these include the diffuse normal (to give a noninformative prior), the Markov
random field, and the automatic relevance determination priors. The latter is a
way of automatically adjusting the order of the autoregressive process at each
voxel (that is, they allow the order of the autoregression to differ from voxel
to voxel) that avoids the computational burden of methods such as reversible
jump MCMC (Green, 1995). The precisions of the εs, as well as the precisions
for the Markov random field and automatic relevance determination priors
are gammas with set hyperparameters.

The model for the signal is separated into the height of the response and the
assumed shape of the HRF. For the HRF, Woolrich and colleagues propose to
add four half-period cosines, resulting in the schematic form shown in Figure
9.2. This model has six parameters: four for the periods of the cosines, the
ratio of the height of the poststimulus undershoot to the height of the main
peak, and the ratio of the height of the initial dip to the height of the main
peak. The priors on the half-periods are taken to be uniform with relaxed
time ranges to represent the relative uncertainty about when the peaks, dips,
and so forth will take place (across voxels and experimental paradigms, as we
have already seen, there is a good deal of variability in the timing of these
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events). Since it isn’t clear that the initial dip or the poststimulus undershoot
will occur, the authors apply the automatic relevance determination prior
here as well, on the parameters that govern the sizes of these phenomena.
Finally, for the purposes of activation height modeling, all voxels are treated
independently.
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Fig. 9.2. Schematic of HRF used by Woolrich et al. (2004c). The parameters in this
model are m1 (the distance between the vertical dashed lines marked “a” and “b”);
m2 (the distance between the vertical dashed lines marked “b” and “c”); m3 (the
distance between the vertical dashed lines marked “c” and “d”); m4 (the distance
between the vertical dashed lines marked “d” and “e”); c1 (the ratio of the size of
the initial dip below baseline in the period between “a” and “b” to the size of the
main peak); c2 (the ratio of the size of the undershoot below baseline in the period
between “d” and “e” to the size of the main peak).

Advantages of this model over that of Genovese are the incorporation of
spatial information and a modeling framework that allows for model compar-
ison (an issue that isn’t directly addressed by Genovese), for example in the
choice of autoregressive order. Also, the formulation of the HRF is appropri-
ate for different experimental designs, whereas the model given by Genovese is
aimed at block design experiments. However, as already noted, this approach
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is also computationally intensive, even with the simplifications such as fil-
tering out the large scale temporal variation. Further simplifications of the
model, including the use of variational Bayes approximations to speed up
computation (see Section 9.3) are given in Woolrich et al. (2004b).

A different perspective on the Bayesian analysis of fMRI data is presented
in Hartvig (2002), who uses marked point processes to describe the spatial
activation pattern. His general model for the signal measured in voxel i at
time t (after preprocessing) is

Yit = (Ai(X) + ηi)φt + εit,

where η and ε are governed by Gaussian processes, A(X) is the level of ac-
tivation, parameterized by the marked point process X , and φ is temporal
variation related to the BOLD response.

Consider for ease of exposition the case where data are on a two-dimensional
slice (the three-dimensional volume is treated similarly). The interpretation
of the points Xj of the marked process is as centers of activation, with lo-
cation μj and marks that describe the magnitude and shape of the center.
More specifically, if the marked point process is {X1, X2, . . . , Xn}, then the
activation pattern {Ai(X)} is assumed to be a sum of Gaussian functions
Ai(X) =

∑n
j=1 h(i; Xj), where

h(i; Xj) = aj exp
{
−π log 2

dj

(
l21

rj/(1 − rj)
+

l22
(1 − rj)/rj

)}
.

(l1, l2) = R(−θj)(i − μj) for R(θ) a rotation with angle θ; (aj , dj , rj , θj) are
the parameters of the process at location μj , with aj being the height of the
normal density at center μj , dj the area of the contour ellipse at half height
(the two-dimensional version of full width at half maximum), rj ∈ (0, 1) a
measure of the eccentricity of the ellipse, and θj ∈ [−π/4, π/4] the orientation
of the ellipse.

The mark parameters a, d, and r are assumed to be independent a priori,
with the first two given inverse-gamma priors and the last one a Beta prior.
These are also a priori independent of μ, which is characterized by an intensity
function β. Taking the product of this factorized prior over the points in the
process X gives the prior density for the spatial part.

Choosing to emphasize the spatial aspect in his initial analysis and pre-
sentation, Hartvig takes a simple model for the time component, φ:

φt =
∑

i

πt−i
TR√
2π3

exp
(
− (i × TR − 6)2

18

)
,

where πt = 1 during periods of stimulation presentation and zero else, and
TR is the repetition time. This corresponds to the typical convolution of the
stimulus trail with a function for the hemodynamic response, taken here to
be normal.
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Simulations from the posterior distribution of the activation centers here
is somewhat complex, requiring the use of a modified reversible jump Markov
chain Monte Carlo algorithm (Green, 1995) (note that the number of centers is
a parameter of the model). The reversible jump steps are inserting a new point,
removing an existing point, and changing the position or marks of an existing
point. Within these steps the other parameters may also need to be updated,
and this is accomplished sequentially, as it is not feasible to sample directly
from the full posterior. There are obviously other subtleties and details of the
complete implementation, and Hartvig also proposes several modifications to
his basic algorithm, including more complicated (and realistic) models for φ.

9.2 Priors for fMRI Data

When we set priors for the Bayesian analysis of neuroimaging data, a crucial
point is to account for the knowledge that true activity is at least locally
homogeneous and occurs in regions that are spatially connected (Penny et al.,
2005). This points to a certain lack of symmetry in the treatment of the
two components – spatial and temporal – from the Bayesian perspective, with
the former demanding more attention than the latter. We have already seen
the use of Markov random fields (Gössl et al., 2000; Gössl et al., 2001) and
mixture models (Hartvig and Jensen, 2000) as examples of incorporating prior
spatial knowledge. Here we consider two more recent efforts in this direction.

First, da Rocha Amaral et al. (2004) define what they term a “multigrid
prior.” This is really a hierarchy of priors, from the finest scale of individual
voxels to the coarsest scale of an entire region of interest (ROI). To move from
scale to scale, voxels are gathered into nonoverlapping square neighborhoods
of size 2p×2p. So, the finest level treats each voxel; at the next level, voxels are
grouped into 2×2 neighborhoods that cover the whole region (which therefore
must itself be a square of an appropriate size); at the next level these 2 × 2
neighborhoods are combined into 4 × 4 neighborhoods that cover the whole
region, and so on. Figure 9.3 shows the gridding procedure for three levels.
Within each neighborhood, the response is defined as the average response of
voxels in that neighborhood, and the model is the average of the models at
the individual voxels. The overall global prior is taken to be the proportion
of active voxels in the entire region and is uniform across the region. Priors
at finer levels of the hierarchy are obtained sequentially from the posterior at
the previous level; that is, for a given level k, the posterior probability that a
region rk is active is simply

P (Ark
|Drk

) =
P (Ark

)P (Drk
|Ark

)
P (Drk

)
,

where Ark
denotes the event that the region rk is active, and Drk

is the aver-
age response in the region rk. The prior at the finer level k−1 is the posterior
of the coarse level k; in this way, working down from the coarsest level, priors
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and posteriors can be recursively calculated. With the finest level of the grid
being individual voxels, the method therefore provides the posterior probabil-
ity of activity for each voxel, and this incorporates both local neighborhood
information (through the immediately closest voxels) and information from
neighbors at coarser levels. da Rocha Amaral et al. (2004) claim that their
method for specifying the prior can be used with any model, and hence they
do not focus on any one in particular.

Fig. 9.3. The multigrid procedure. At the finest level, each of the 16 voxels in this
example is its own neighborhood. At the second level, the voxels are grouped into
square neighborhoods of size 4. At the last level, the entire region is treated as one
neighborhood.

By contrast, Penny et al. (2005) set out a detailed Bayesian model with
an autoregressive AR(p) error structure built on to the general linear model.
The coefficients of the model are taken to be a priori normal with mean
zero and variance α−1

k (ST S)−1, where αk is the spatial precision for variable
k (determines the amount of smoothness) and S is a spatial kernel matrix.
Furthermore, the overall prior for the regression coefficients factors as the
product of the individual priors, enabling different amounts of smoothness
(via αk, which is estimated from the data), although S is shared by all of
the regression coefficients (and hence dependencies are allowed even though
the prior factors). The αk are taken to be a priori independent with diffuse
gamma hyperpriors, as are the precisions of the observations at each voxel.
Finally, the autoregressive parameters are a priori independent across voxels,
each with a mean zero Gaussian distribution. Readers will recognize these as
conjugate priors for the normal likelihood.

Prior spatial information is quantified in this model via the matrix S.
Penny et al. (2005) use the Laplacian operator, depicted graphically in Figure
9.4. As is evident from the picture, by placing negative weights on the cardinal
directions this prior penalizes differences among neighbors.
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Fig. 9.4. The Laplace operator, used as a spatial prior by Penny et al. (2005).
Differences among neighboring voxels are penalized by negative weights.

9.3 Computation

Although Bayesian methods hold great promise for fMRI data analysis,
computation of posterior distributions has been an impediment to more
widespread implementation within the neuroimaging community, as we have
already seen. Simplifying assumptions in the model or the likelihood are often
made to enable computation, weakening the attraction and power of the ap-
proach. Recognizing this, attempts have been put forth, again in recent years,
to alleviate the computational burden in different ways.

Variational Bayes, for instance, is gaining popularity within some seg-
ments of the fMRI world. This is a family of techniques for approximating the
required integrals and densities, thereby avoiding the need to perform com-
putationally expensive Markov chain Monte Carlo simulations. It appears to
have been first considered in the fMRI context by Penny et al. (2003), and is
implemented as well in Penny et al. (2005).

Consider a general posterior density, p(θ|y) in standard notation. The log-
arithm of the marginal likelihood p(y) can be written as

log p(y) =
∫

q(θ|y) log p(y)dθ,
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for q(θ|y) an arbitrary density. Using the definition of conditional density, and
then multiplying and dividing by q(θ|y), it is easy to see that

log p(y) =
∫

q(θ|y) log
[
q(θ|y)p(y, θ)
p(θ|y)q(θ|y)

]
dθ.

Define

F =
∫

q(θ|y) log
[
p(y, θ)
q(θ|y)

]
dθ

and

KL =
∫

q(θ|y) log
[
q(θ|y)
p(θ|y)

]
dθ;

then
p(y) = F + KL.

KL is the Kullback-Leibler distance between q(θ|y) and the target p(θ|y).
Now, KL is non-negative, attaining the value of zero when q(θ|y) is equal

to the true posterior. Therefore, F (the “variational free energy”) is a lower
bound on the marginal density of y, and is equal to p(y) when KL=0. The
density q(θ|y) is viewed in this setting as an approximate posterior. Variational
Bayes aims to maximize F, which brings the approximate and true posterior
densities close to each other. Under the assumption that the approximate
density factorizes in an appropriate way, Penny et al. (2003) and Penny et al.
(2005) give explicit forms for the (approximate) posterior densities, which are
of conjugate form due to the choice of priors (but note that the dependence
structure included for the regression coefficients means that a näıve MCMC
approach would not be suitable).

Several authors have also discussed the possibility of simplifying the
Bayesian inferential procedure by breaking the analysis into steps, only some
of which involve the calculation of posterior quantities, or by imposing as-
sumptions such as independence on some levels of the hierarchy but not oth-
ers (Neumann and Lohmann, 2003; Woolrich et al., 2004a; Chen, 2004). We
consider Neumann and Lohmann (2003) as an example.

Neumann and Lohmann focus on what they call “second level” analysis,
that is, group inference. Their method is a hybrid of frequentist and Bayesian
approaches in that for the first (subject) level analysis they use the ordinary
general linear model without priors, and only incorporate a Bayesian scheme
at the second level. For each subject, the model Y = Xβ + ε (or some variant
of it) is fit by generalized least squares to obtain the parameter estimates β̂.
An effect of interest is given by cβ̂, for c a vector of weights summing to zero
that define contrasts (note, however, that if a single effect is of interest, c will
be 1). Suppose in addition that there are k subjects. Under typical normality
assumptions on the likelihood and the prior, i.e., contrasts cβ̂i are normal
with variance σ2

i , the posterior distribution of the combined contrast is also
normal, with mean
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∑k
i=1 σ−2

i cβ̂i∑k
i=1 σ−2

i

and variance
1∑k

i=1 σ−2
i

.

These will be recognized as the usual Bayesian updates for normal likelihoods
with conjugate priors, or, indeed, simply as the estimates from a fixed effect
model (see Section 5.5.2).

One can then carry out standard Bayesian manipulations to assess pos-
terior probabilities of activation across the group (simple in this case since
the density is normal), to compare subgroups, to compare effects of covariates
within a subject, and so forth, via the use of appropriate contrasts.

A similar approach is suggested by Woolrich et al. (2004a). The main dif-
ference between the two is the choice of prior; whereas Neumann and Lohmann
stay within the conjugate framework, Woolrich and colleagues introduce ref-
erence priors as a way of modeling ignorance (Bernardo and Smith, 2000).
This necessitates evaluation of complicated integrals; Woolrich et al. (2004a)
explore a fast approximation and a slower Markov chain Monte Carlo ap-
proach. In both Neumann and Lohmann (2003) and Woolrich et al. (2004a),
summaries from the first level analysis, which may in fact be frequentist or
Bayesian, are used as input to the higher levels in the hierarchy. Both sets of
authors indicate that their methodology can be extended to more than two
levels (for instance, scan within a session, session within a subject, subject
within a group).

As with many of these developments, the statistical novelty represented
here is minimal. The importance of such works lies rather in bringing to
the attention of the neuroimaging community both the existence of Bayesian
methods and the proof of the feasibility of their application. “Shortcuts” such
as that suggested by Neumann and Lohmann (2003) are well-known in the
statistical literature; in order for Bayesian techniques to penetrate into this
new domain and become accepted, users need to know that they can still carry
out their analyses in a reasonable amount of time, which is a major concern
with some of the “fully Bayes” procedures that have been put forth. The fact
that several groups of researchers have arrived independently and approxi-
mately simultaneously at similar solutions (in “flavor” if not in all details
of implementation) is evidence that there is a recognition among neuroimag-
ing scientists of the usefulness of Bayesian techniques, as well as a desire to
put these into practice. Devising computational and other tools to facilitate
Bayesian analysis of large, complex data sets is a challenge that statisticians
will need to face more fully.
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9.4 Conclusion

The last decade has seen a growing awareness among fMRI researchers that the
logic and philosophy of the Bayesian paradigm could prove advantageous to
the goal of building and drawing inference from the “correct” spatiotemporal
models (“correct” in the sense that they more accurately reflect the known or
surmised spatial and temporal correlation structures, than the voxelwise linear
model in any of its guises; in particular this is true of the spatial structure).
At the same time, advances in computing capacity and memory, and the
development of new statistical methodologies for handling large, complicated
data sets, have made the application of Bayesian procedures more feasible
in general. The potential of Bayesian fMRI data analysis has not yet been
fully exploited. I expect this to continue to be an area of active and fruitful
collaboration between statisticians and neuroimaging scientists.
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Multiple Testing in fMRI: The Problem of
“Thresholding”

Regardless of which specific methods are used to analyze the data and to
create a statistical parametric map of the brain, one cannot entirely avoid
the question “Which voxels show significant levels of activation compared to
the control?” While it is possible to argue that a simple dichotomizing of each
individual voxel into active/not active does not truly answer the question that
is of scientific interest (Jernigan et al., 2003) – this would more likely focus
on the behavior of regions – the reality is that this is the question that often,
in practice, is asked, as well as answered.

From a statistical perspective, it is clear that the task of classifying each of
the tens, or hundreds, of thousands of voxels in a typical study as “significantly
active” or not is a formidable problem of multiplicity. In any statistical test, a
binary decision (significant/not significant) is made. The true state of nature is
also binary (significant/not significant). Thus, underlying a series of statistical
tests and decisions, such as might be taken regarding the voxels in an fMRI
dataset, is a simple two-by-two table (Table 10.1).

Fail to reject null Reject null Total

Null true m00 m01 m0.

Null false m10 m11 m1.

Total m.0 m.1 m

Table 10.1. The binary decision of a statistical test – reject the null hypothesis
or fail to reject the null hypothesis – in conjunction with the true state of nature
– null is true or null is false – leads each voxel in the brain to fall in one of four
categories, as shown above. Interest generally focuses on attaining control over the
voxels falsely declared active.

In total, there are m voxels tested (typically in the hundreds of thousands).
Of these, m.1 are declared active (null is rejected), and m.0 = m − m.1 are
declared inactive (null not rejected). In reality, m0. voxels are inactive (the
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null hypothesis is true) and m1. are active. We are interested mainly in the
m01 voxels for which the null is rejected, when it is in fact true. These are
the false positives or false discoveries. Different approaches to correcting for
multiple testing aim at different types of control of this (unknown) number.

A standard quantity to control is the familywise error rate (FWER), which
is the probability of having even one false discovery over the ensemble of
tests. More recently, methods that control the false discovery rate (FDR), or
the (expected) proportion of voxels erroneously declared to be active, out of
all voxels declared active, have become popular in statistics. This is due, in
part, no doubt to the proliferation of large data sets, not only in functional
neuroimaging, but also in fields such as microarray analysis, where control of
FWER may be inappropriate and is, in any case, too conservative.

Psychologists, accustomed to controlling for multiple testing by the use
of the Bonferroni correction for FWER, for example, early on found that
this method was much too conservative for their purposes in fMRI. By this,
they meant that the Bonferroni-adjusted significance level of α/m, where m
is the number of tests, α is the overall significance level, and m is very large,
results in a criterion that is so strict, that even in areas where activation
“should take place” (according to theory or prior knowledge attained using
other techniques), nothing can be detected.

The extreme conservativeness of the Bonferroni method, coupled with its
inability to take into consideration the particular features of fMRI data (such
as the dependence among voxels), requires other techniques for error control.
In this chapter, we discuss some of the approaches currently in use in the
fMRI community, as well as some that have been proposed but not widely
adopted. Sections 10.1 through 10.5 describe five thresholding methods that
are currently implemented in many fMRI studies: cluster thresholds, in which
a contiguous collection of voxels all need to be declared significant at a pre-
specified level in order for the cluster as a whole to be retained; random field
methods, which use the theoretical behavior of random fields to determine de-
viations from null behavior; thresholds obtained by permutations, in which the
theoretical results of the random field theory are replaced by empirical ones;
procedures for controlling the false discovery rate instead of the familywise
error rate (as is done, for instance, by the Bonferroni correction), which offer
advantages in terms of power, ease of use, adaptability, and interpretability;
and an ad hoc method, which involves setting the threshold by eye, based on
the practitioner’s experience and knowledge. The first three of these can be
seen as variations on a single theme. We then examine some recent proposals
for detecting regions of activity by directly using the properties of estimated
hemodynamic response functions from an event-related study, and more gen-
erally by working with the fMRI time series. The survey concludes with a
look at various other methods that have been suggested in the literature. The
last two sections of this chapter look at two recent comparisons of threshold-
ing techniques used in fMRI data analysis, and explore some other issues of
relevance.
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10.1 Cluster Thresholds

An early attempt to grapple with the multiplicity issue is found in work by
Forman et al. (1995).The approach here is to note that true activation is likely
to be spread over several contiguous voxels, since these are themselves simply
rather arbitrary divisions of the brain, with no intrinsic physiological meaning.
Indeed, most researchers consider isolated single active voxels to be spurious
discoveries, and so tend to ignore them. On the other hand, in a null map
containing no true activation, individual voxels that do attain significance are
more likely to be scattered throughout the brain rather than form clusters.

It is easy to confirm these conjectures via a small-scale simulation. Here,
200 16 x 16 grids of values uniform on [0,1] are generated. Any value under
0.05 is declared “significant” and the following summaries found for each sim-
ulation: the total number of clusters (where a cluster is defined as by Forman
and colleagues, to be made up of neighboring pixels, a “neighbor” being any
of the eight pixels bordering a given pixel); the sizes of the clusters; and the
total number of significant pixels. Over the 200 simulations the average num-
ber of clusters is 10.215 and the average number of significant pixels is 12.285
(close to the nominal 0.05 level). Out of the 2043 total clusters, 1699 of them,
or just over 83%, are singletons, made up of a single pixel; 289 clusters (14%)
are of size 2; 37 clusters (2%) are of size 3; 16 clusters (just under 1%) are of
size 4; and 2 clusters (less than one-tenth of one percent) are of size 5. There
are no clusters over size 5, but it is noteworthy that clusters of “significant
pixels” will of course be found even in null data, by the definition of type I
error.

Under this specification of the thresholding problem, there are two ele-
ments that determine the probability of making a false discovery (that is,
declaring an inactive voxel to be active): (i) the criterion for rejecting the null
hypothesis for a given voxel at level α, call this C(α), and (ii) S, the size of
a contiguous cluster of active voxels. In order to be considered active, a voxel
must cross the value C(α), and enough of its touching neighbors must as well,
to form a contiguous cluster of size S. If these two conditions are not both met,
significance is not attained. In particular, if the cluster size threshold is set at
S, no active clusters smaller than S in size will be found. But the user has the
ability to consider tradeoffs between the size of the cluster and the threshold
for declaring voxels to be active. For example, if C(α) is fixed, as S increases
the probability of detecting false positives decreases. The reason for this is
that the probability of v voxels all exceeding C(α) and being contiguous with
each other is lower than the simple probability of those v voxels exceeding the
threshold. The extra condition of contiguity has real implications in terms of
the relevant probability calculations. By combining the two thresholds, C(α)
and S, we lose the ability to detect small (smaller than S) areas of activation,
but we gain power to detect larger areas. Under the assumption that real ac-
tivation will indeed spread over several voxels, this tradeoff can be expected
to work to the benefit of the researcher.
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Forman et al. explore combinations of S and voxel-level values of α in the
typical range of 0.005 to 0.2, for both uncorrelated and correlated data. The
method is entirely simulation-based, empirically finding the expected number
of clusters of a given size, for a given level of voxel significance, under the
null situation of no truly active voxels. From these simulated maps it is then
possible to calculate the probability of finding a false positive voxel, on a per
voxel basis (as opposed to over the entire cluster), as a function of S and α.
These in turn provide the requisite C(α) values to be applied to each voxel
in the cluster. Correlation is induced in the simulated data by using Gaus-
sian filters of varying widths, with small amounts of smoothing representing
less correlation and large amounts of smoothing representing more correla-
tion. Implementations of this thresholding technique in fMRI software such
as AFNI (see Appendix A) allow the user to estimate and specify the amount
of smoothing suitable for a given data set when calculating the voxel signifi-
cance thresholds for a particular S threshold and overall level of significance.

Figures 10.1 and 10.2 show how the probability of a false positive voxel,
per voxel, changes as a function of the cluster size threshold, S, for uncorre-
lated and correlated voxels respectively. Each line in Figure 10.1 represents
an overall α level, for α = 0.05, 0.03, 0.025, 0.01, 0.005, from the highest line
down. As can be seen in the figure, increasing the cluster size for a fixed α
results in decreasing probability of a false positive voxel, per voxel, as would
be expected. Indeed, for clusters as small as 5, for the various overall levels
of significance, the probability per voxel for voxels in those clusters is small
enough to be indistinguishable from zero.

Similar conclusions are reached from examination of Figure 10.2. Each
panel in the figure represents a different overall level of significance; within
each panel, the probability of a false positive voxel, per voxel, is plotted as
a function of cluster size for different amounts of smoothing. The highest
line in each panel corresponds to the greatest amount of smoothing, that is,
the highest amount of induced spatial correlation. Again, as the size of the
cluster increases, for fixed α, the probability per voxel in the cluster of a false
positive declines to zero. For larger amounts of spatial correlation, the decline
is slower. This is also not surprising, as we would expect that voxels that are
spatially correlated would be clustered together, and if one is a false positive,
its neighbors in the cluster might be as well. As the amount of correlation
decreases, so should the effect of any given voxel on its immediate neighbors,
and the clusters will be made up of more “nearly independent” voxels.

As demonstrated by Forman et al., the use of cluster thresholding methods
leads to increased power to detect true activity, particularly for uncorrelated
data, but also in the correlated case. Based on their results, the authors rec-
ommend taking 7 ≤ S ≤ 9 and α of between 0.02 and 0.03 to gain most of
the power benefits of the method, while still being able to detect reasonably
small clusters of activity.
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Fig. 10.1. Probability of a false positive voxel, per voxel, for overall α levels ranging
from 0.005 to 0.05, as a function of the size of the cluster threshold. Voxels are
assumed to be uncorrelated. Adapted from Table 1 in Forman et al., 1995.

10.2 Random Field Theory

Like the cluster threshold method of the previous section, both random field
theory, the topic of this section, and permutation thresholds, the topic of the
next, aim at detecting contiguous groups of active voxels. Random field and
permutation thresholds achieve this, as pointed out by Nichols and Hayasaka
(2003),by considering the distribution of the maximum of the statistical map,
or equivalently of the minimum p-value, to account for dependence in the data
and hence to encourage detection of clusters of activity.

The random field approach to thresholding relies on a quantity called the
Euler characteristic of the excursion set (Worsley, 2003). The excursion set
describes those voxels that are above the specified threshold. For high thresh-
olds, the Euler characteristic of that set roughly corresponds to the number
of local maxima (or clusters). For lower thresholds, the Euler characteristic
counts the number of connected clusters minus the number of “holes;” when
the threshold is high enough, the holes disappear and only the clusters re-
main. As the threshold increases to approach the maximum statistic in the
map, the Euler characteristic will take on the value 1 if the maximum is above
the threshold, and zero otherwise (Worsley, 1996). That is, the Euler char-
acteristic is, for high enough thresholds, approximately an indicator function
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Fig. 10.2. Probability of a false positive voxel, per voxel, for overall α levels of
0.005, 0.01, 0.025, and 0.05, as a function of the size of the cluster threshold. Voxels
are assumed to be correlated, with differing amounts of correlation being induced
by kernel smoothers of differing window widths. Adapted from Table 2 in Forman
et al., 1995.

for having any voxel above threshold. This establishes the connection to the
control of FWER.

Although the theory governing random fields is complicated, the procedure
has gained widespread popularity in the fMRI community, partly due to the
fact that relatively simple and easily interpretable formulae for the quantities
in question have been derived by Worsley and his colleagues. This has allowed
the random field methodology to be implemented in fMRI software packages
such as SPM (see Appendix A). For example, Worsley (2003) describes the
approximate probability that the maximal statistic tmax is above the threshold
t by

P (tmax ≥ t) ≈
D∑

d=0

μd(S)ρd(t),

where S refers to the search space, in our case the brain, μd(S) is the
“d-dimensional intrinsic volume” of the search space, and ρd(t) is the
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“d-dimensional Euler characteristic density” of t(s), the statistic calculated
at the point s ∈ S. The last contribution in the sum, for d = D, tends to be
the most important; the other terms are boundary corrections.

When D = 3 and S is a ball of radius r, the intrinsic volumes are given
by μ0(S) = 1 (Euler characteristic), μ1(S) = 4r, μ2(S) = 2πr2 (0.5 times
the surface area), and μ3(S) = (4/3)πr3 (volume). The Euler characteristic
density depends on the type of test statistic as well as the threshold, hence it
has to be worked out individually for each type of random field. For Gaussian
random fields see Adler (1981); for χ2, t, F random fields see Worsley (1994).
A parameter that appears in the expression for the density terms is related
to the roughness of the field, and this can be estimated from the data.

The random field approach is attractive in large part because of its gener-
ality; it can be applied to situations as diverse as brain imaging and studies of
the structure of the galaxy, since the theory is based on performing inference
for a random image. In spite of the difficult mathematics that lie at the foun-
dation of the method, peaks and excursion sets are rather intuitive and lend
themselves to natural scientific interpretations in the brain imaging context.

10.3 Thresholds Obtained via Permutation

In contrast to the theoretical random fields approach, which relies on vari-
ous rather strong assumptions such as having images that are smooth, and
uniformly so, as well as having a high enough threshold that the EC ap-
proximation holds, the permutation method for obtaining cluster thresholds
(Holmes et al., 1996; Bullmore et al., 1996a;Nichols and Holmes, 2001;Friman
and Westin, 2005) relies solely on exchangeability under the null hypothesis
(Hayasaka and Nichols, 2003).

The basic idea, even in the neuroimaging context, is a familiar one. If
there is no difference between experimental conditions (that is, under the
null hypothesis), then the labels “rest” and “task” (for example, in a simple
block design study) can be thought of as arbitrary in the sense that any
observation arising from the “task” condition could just as readily have been
an observation from the “rest” condition, and vice versa. Thus, in order to
assess the significance of the difference actually observed in the data at a
particular voxel, one can create an empirical distribution by permuting the
labels “rest” and “task” among the observations. For each such permutation
the relevant test statistic (say, a t test) is computed, and the observed value
of the statistic is then compared to this permutation distribution.

To control for multiple testing and obtain an adjusted threshold, all voxels
need to be considered simultaneously, that is, the permutations need to be
carried out at the level of images. Nichols and Holmes (2001) describe a way
of doing this through the use of a maximal statistic, thereby also forging the
connection with Worsley’s random field theory from Section 10.2. Essentially,
the maximal statistic is as its name implies, the maximum voxel value in an
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image, which acts as a summary of the image as a whole. Nichols and Holmes
consider two types of threshold: a single threshold test and a suprathreshold
cluster test.

The single threshold test thresholds the image at a given critical value. If
all voxels are below that critical value, then the overall null hypothesis of no
activation cannot be rejected. If even one voxel is above the threshold, then a
rejection occurs. Hence, the maximum of the image becomes relevant for this
type of test, and more specifically its distribution, which is obtained via the
permutation method. For a fixed overall level of significance α and number
of permutations N , the critical threshold is calculated as c + 1, where c is
αN rounded down to the nearest integer. This represents the 100(1−α) per-
centile of the permutation distribution of the maximum. The null hypothesis
is rejected at any voxel with value exceeding the critical threshold based on
the distribution of the maximum. Note that this test is still performed at the
voxel level. Holmes et al. (1996) prove that this permutation test has strong
control over the type I error, experiment-wise.

The second type of test considered by Nichols and Holmes, the suprathresh-
old cluster test, relates more formally to the methods outlined in Section 10.1.
Here, the aim is to discover and assess the significance of clusters of connected
voxels that are all above some predetermined threshold. Only contiguous re-
gions larger than a specified size are considered to be active. Now what is
needed is the distribution of the largest cluster above the initial threshold,
under the null hypothesis, which again is determined by permutation meth-
ods. Although this approach is more powerful, as we have already seen, a main
drawback pointed out by Nichols and Holmes is that no tests are conducted
for individual voxels, but rather only for clusters of connected voxels. There-
fore, one cannot say that an individual voxel is significant, only that it belongs
to a significant cluster. In practice, this is most likely the statement that re-
searchers would prefer to make, thus the inability to declare significance at
the voxel level does not seem to me to be a serious flaw in the procedure.

Another use of the permutation test together with ideas from cluster
thresholding can be found in Hayasaka and Nichols (2004), which deals with
evaluating the extent of cluster activation using permutation methods to as-
sess significance. They suggest combining information on voxel intensity with
information on cluster extent using a variety of simple combining functions.
Let P I

i be the (corrected) p-value for the peak intensity of the ith cluster
and PS

i the (corrected) p-value for the size of the ith cluster; then one can
define the combination of these two effects in various ways, for example, con-
sidering T T

i = min(P I
i , PS

i ) (the superscript T denoting that this minimum
statistic was suggested as a combining metric by Tippett, as early as 1931)
or T F

i = −2(logP I
i + log PiS) (Fisher, 1950). See Lazar et al. (2002) for some

other suggestions of combining functions. Instead of evaluating the signifi-
cance of these combined statistics according to their theoretical distributions,
which have been worked out in many instances, Hayasaka and Nichols pro-
pose a multilevel permutation approach, first deriving corrected p-values for
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P I
i and PS

i by the usual permutation tactic; then doing the same for the com-
bined statistics, and finally, if desired, defining and assessing the significance
of a meta-combining statistic, which compares the individual combining func-
tions. Another feature of the Hayasaka and Nichols approach is that it is easy
to give more weight to one or the other of the cluster attributes, either size
or peak intensity; whereas evaluating significance of these modified statistics
might be difficult using theory-driven results, it is of course trivial to do this
via permutations.

As with many applications of permutation tests, in many types of neu-
roimaging experiments the number of possible permutations will tend to be
very large, making it infeasible to enumerate them all. In this case it is accept-
able to take a random subsample of the set of all possible permutations. Care
should be taken to make this random sample large enough that desired levels
of significance can, in principle, be attained. If one wishes to set α = 0.001,
for example, at least 1000 permutations should be considered. Any less than
that and it will be impossible to achieve the significance level, even if the ob-
served data configuration is more extreme than any of the other permutations
contributing to the empirical distribution.

10.4 Control of the False Discovery Rate

Whereas the Bonferroni correction controls for the familywise error rate, that
is, the probability of erroneously identifying even a single null value as sig-
nificant, other types of error control are possible. In the context of fMRI
specifically, it is not reasonable to control the familywise rate, since scientists
care about the overall picture of activation, and not any one particular voxel.
The lack of power and conservative nature of Bonferroni contribute to its
unsuitability as a multiplicity adjustment.

Another correction, of increasing popularity in the recent statistical lit-
erature at large, is to control the false discovery rate (FDR). This is a rate
for the proportion of tests falsely declared significant, out of all tests declared
significant, and was suggested by Benjamini and Hochberg in 1995. It quickly
became apparent that this powerful, intuitive, and easy to implement proce-
dure would have widespread applicability for the analysis of large datasets.
Control of the FDR was introduced to the neuroimaging community by Gen-
ovese et al. in 2002 (Genovese et al., 2002).

A convenient step-up procedure for controlling the false discovery rate at
level q, under rather weak assumptions, is as follows (see Figure 10.3):

1. Order the m p-values in increasing order,

p(1) ≤ p(2) ≤ · · · ≤ p(m−1) ≤ p(m),

where the hypothesis corresponding to p(i) is denoted H(i).
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2. Let r be the largest i such that

p(i) ≤ q
i

m
.

3. Reject the null hypotheses H(1), H(2), . . . , H(r).
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Fig. 10.3. Calculating the threshold to control the false discovery rate using the
Benjamini and Hochberg procedure with q = 0.1. The p-values are ordered from
smallest to largest. The ith p-value is compared to q(i/m), which is the solid line in
the plot. The largest p-value to fall below that line is the cutoff point for significance.

If no hypotheses are rejected, that is, the criterion in the second step of
the procedure is not met for any i, then the false discovery rate is defined to
be zero.

The parameter q can be interpreted in this context as the proportion of
false discoveries in the data that the researcher is willing to tolerate. As such,
it has a more objective, or at least understandable, interpretation than does a
p-value. While there is a tendency to set q values similar to standard p-values,
such as 0.05, there is in fact no practical reason for doing so. Values of q as
high as 0.15 or 0.2 have been found to work well in some settings (Benjamini,
personal communication); in much of my own work on fMRI data, I have
found more conservative q values, even as low as q = 0.01, to be appropriate,
depending on the problem. Naturally, researchers tend to want low proportions
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of false discoveries, preferring that all discoveries be scientifically meaningful
and real, but it should be emphasized that this is not an achievable goal. The
q value provides a straightforward way of exploring this point together with
the scientist. Furthermore, the q value is adaptive to the levels of activation in
an fMRI statistical map, meaning that the same value of q will give different
“equivalent thresholds” on the scale of the test statistic, for each subject in
a study. This obviates the need to set one threshold that provides “good
looking” results for all subjects.

This is demonstrated in Figure 10.4, which shows the ordered p-values for
two simulated subjects, one a “high activator” and the other a “low activa-
tor.” For the “low activator,” 200 of the 1000 simulated p-values are taken
from a uniform distribution on (0, 0.2) and the other 800 on a uniform (0, 1).
For the “high activator,” 250 of the simulated p-values are taken from a uni-
form distribution on (0, 0.01), 250 on a uniform (0.01, 0.05), 250 on a uniform
(0.05, 0.15), and 250 on a uniform (0.15, 1). Note that the curves of the ordered
p-values look very different, so that the value at which the FDR criterion line
crosses the p-value curve is different for both subjects. Even though q is taken
to be the same, 0.05, for the two subjects, the p-value thresholds that are
determined by the FDR procedure are different. This in turn translates into
different thresholds on the scales of the original test statistics, be they t, F ,
or something else. Using the Bonferroni adjustment, the same p-value thresh-
old would have applied in both cases. For the “low activator” the procedure
to control FDR in this simulated example picks out 6 active voxels, whereas
the Bonferroni correction to control FWER does not pick out any. For the
“high activator,” by contrast, the procedure to control FDR finds 255 active
voxels; using the Bonferroni correction, even on this simulated subject who
was designed to have a concentration of small p-values (which would often be
indicative of significant activation), not a single active voxel is detected.

Finally, in their original paper Benjamini and Hochberg (1995) show that
the step-up method for the control of FDR is more powerful than the Bonfer-
roni correction, making it especially attractive in settings where there are vast
numbers of tests to be carried out, a scenario that is increasingly prevalent in
many scientific disciplines. As a result there has been a flourishing of research,
both theoretical and applied, on FDR methods in the past five years espe-
cially. It is outside the scope of this chapter to survey all of the recent research
on FDR and related procedures, but we return to some aspects of this work
that seem particularly relevant for the analysis of fMRI data in Section 10.9.

10.5 An Ad Hoc Method

We briefly mention also what might best be termed an ad hoc thresholding
method. This is based, not on any statistical reasoning or justification, but
rather is driven by the practical need to decide which voxels are indeed ac-
tive. The method is simple, namely, to arbitrarily set a threshold on the test
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Fig. 10.4. A simulated “low activator” (dotted line) and a simulated “high acti-
vator” (solid line), together with the FDR criterion line (dashed-dotted line) using
q = 0.05.

statistic according to what “looks right.” With this approach, researchers rely
on their knowledge and prior beliefs about what an experiment should yield
in setting the threshold. For instance, for many data sets collected on typical
1.5T magnets, a t-map threshold of 3 or 4 has been found to work well by
this standard. However, it does not provide any guidance on how to threshold
data sets (from different subjects, different tasks, different types of magnet,
or magnets of different strengths) for which the arbitrary threshold does not
work. As circumstances change, for example as laboratories move from 1.5T
scanners to 3T scanners, it is usually necessary to adjust the threshold, which
involves searching (by eye) for the new “good performer.” Clearly, such an
approach is unsatisfactory from a statistical perspective, even if a given ar-
bitrary threshold can be justified a posteriori by appeal to the Bonferroni
correction, control of the FDR, or other means. Still, by definition, it gives
“good” results from the practitioner’s perspective.

10.6 Procedures Based on fMRI Time Series and the
HRF

A more recent trend has been to use the fMRI time series itself, or estimates
of the HRF obtained from an event-related experiment, to detect regions of
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activation and hence to indirectly threshold the maps. For the most part, the
procedures in this section take advantage of characteristics of the time courses
to distinguish those voxels whose behavior is indicative of activity.

Clare et al. (1999)use an analysis of variance approach to detect voxels that
exhibit a consistent pattern of response to the stimulus over time in event-
related studies. When a voxel shows a repeatable response to a stimulus,
the authors argue, averaging across trials of a given type will not diminish the
variance of the trial time course, and indeed the response will be highlighted by
gathering strength across like trials via the averaging operation. By contrast,
trial averaging will tend to reduce both the signal and the variance of the trial
time course for nonactivated voxels, since the pattern of response is essentially
random. The method then compares the variance within time points to the
variance between time points at each voxel, where both voxels and time points
are treated as being independent. Under the null hypothesis of no activation,
and following the usual ANOVA theory, the ratio of these two quantities will
follow an F distribution with appropriate degrees of freedom. Once this F map
is created, the authors still need to resort to thresholding methods described
in previous sections, such as random field theory, but the interesting step in
this procedure is to exploit the different characteristics of the time courses of
active and nonactive voxels.

Fuzzy clustering is proposed by Fadili et al. (2000) as a way of both
exploiting the features of the fMRI response curves and avoiding standard
thresholding approaches. Instead of thresholding a statistical map and con-
fronting the multiplicity problem, these authors suggest (fuzzy) clustering of
the voxel time series to identify clusters of interest. Clusters of interest would
be those in which the voxels show behaviors characteristic of active response
to a stimulus. A first step in the algorithm is to reduce the number of voxels
under consideration. The reason for this is that the number of active voxels
is expected to be small relative to the total number of voxels in the brain,
a fact which can produce difficulties for any clustering algorithm. Two types
of voxel reduction are used: elimination of time courses that are statistically
no different from white noise, and removal of voxels that are not in the gray
matter tissue of the brain. Following this step the fuzzy clustering algorithm
itself is applied.

Two crucial elements of the fuzzy clustering algorithm are the number
of clusters, which needs to be predetermined, and the fuzziness index, which
measures the “strength” of the partitioning. High values of the index indicate
a “fuzzier” partitioning, whereas small values of the index indicate a “crisper”
partition (in the language of Fadili et al.). Based on simulations, the authors
recommend setting the fuzziness index in the range 1.5-2.5, with the value 2
being a popular choice in the fuzzy clustering literature. They also propose a
procedure for determining the number of clusters prior to implementation of
the clustering algorithm.

Gibbons et al. (2004) propose an approach that allows for simultaneous
estimation and classification of the hemodynamic response in an event-related
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fRMI study. It is the classification of the response curves that creates an
activation map under their specification. The first step in the procedure is to
average the trials; hence if the experiment consists of k repetitions of “present
stimulus for one second, followed by t seconds of rest” there will be in total
k(t+1) observations prior to averaging, and only t+1 after averaging. A third
degree polynomial is used to fit the HRF to the averaged signal, treating the
coefficients of the curve as random effects. The authors estimate the random
effects using an empirical Bayes approach, which allows the estimates in a
given voxel to “borrow strength” from neighboring voxels.

Now, depending on the nature of the responses at a particular voxel, it
may or may not exhibit the characteristics of the BOLD response, as described
in previous chapters. More specifically, recall that when a region of the brain
becomes active, changes in the hemodynamic response take place with a lag,
or delay, relative to the stimulus onset. Once the response starts to form, it
reaches a peak after a certain amount of time, depending on the individual and
the task. In the absence of continued stimulation, the response then dies down,
returning to baseline after a possible undershoot (see Figure 1.8). Therefore,
an activated voxel should have roughly that behavior: a lag, followed by a
maximum in the first half of the t+1 observations, followed by a minimum in
the later part of the observation trail. In addition, the difference between the
attained maximum at the peak, and the attained minimum prior to or at the
return to baseline, must be large enough that activation can be considered
to have taken place. These criteria can be written in terms of the critical
points and critical values of the cubic polynomial, which are in turn one to
one functions of the polynomial coefficients. However, unlike the coefficients of
the polynomial, the critical points and values have biological meaning related
directly to the nature of the BOLD response.

Finally, voxels are clustered using an algorithm such as K mediods and
voxels or clusters that do not show the requisite behavior are dropped. Only
clusters containing voxels that meet the criteria outlined above are retained.
These clusters, and in practice there rarely seem to be more than one or two
that qualify, give the active voxels, without any formal hypothesis testing or
thresholding. On the other hand, the method relies on averaging across the
k(t + 1) original observations, resulting in a significant loss of data, and ig-
noring potentially important differences among the k repetitions. These issues
are addressed in Roy et al. (2005).

10.7 Other Techniques

Finally, we turn here to a brief survey of some other procedures that have
been proposed in the recent literature for detecting activation in statistical
neuroimaging maps. Although not all of these methods were developed for
fMRI, the issues are general enough that there should be no question of ap-
plicability.
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Turkheimer et al. (2000) develop a region of interest (ROI) analysis, with
the goal of comparing multiple ROIs across experimental groups of subjects.
This is a rather different focus than other methods considered thus far in this
chapter, where the emphasis has been on detecting active voxels in individual
maps. Nonetheless, this work by Turkheimer and colleagues deals directly
with problems of multiplicity. For each ROI in each experimental group, one
calculates the linear combination of the mean and median, λx̄+(1−λ)med(x)
for some λ > 0 and x being the observed data in the ROI. The choice of λ
is via bootstrap-like methods, and thus may differ for each ROI and for each
of the experimental groups, resulting in an adaptive procedure. To compare
two groups of subjects at a given ROI, one compares the values of the linear
combination, scaling by the pooled sample standard deviation.

The multiple testing problem across the ROIs is attacked using permu-
tation methods, as described in Section 10.3, in conjunction with step-down
procedures. For the step-down approach, the test statistics in the k ROIs are
ordered from largest to smallest. The empirical distribution of the ordered
statistics is obtained via permutation, and the largest observed test statistic
is compared to the empirical distribution of the maximum. If the observed
value is extreme in comparison to its distribution, the null hypothesis of no
difference at the corresponding ROI is rejected. The procedure is then re-
peated on the next n − 1 largest test statistics, with regions being rejected
and eliminated from consideration until the hypothesis being tested cannot
be rejected.

An advantage of the adaptive test statistic is that one need not assume
that the distribution of the observations is the same in all ROIs and for all
experimental groups, a restrictive assumption that is often made in practice.
In their examples, both simulated and real, the authors seem to choose λ only
once for each ROI, but in principle there does not appear to be any barrier to
letting λ vary by group. Their simulations show that the adaptive statistic does
indeed adapt to the underlying distribution of the data, with λ changing as the
true distribution of the observation varies. They also demonstrate an increase
in power over the usual t test with randomization, for moderate numbers of
subjects in each group. On the real data, the correction for multiplicity does
indeed result in increased sensitivity to detect differences between two groups
of subjects in multiple ROIs.

As two final points, the authors note that their methodology can be ex-
tended to the more general problem of detecting active voxels in a statistical
map; they also recommend against using their procedure when it is of inter-
est to compare more than two groups of subjects (the traditional “multiple
comparisons” problem in statistics).

Levin and Uftring (2001) combine a correlation approach with the clus-
ter thresholding of Forman et al. (1995) to create a “model independent”
method for detecting activation. Noting that traditional correlation analysis
distinguishes between active and inactive voxels on the basis of the correla-
tion of the voxel time series with a prespecified reference wave (for instance,
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the boxcar representing a block design), Levin and Uftring instead advocate
repeating each fMRI experiment at least twice on the same subject during the
same session, and correlating each voxel with itself. Here, the time series in
a given voxel from the first run would be correlated with the time series for
that same voxel in the second run. The argument is that voxels that are truly
active should show a high level of consistency in their behavior, whereas the
time courses of voxels that are inactive will be mostly noise, which will not
be repeatable from run to run. Levin and Uftring hence propose a two-stage
criterion: first, the correlation between the time series from the two runs must
be above a certain threshold, say r ≥ 0.6; second, the voxel must be part of
a cluster of voxels, all of which have correlation above the threshold. As in
the work by Forman and colleagues described earlier, Levin and Uftring use
simulation to study the expected number of clusters of a given size under the
null model, although tables are not provided.

An advantage of this procedure, as demonstrated on a small number of
experiments with a small number (n = 2) of real subjects is that activation
can indeed be detected when no a priori assumptions are made regarding
the model that drives the brain response. This is shown in the paper with
simple hand clenching experiments, where activation is detected on both the
left and right sides of the brain, in response to left and right hand clenches.
By contrast, using the standard correlation method, voxels responding to left
hand clenching are detected on one side of the brain when the time series
are correlated with a block design that is “on” for left clenches and “off”
otherwise, and similarly for right hand clenching. The standard correlation
approach detects only one side of activity at a time, whereas the bilateral
effect is found using the model independent analysis.

A potential drawback is the strong assumption that an active voxel will
show a consistent enough behavior that it will attain a high level of corre-
lation with itself in a repeat of the same experiment in a single session. As
noted by the authors, this is a different assumption from the test-retest reli-
ability research described in Section 4.3, in which the reliability was not for
repeated runs in the same session, but rather across sessions separated in time
by weeks or longer. Even with this crucial distinction, the method may still
be questioned on the grounds that, particularly for simple tasks, subjects may
become habituated to the stimulus, or lose focus in the second run. Further-
more, the requirement to repeat each experiment at least twice in the same
session for each subject adds to the expense and burden of carrying out an
fMRI study. Subjects would need to spend more time in the scanner, which
could lead to problems in recruitment and retention.

10.8 Evaluation of Methods

Interestingly, in light of the severity of the multiplicity problem in fMRI data
and of the centrality of the thresholding question, to date not much work has
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been done to compare the performance of the most commonly used thresh-
olding methods.

Nichols and Hayasaka (2003) compare techniques for controlling the fami-
lywise error rate (FWER). Their survey encompasses permutation/resampling
methods, random fields and Bonferroni, as well as corrected versions of Bon-
ferroni, as applied to Gaussian and t images. The choice of thresholding ap-
proaches was guided in part by the desire to include methods that could
account for at least some of the spatial dependencies in the data. In all, 11
real data sets are examined by these authors, 9 from fMRI studies and 2
from positron emission tomography (or PET, another functional neuroimag-
ing modality) studies. Results from all of the studies are reported here, since
imaging modality does not appear to influence the main conclusions. Nichols
and Hayasaka find that the threshold for declaring significance is always lowest
using permutation methods, often markedly so. Differences among the meth-
ods are more pronounced for studies with small degrees of freedom. Compared
to Bonferroni, adjusted “Bonferroni-like,” and permutation methods, the ran-
dom field thresholds become more conservative (that is, higher) as the degrees
of freedom in the underlying maps decrease.

In terms of numbers of active voxels detected by each of the thresholding
procedures considered by Nichols and Hayasaka (2003), the lower thresholds
determined by the permutation method obviously lead to more active voxels.
Interestingly, however, in 3 of the 11 real data sets in the study, even using
the permutation method to set the threshold, no active voxels are detected.
The random field theory’s conservative thresholds imply that fewer active
voxels are found overall; in four of the experiments, no activity is detected.
Bonferroni and related methods are between these two extremes. In only one
of the experiments is activation found using the permutation threshold, but
not by any of the other techniques. These conclusions are confirmed in a se-
ries of simulated data examples. Random field thresholds tend to be (overly)
conservative unless the data are sufficiently smoothed first and the degrees of
freedom of the underlying map are sufficiently large. The permutation thresh-
olds are the most liberal, in general. Similar results are reported in Nichols
and Holmes (2001) and in Hayasaka and Nichols (2003).

Another comparative study (Logan and Rowe, 2004) considers the control
of three error rates: the simple, voxelwise type-I error without accounting for
multiple testing; the familywise error; and the false discovery rate. For each
error rate the authors also consider different methods that can be used for
their control, ranging from simple procedures carried out on an individual
voxel basis, to techniques that account for possible spatial dependencies, as in
the comparison carried out by Nichols and Hayasaka (2003). Working with a
simulated data set designed to mimic a simple finger tapping experiment, the
authors incorporate several different types of correlation structures to test the
various thresholding methods. Logan and Rowe, like Nichols and Hayasaka,
also consider the effect of smoothing, as this is a common preprocessing step,
as we have already seen. Five thresholding methods are compared: unadjusted
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for multiplicity; Bonferroni correction; permutation resampling to control the
FWER; simple control of the FDR; and a resampling procedure to control the
FDR.

Not surprisingly, in all cases the unadjusted method has high power to
detect true activations, but at the steep price of many false discoveries. As
noted by the authors, every voxel in the simulated image, which also included
“air” outside the “brain,” is declared active at least once, and usually multiple
times, over the course of the simulations, when no correction is made for
multiple tests. This is what one would expect.

When the voxels are assumed to be uncorrelated, there is little or no advan-
tage to using a permutation approach to control the error rate, be it FWER or
FDR. For both of these, the permutation versions give almost identical results
as the simpler, nonpermutation-based thresholds. Again as would be expected
from theory, the FDR methods have higher power than the procedures that
control FWER, although the former also falsely declare more inactive voxels
to be active, even though the rate is controlled at the desired level on average.
The conclusions are the same with moderate amounts of spatial correlation:
there is no apparent advantage to utilizing a permutation method, and FDR
procedures are more powerful than FWER procedures, but with more false
positives. The strength of the permutation-based thresholds becomes apparent
when there is strong spatial correlation; in that case, the resampling versions
for control of FWER and FDR perform better than the simple versions, having
higher power to detect true activation. FDR procedures remain more powerful
than their familywise counterparts. Finally, smoothing produces a correlation
structure intermediate between uncorrelated and moderately correlated in the
simulations performed by Logan and Rowe, indicating that there is little to
be gained from a permutation resampling approach. The findings from the
simulation are also replicated when the authors apply the five thresholding
techniques to a real finger tapping experiment: little difference is found be-
tween the simple procedure for the control of an error rate and the more com-
plicated, resampling version that incorporates spatial dependence; and FDR
procedures discover more active voxels than do FWER procedures, since the
former impose less stringent criteria.

Finally, Marchini and Presanis (2004) present a comparison of three thresh-
olding approaches: control of FWER via random field theory, control of FDR,
and Bayesian posterior probability thresholding. In terms of power, posterior
probability thresholding has the best performance, followed by FDR control.
Control of FWER via random fields is the least powerful of the methods con-
sidered here. For actual control of the type I error, Marchini and Presanis
find that the random field method produces the lowest type I error, and has
smaller standard errors of estimates as well. FDR control is again between
the other two approaches. This comparison ends on the rather unsatisfactory
conclusion that no one method dominates the others, and that the choice of
thresholding technique will depend on the balance of type I and type II errors
that an investigator is willing to tolerate.
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The findings from these comparison studies are not themselves directly
comparable, as they employ different thresholding methods. However, it is
possible to make some practical recommendations. First, it is apparent that
FDR controlling procedures are to be preferred over FWER controlling pro-
cedures for fMRI, both because they are more powerful and because they
control a rate that seems to be more relevant and interesting to practitioners.
Second, the added computational burden from permutation methods may not
be worthwhile, unless there is an a priori reason to believe that there is strong
correlation in the data. This may be the case, for instance, when considering
a group map based on multiple subjects, or when the data have been heavily
smoothed (not, admittedly, a common practice). Thresholds based on random
field theory may be overly conservative, especially in studies of an exploratory
nature. It remains to be seen how the other methods described in this chapter
fare relative to those that have already been compared.

10.9 Other Issues

It is evident that the question of thresholding is central to fMRI, and to neu-
roimaging in general, and has provided the impetus for much new statistical
work as well. In this section, we survey several general issues related to the
thresholding question.

First, it is worth noting again that there is an alternative to whole-brain
analyses, namely analysis of predefined regions of interest. ROIs are areas
of the brain that are defined by anatomy, by function, or both, to be of
specific interest to the researcher. In such cases, where the focus is a priori
on a particular ROI, or perhaps several (for instance, a confirmatory rather
than an exploratory study, or an experimental paradigm that is known to
have a reliable effect on specific areas of the brain), statistical power can be
gained and the multiple testing problem reduced by concentrating on just
those areas. In this manner, power is not expended searching for activation
in parts of the brain where it cannot, or should not occur. Although the
number of voxels in an ROI will be smaller than the number in the entire
image, that number may still be in the thousands. Furthermore, the ROI has
to be defined on an individual basis for each subject in a study, an effort
that can be very time consuming. And if ROIs across subjects are to be
comparable, this work must be carried out in a common atlas space, such as
Talairach space. Still, in spite of its difficulties, ROI analysis offers a viable
alternative that is used, exclusively or in conjunction with a whole brain
analysis, in many fMRI studies. When such an analysis is performed, the
focus will often be on characterizing the activation patterns within ROIs, for
example, the proportion of active voxels, or the extent of activity in the ROI.
These measures are then compared across subjects or across experimental
groups using standard statistical techniques, and the thresholding question is
mitigated to a certain extent (see Lange 2003 for one example of this).
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As an intermediate step between whole-brain analysis and ROI analysis,
it is also possible, if not entirely common practice, to “strip away” parts
of the image that are not valid for activation; the image can be masked so
that only voxels inside the brain are included, and the brain itself can be
further segmented into gray matter, white matter, and cerebrospinal fluid,
with activation expected only in the first of these three categories. Both of
these actions carry with them the risk of inducing additional error into the
analysis, by potentially stripping away relevant voxels. I have often found that
working with the whole image is useful for diagnostic purposes: if thresholds
are set too low, for example, this can manifest itself in high levels of apparent
activation outside of the brain.

Inference can also be sharpened, and power gained, by reducing the num-
ber of tested voxels in another way, that is, by first estimating the number of
truly null hypotheses m0. and then basing any adjustment for multiplicity on
m − m0. instead of on m (Benjamini and Hochberg, 2000; Turkheimer et al.,
2001). Ideally, we would like to identify which voxels should be eliminated
from the analysis altogether, but this will most likely introduce bias and error,
since it is of course possible that a test with a high p-value was in fact gen-
erated from the alternative and not the null. Consider the situation in Figure
10.5. It is clear that if any null hypotheses are false, they are probably the
ones that correspond to the smallest p-values. It is equally as clear that the
null hypotheses corresponding to the highest p-values are probably truly null.
What is not so clear is where the transition from “probably false nulls” to
“probably true nulls” takes place. In addition, we know that under the null
hypothesis, the p-values are uniformly distributed on the interval [0,1], so that
if all tested hypotheses were truly null, the ordered p-values would be like the
order statistics of a U[0,1] random variable, and would fall along the straight
line of slope 1. Deviations from this line could then, in principle, be used to
get an estimate of the number of “true nulls.”

Benjamini and Hochberg (2000) suggest one way of doing this in the
context of improving FDR control. Their method is essentially graphical in
nature, and is based on the U[0,1] distribution of the p-values under the null
hypothesis. When the number of true nulls m0. is less than the total number
of voxels tested m, then as described above the p-values from the false nulls
will tend to be smaller than those from the true nulls. We are looking for the
“break” from the line denoting uniformity, that is, we need to find an estimate
of m0., m̂0., based on the largest p-values. Now, in the region of the plot of
the ordered p-values where the null holds, the points should still be roughly
linear (uniform), and the slope of that line will be b = 1/(m0. + 1). To get an
estimate of m0. from this relationship, we simply need to draw a line through
the largest p-values that passes through the point (m + 1, 1) (the point in the
upper right corner of the plot), with slope b̂; then m̂0. = 1/b̂.

The question still remains, how many of the largest p-values to include
in this calculation? Benjamini and Hochberg propose the following simple
method: fit the line using all m points and calculate the estimated slope;
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Fig. 10.5. An exaggerated plot of the ordered p-values from one slice including
64 × 64 = 4096 voxels.

then, fit the line using the m− 1 largest p-values and calculate the estimated
slope; continue in this manner, successively dropping the smallest p-values
from the set, until the first time that the estimated slope decreases. Although
many possibilities for calculating the slope exist, the authors advocate the
simple lowest slope estimator, the slope of the line passing through the points
(m+1, 1) and (i, p(i)), Si = (1−p(i))/(m+1− i). The algorithm then specifies
that as long as Si ≥ S(i−1), one should continue; stop for the first k such that
Sk < Sk−1 and estimate the number of true nulls by m̂0. = min[(1/Sk+1), m],
the smaller of m and the integer larger than the inverse of the slope Sk.
The estimate m̂0. is then used in the FDR-controlling procedure described in
Section 10.4.

This is demonstrated in Figure 10.6. We first draw the line connecting
(m + 1, 1) and (1, p(1)), then the line connecting (m + 1, 1) and (2, p(2)), and
so on. Note that as we move through the first five ordered p-values, the slope
of the line increases. When we pass the line connecting (m+1, 1) and (6, p(6)),
the slope decreases for the first time. For the simulated data in this example,
the slope for the line at the sixth ordered p-value is approximately 0.0605;
since 1/0.0605 = 16.53, we estimate the true number of nulls at 17, out of the
20 observations in the data set.

Turkheimer et al. (2001)use changepoint analysis together with the graphi-
cal presentation of the p-values to estimate m0.. Their procedure is as follows:
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Fig. 10.6. Demonstration of the Benjamini and Hochberg (2000) adaptive procedure
for estimating the number of true null hypotheses.

A test of uniformity is applied to sets of ordered p-values, in an iterative
fashion. Starting with an initial set, if the test for uniformity is rejected, the
smallest p-value in the set is discarded; the test is reapplied on the reduced
set, and so forth, until the hypothesis of uniformity cannot be rejected. The
slope of the plot of the ordered p-values is then calculated based on this final
set, and m̂0. determined as described above for the Benjamini and Hochberg
technique. By comparison to Benjamini and Hochberg’s adaptive procedure,
that of Turkheimer et al. is somewhat more complicated. The test for unifor-
mity is based on the differences between the observed p(i) and its expected
value if there are in fact m0. true nulls (in which case those m0. p-values come
from a uniform distribution). The maximum “residual” is taken as the test
statistic, which then requires the use of simulation or tables to assess whether
a set of p-values significantly differ in distribution. The slope estimation is
also considerably more complicated, using a weighted least squares approach.

A model-based version of the graphical adaptive ideas is introduced by
Pounds and Morris (2003). If one draws a histogram of the p-values, instead
of plotting the ordered values, in the case where some tests are true nulls
and some are not, the histogram will look something like the depiction in
Figure 10.7. The left hand side of the histogram, representing the smallest
p-values, will be made up of some small p-values coming from true nulls and
some p-values coming from false nulls. As a result, there will be more small
p-values than expected if all tests are truly null. The rest of the histogram will
look roughly uniform. Again, the issue is where to draw the line across the
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histogram, to delineate the true null, and hence uniformly distributed, part
from the rest.
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Fig. 10.7. Idealized histogram showing the distribution of the p-values as a mixture
of two components. One component is U(0, 1), coming from those voxels that are
truly null. The second component comes from voxels that are not truly null and can
be modeled in a variety of ways. The vertical line shows the cutoff for determining
significance; for purposes of demonstration it is drawn here at 0.15. All voxels to
the left of this line are declared active and all voxels to the right of it are declared
inactive. The horizontal line is the dividing line between the true null voxels and
the true non-null voxels, that is, between the uniform component and the other
component. All voxels below the line come from the uniform component (truly null)
and all voxels above it come from the other component (truly non-null). In this
way, the two lines divide the histogram, conceptually, into four parts: true positives
(upper left), false positives (lower left), true negatives (lower right), false negatives
(upper right).

As has been proposed by several authors, it is sensible to model the dis-
tribution of the p-values as a mixture of a U[0,1] and some other distribution.
The Beta family is flexible and includes the uniform as a special case, mak-
ing this a sensible choice. The model in Pounds and Morris (2003) takes the
distribution of the p-values to have the form

f(p|π, a) = π + (1 − π)apa−1,
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a mixture of Beta(a,1) and U[0,1]. Various ways of estimating the density
represented in the histogram via this model are presented. The estimate of π
is of particular interest, since it is the estimate of the proportion of true null
hypotheses in the data. Based on estimates from this mixture model, one can
also attain estimated upper bounds on the false discovery rate, which in turn
leads to an adaptive threshold.

Pounds and Cheng (2004) explore the use of the conditional FDR (cFDR),
which is simply the expected proportion of false discoveries given that r voxels
are declared active, i.e., the number of false discoveries among the r most
significant tests. Moving away from the model-based approach in Pounds and
Morris, which may be too restrictive in some applications, Pounds and Cheng
suggest smoothing the histogram of the p-values to obtain a more robust
estimate of their density and from this derive an estimate of the proportion of
true null hypotheses, π. In simulation studies, although not theoretically, this
smoothed histogram method is shown to perform better than the model-based
procedure of Pounds and Morris.

Of these various methods for estimating the number of true null hypotheses
and carrying out the appropriate control for multiple testing, Benjamini and
Hochberg’s adaptive procedure has the virtue of simplicity. Many fMRI studies
are exploratory in nature, so having a technique that is relatively easy to
implement, even if it does result in a rather crude estimate of m0, is probably
sufficient.

10.10 Conclusion

The question of appropriate thresholding of statistical image maps, with the
goal of determining which voxels or regions show significant amounts of acti-
vation, has taken a central place in the analysis and interpretation of fMRI
data. Starting from the clearly unsatisfactory solution of applying a standard
Bonferroni correction in order to control the FWER, research into the mat-
ter has spread in a variety of directions. Practical issues of implementation
have inspired much of the current research, and will no doubt continue to do
so, owing to the proliferation and indeed increasing prevalence of very large
data sets for which multiplicity becomes a problem, such as DNA microarray
analysis.
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Additional Statistical Issues

In this penultimate chapter, we examine a number of critical statistical issues
that can only be fully appreciated from within a broader understanding and
knowledge of the analysis methods currently in use for fMRI data. As we have
seen in the preceeding chapters, this rich data source, and the fascination of
the human brain, have created an attitude among researchers of “I have a
hammer, fMRI data look like nails.”. Almost any statistical procedure that
one can consider has been brought to bear on some aspect of the analysis
stream, whether it be preprocessing, modeling, thresholding, or all three. This
is not necessarily a bad thing, as it means that some very smart people have
thought about a very hard problem. Still, it is worthwhile to take a step back
from the minutiae of implementation, as outlined in the chapters devoted to
particular techniques or approaches, and consider some general issues that
can be gleaned from the more detailed discussions. The goal of this chapter
is to provide that overview.

11.1 Whitening Versus Smoothing

One of the main obstacles to easily fitting models to fMRI data is the compli-
cated correlation structure, particularly in the spatial dimension. As we have
seen, one approach is to ignore this difficulty altogether, and thence to fit the
model independently to each voxel and collapsing over time. This is the exam-
ple of the simple t test or basic linear model. Although such a simplistic and
unrealistic analysis does yield “good enough” results on robust experimental
paradigms, one would obviously prefer either to fit the existing models with a
more realistic error structure (the general linear model), or to fit more compli-
cated models that directly incorporate the temporal and spatial correlations
(spatiotemporal models).

The discussion of the general linear model in Chapter 5 alluded to
the main alternatives available to researchers wishing to go this route and
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accommodate temporal structure other than independence. These are whiten-
ing and smoothing.

To understand the logic of these two approaches, we will rewrite the general
linear model as

Y = Xβ + Wε,

where Y is the observed time series, X is the design matrix, W describes the
autocorrelation structure, and ε ∼ N(0, σ2I). Now the variance-covariance
matrix of the data is V = WWT .

Whitening means to remove the correlation structure altogether by pre-
multiplication of both sides of the general linear model equation by a suitable
matrix. We can see how to do this using the rewritten model above. Suppose
W is known. Then if we premultiply by W−1, we obtain

W−1Y = W−1Xβ + ε,

and now the errors are independent, identically distributed, and normal. β
can be estimated using ordinary least squares, and the estimates are mini-
mum variance unbiased. Of course, in practice W is not known, and so we
cannot premultiply by W−1 precisely. These misspecifications result in biased
estimates of the variance (Friston et al., 2000a). Friston et al. (2000a) also
show that prewhitening models such as autoregressive of low order yield un-
acceptably large biases of the variances of the parameter estimates and their
contrasts. Still, prewhitening is quite commonly used in fMRI data analysis.

In the same vein as whitening, but with the opposite goal or orientation,
is precoloring. Here, the model is premultiplied with a coloring matrix C to
give

CY = CXβ + CWε.

The effect of this transformation is to obtain a known autocorrelation struc-
ture for the errors, making it possible to use the theory of generalized least
squares (GLS). That is, rather than eliminating the correlation structure, we
aim to impose known structure prior to analysis. This approach is not as
prevalent, and so is not discussed further.

An alternative method is smoothing, which refers to an initial smoothing
or filtering of the fMRI time series as advocated by Carew et al. (2003). The
idea now is to premultiply the general linear model by a smoothing matrix
S, such that the assumed variance-covariance matrix SST is approximately
equal to the true variance-covariance matrix under smoothing, SV ST . Friston
et al. (2000a) show that the bias can be controlled even when V isn’t known,
although direct minimization is difficult.

Carew et al. (2003) use spline smoothing to compute S, with the optimal
degree of smoothing for each voxel time series chosen by generalized cross-
validation (GCV). On a real fMRI data set, they find that most voxels require
only a small amount of smoothing, with a few time series demanding large
amounts. In general, the GCV spline approach smooths more than does SPM,
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the default analysis path for many fMRI researchers. On simulated data the
authors find that spline smoothing produces, on average, unbiased variance
estimates for contrasts of interest, whereas both SPM and no smoothing are
biased (the latter more so, obviously). The spline estimates are, however, less
efficient.

Whitening is more efficient than smoothing (Friston et al., 2000a; Carew
et al., 2003). But, as noted by both Friston and Carew, if the model used for
whitening the errors is misspecified, the results can be very biased (in terms of
standard error estimates, and hence inference as a whole). This is the typical
bias-variance tradeoff, and should come as no surprise.

It is important to emphasize that the parameter estimates β̂ are in any
case unbiased. The discussion in the fMRI literature surrounding whitening
or smoothing and the general linear model is in reference to the possible bias
in the variance estimates. Bias in the variance estimates means that the test
statistics are also biased, leading to a failure to detect truly active voxels or
falsely detecting inactive voxels.

In the spatial dimension, smoothing is also often applied as a preprocess-
ing step to induce spatial correlation prior to any statistical analysis, which
can then be done on a voxel-by-voxel basis. The size of the smoothing ker-
nel (the bandwidth) determines the strength of correlation, and ideally the
data would be smoothed “just enough” to match local structure. Of course
it is hard to assess the requisite amount of smoothing needed to achieve this
matching. Alternatively, images may be analyzed voxelwise and the results
then smoothed, but this is less common.

11.2 Functional and Effective Connectivity

A contentious and elusive concept (Horwitz, 2003) in the neuroimaging com-
munity – and one of great interest to researchers – is connectivity. Loosely
speaking, connectivity refers to networks that model or explain relationships
between brain regions. Discussions of connectivity thus allow neuroscientists
to move away from the thresholding question (“Which voxels are active?”) to
the more general, and more scientifically relevant, question of how different ar-
eas of the brain interact to create thought. From a statistical standpoint, this
is a difficult issue to explore, since it typically involves questions of causality;
beyond that, however, the (temporal) resolution of the data may not support
inference at this level of detail, and scientists don’t always agree on what ex-
actly is meant by this term, as noted by Horwitz (2003). fMRI researchers
generally distinguish between functional and effective connectivity, although,
again as noted by Horwitz (2003), different researchers use these same terms
to mean different things, and furthermore the same concept is evaluated us-
ing different levels of data (for instance neuronal versus brain region) and
measures.
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Functional connectivity is usually taken to refer to the temporal corre-
lation between spatially remote events, whereas effective connectivity is the
influence that one neural system has over another. Clearly these two ideas are
related and the demarcation between them is somewhat fuzzy, further exacer-
bating the conceptual and statistical difficulties accruing to the discussion of
connectivity as a whole. Connectivity, in addition, is a fluid notion: it seems
reasonable, on the face of it, that different networks come in to play when we
solve a hard math problem than when we read Macbeth, for example. Hence,
the search must be for general principles and procedures that can elucidate
the connections between regions of the brain, even if specific networks are of
interest. In spite of the various difficulties (conceptual, practical, statistical)
surrounding connectivity, in this section I attempt to survey some of the work
that has been carried out in this important area, and to draw some general
conclusions.

In the current literature there are two predominant ways of trying to as-
sess connectivity: correlation methods and structural equation models (SEM).
The former looks at correlations between voxels or regions of interest in an
effort to determine which areas of the brain coactivate. This is some measure
of functional connectivity, perhaps, but not of effective connectivity, since it
is well known that correlation does not imply causation. Structural equation
models are a class of models arising mostly from social science and econo-
metrics that do aim at attaching some notion of causality to the relationships
that are found among the components. Hence the SEM approach is in fact an
attempt to quantify effective connectivity. As with the related method of path
analysis, there is some fair amount of controversy within statistics regarding
the propriety of inference obtained via SEM, and so these results should be
treated with caution.

11.2.1 The Use of Correlation to Assess Connectivity

It is intuitively plausible that correlation could be used to assess connectivity
between voxels or regions. When the time courses of two voxels are highly
positively correlated, one would tend to infer that they are connected with
each other, if in no other sense than that the two voxels are active at the
same times and inactive at the same times (more or less). Similarly, a high
negative correlation would lead to the conclusion that when one voxel is active,
the other is not; and again this is a type of connection between the activation
patterns of the two. In this limited interpretation, similarity of function can be
summarized by the simple correlation coefficients between voxel time courses.

A small example is presented in Figure 11.1. The correlation matrix shows
pairwise correlations among 67 voxels that, according to a prior analysis,
belong to three different categories: the first 26 are deemed to be noise, the
next 22 are believed to be voxels that are exhibiting head motion, and the
last 19 are evidently task-related. In this plot, lighter colors mean correlations
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closer to 1. A number of conclusions can be quickly drawn, making this an
attractive approach:

1. First, we can see that there are patches of higher correlation corresponding
to the head motion voxels (in the middle of Figure 11.1) and the task-
related voxels (in the upper right corner). This implies that all of the
voxels in those two categories exhibit similar temporal behavior.

2. Second, the strength of the correlation among the noise voxels is weaker.
3. Third, some patching in the noise block is evident; some of this is an

artifact, since the noise block is in fact made up of noise voxels from three
different brain locations (n = 8, 6, 12) and interestingly the correlations
pick this up.

4. Fourth, the last noise block, made up of 12 voxels according to the initial
analysis, seems to exhibit at least two different types of temporal behavior.

5. Fifth, there is correlation among the voxels in the head motion class and
the voxels in the task-related class. While weaker than the respective
within-class correlations (as is to be expected), it is stronger, or on a level
with, the within-class correlation for the noise voxels.

In spite of these various observations, it is still not clear what we can learn
more precisely about the connections, if any, among the different classes of
voxels in this example. The existence of moderate levels of correlation among
the head motion and task-related classes is intriguing, but it is a far leap from
noting the effect to concluding connectivity.

Computationally such a näıve approach is challenging since it requires
the calculation and evaluation of all the pairwise correlations between time
courses. And this is not even to consider simple extensions such as partial
correlations to encompass sets of voxels or lagged correlations. One can ame-
liorate the computational burden by first screening the candidate set of voxels
and retaining only those that show evidence of activation (Bullmore et al.,
1996b). However, the inferences about connectivity from this implementation
are still unsatisfactory.

As an example of this idea, in Bullmore et al. (1996b) task data are first
analyzed to identify a subset of probably active voxels. The 170 voxels that
remain after this screening belong to several regions that are related to the
visual-linguistic task in the experiment. In this formulation the regions of the
network are loosely identified through testing for activation at the individual
voxel level; that is, active voxels are found and attributed to specific anatom-
ical or functional areas. Looking at the correlations between pairs of time
courses, the authors conclude that voxels in the same anatomical region tend
to be positively correlated, as one would expect if the correlation approach is
at all valid. Across regions, voxels may be positively or negatively correlated;
again this is reasonable since it indicates that different areas of the brain are
activating at different times. However, they also note deficiencies, in terms of
what can be learned from the simple correlation matrix, and these are instruc-
tive more broadly. First, the correlations only give information about whether
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Fig. 11.1. Correlation matrix among 67 voxels belonging to three different cate-
gories: noise (n = 26), head motion (n = 22), and task-related (n = 19). Light colors
indicate correlations closer to 1 and it is evident that the two blocks correspond-
ing to head motion and task-related activation exhibit a temporal coherence that
is not found in the noise block. Since these are simple correlation coefficients, it is
not entirely clear what we learn about connectivity from such an analysis. Voxels
extracted and classified by Jun Ye, from a data set provided by Rebecca McNamee,
University of Pittsburgh.

or not two voxels are connected, but they do not inform on the patterns of
temporal activity that are shared by functionally connected voxels. Second, it
is hard to discern finer details of the functional relationships between regions,
when they exist.

Bullmore and colleagues therefore suggest multivariate methods on the
time courses, such as PCA (via singular value decomposition of the co-
variance matrix of the activated voxels) and canonical variate analysis, to
help elucidate the connections between elements in the network. For ex-
ample, the first principal component summarizes the most important tem-
poral behavior in the data. Therefore, if two voxels have positive weights
on that component, one can conclude that they are positively connected in
terms of that dominating temporal pattern. This gives a more subtle picture
about voxel coactivation than the pure correlation method. Bullmore et al.
(1996b) provide a variety of analytical and graphical techniques to evaluate the
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connections derived from the multivariate analysis. In large part conclusions
from the simple correlation matrix are confirmed, and sharpened with addi-
tional detail.

Although motivated by the correlation approach, Bullmore et al. do not
directly use the correlations across voxel or regional time courses in their anal-
ysis; other researchers have suggested instead refinements to the approach
itself. Hampson et al. (2002), for example, introduce an interesting (if some-
what intricate) procedure that defines regions of interest and hypothesizes
functional connections between them on one data set, then tests the connec-
tivity hypotheses on another, independent data set obtained from the same
subject. The roles of the two data sets are then reversed, and one can switch
back and forth between the two sets multiple times to pick out additional
ROIs in the network. The first data set is obtained from a block design, al-
ternating between task and rest conditions. The second data set is obtained
from “steady state” data of the same two conditions, i.e., a continuous stretch
of rest data and a continuous stretch of task data.

The rationale for using two data sets is that, as discussed previously, func-
tional connectivities are almost surely different for different tasks, and between
task and rest. Connectivities uncovered during a resting state might give in-
sight into neuronal networks that are in place regardless of the task. On the
other hand, clearly the connections that arise during task performance are
also of interest and they can be more realistically evaluated if compared to
what is expected at rest.

In the first step, ROIs are defined from the set of data from the block
design. The authors use a combination of voxel by voxel t testing (with gener-
ous thresholding) and anatomical information to identify the ROIs (call them
A and B for illustrative purposes). A functional relationship is hypothesized
between the two regions. To test the hypothesis, correlations with the signal
from region A are calculated for the two steady state runs comprising the
second data set: the time courses are filtered, the average time course for the
run is calculated, the average time course of voxels in region A is calculated,
and the partial correlation between the time course of each voxel and that of
region A is found, after removing the overall average from the former. Since
this procedure is followed separately for each of the two steady state runs,
in the end one obtains a map of correlations between voxels at rest and re-
gion A, and a map of correlations between voxels during task and region A.
These maps undergo some additional processing, but in the end the correla-
tions to region A are evaluated within region B and a test performed for the
significance of correlations between activation in the two regions.

This completes one iteration of the algorithm. In the next iteration, one
uses the two steady state data sets to define region C, which is hypothesized
to be functionally connected to, say, region A. The respective states of the
block design data set are then brought to bear to evaluate the hypothesis of
connectivity between region C and region A, similar to the fashion described
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for the first iteration. One can continue in this manner, iteratively adding
prospective regions to the network.

Clearly this technique is intensive both in terms of data collection (since
extra data sets need to be acquired that wouldn’t necessarily be of interest
otherwise) and analysis (the processing within each iteration is extensive).
Hampson et al. (2002) illustrate the method on a language task, with results
that coincide with others in the literature and generally accepted networks.
It would be interesting to see how their approach would handle cognitive
networks that are less well understood. In particular, much of the efficacy
of the algorithm appears to hinge on the ability to detect or define ROIs,
which might be difficult for some systems. Of course, the same criticism can
be leveled against any of the methods for studying connectivity that rely on
“seed” voxels or ROIs, a very common starting point.

Beyond the defects of the correlation approach that we have already out-
lined, some researchers have raised questions about the use of correlation
specifically as the measure of functional closeness (Lahaye et al., 2003),
since this implies that only linear relationships with no time delay are of
interest. To this end, Lahaye et al. (2003) explore both nonlinear relations
and the possibility of lags. The gray matter of the brain is first divided into
“parcels,” or groups of voxels that are segmented according to levels of the
measured signal. These are similar to ROIs, but are based on a predetermined
number of seed voxels rather than any functional or anatomical constraints.
As in Bullmore et al. (1996b), the motivation for this work is the perceived
limitation of the pure correlation analysis, but here too, correlations are not
directly used.

Instead, Lahaye et al. (2003) devise a hierarchical system of models for the
functional relationship between parcels A and B of which the instantaneous
linear is but the simplest. Noninstantaneous effects of one parcel on another
are modeled by including lagged terms in a general linear model framework;
nonlinear effects are modeled by polynomial terms. Models also include terms
for the lagged effect of parcel A on itself, recognizing that what happens in
a particular region at time ti most likely influences behaviors in that region
at later times tj , j = i + 1, . . . , i + k, for some k. The simplest model in this
framework is thus the instantaneous linear effect with recent history of the
parcel; the most complex includes as well nonlinear and lagged effect terms
with another parcel.

As a final example of extensions to the basic correlation approach, al-
though others exist and are no doubt being developed still, we consider Sun
et al. (2004),who use coherence measures to assess functional connectivity. Co-
herence, the spectral analog of correlation, measures the linear time-invariant
relationship between two time series. As such, it is another way of accounting
for the possibility of lags in the effect of one voxel (or region) on another. If
the time series in one voxel is broadly similar to that in another, but with a
time delay, then the ordinary correlation between the two will be moderate or
low (depending on the amount of lag); the coherence, by contrast, will be high
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within the bandwidth of the hemodynamic response function (which, based
on empirical evidence, is concentrated at low frequencies).

Let x and y denote two voxel time series. The power spectrum of x is

fxx(λ) =
∑

t

Varx[t]e−jλt,

and likewise for y. The cross-spectrum is

fxy(λ) =
∑

t

Covxy[t]e−jλt.

The coherence is then defined to be

Cxy(λ) =
|fxy(λ)|2

fxx(λ)fyy(λ)
.

The rest of the analysis proceeds as is typical; ROIs are chosen for the
task at hand, and within those ROIs seed voxels are picked to be the basis
of comparison. Instead of correlations, coherences are calculated and mapped
out. As discussed in previous chapters, many analyses and interpretations are
more easily carried out in the spectral domain than in the time domain, and
the approach of Sun and colleagues falls squarely into that camp.

11.2.2 Structural Equation Models

The second major approach for investigating connectivity is structural equa-
tion modeling. Again, the starting point is generally a set of regions of in-
terest relevant to the task at hand; these are most often theory-driven. The
researcher hypothesizes the functional connections between different ROIs,
including direction (region A to region B, region B to region A, or both).
Within the setting of SEM connections are hypothesized to be captured in
the covariances between regions, and brain function results from changes in
those covariances (Gonçalves and Hall, 2003). Structural equation models
are related to general linear models, but the parameter estimates are taken to
refer to the strength of connections between regions. For purposes of analysis,
one does not use every voxel in the ROIs, as this would be very computation-
ally burdensome. Instead, representative, or “seed,” voxels are again chosen,
one or several from each region, and these are included in the SEM. In fMRI
data analysis, structural equation models are usually used in a confirmatory
sense, rather than an exploratory one (but see Zhuang et al. 2005). That is,
the researcher will specify a set of connections and then use SEM to confirm
that the specified model fits the covariance structure of the data. Notably,
these models do not use temporal information (Harrison et al., 2003).

An implementation issue for fMRI data analysis that does not arise in
other uses of SEM is, as noted briefly above, that the entire region of interest
is not entered into the analysis, but rather some representative voxels are
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picked from each. Potentially, then, there is the difficulty that the results of
fitting a structural model of this type, namely the postulated behavior of
the network, could be influenced by the particular voxels that happen to be
chosen. Often the seed voxel is the “most active” in the region, and perhaps its
immediate neighbors as well, which might bias the outcome to look stronger
than it truly is. Gonçalves and Hall (2003) examine the effect of choice of
voxel(s) on the resultant SEM output and find that there is, indeed, some
variability according to which voxels go into the model. However, overall the
nature of the conclusions is similar; thus, while the choice of voxel might affect
the estimated strength of a connection, generally it won’t affect the existence
of that connection. The authors caution though that the choice still should
not be arbitrary (since one might then pick as an exemplar for an ROI a voxel
that is actually inactive); rather, they advise using the peak (most highly
activated) voxel or the average of voxels around the peak as the summaries
of an ROI.

Although SEM, and inferring causal networks more generally, is a difficult
question for statisticians, it is easy to see why such an approach would be
attractive for neuroscientists interested in understanding effective connectiv-
ity in particular, since it provides a way of confirming theoretically derived
networks of brain regions, and gives in addition estimates of the strength of
pathways. Modules for performing SEM exist in both SPM and AFNI, two
of the major statistical packages for the analysis of functional neuroimaging
data, attesting to its popularity in the community.

An interesting use of structural equation modeling that seems to be more
specific to the issues of neuroimaging is presented in Mechelli et al. (2002), who
build a multisubject network, rather than individual networks for each subject,
to look for underlying commonalities that would hint at effective connectivity.
We have already seen that there is a fair amount of variability across subjects
in terms of patterns of activation. Is the same true for the underlying networks
that create that activation? On the one hand, it is definitely plausible to
hypothesize that different people would (implicitly) call on different brain
networks to perform the same task; this is akin to using different strategies
and might help explain the observed variations in activity. On the other hand,
there is also a great deal of similarity in the overall patterns of activation, in
spite of the existing individual differences. This argues in favor of a common
underlying effective connectivity across subjects. For a unified theory of brain,
we would hope that there are broad commonalities in the networks, with
perhaps several “subtypes” representing the various processing strategies.

Mechelli and colleagues note that studies of effective connectivity based on
multiple subjects have generally taken one of two approaches. In the first in-
stance, researchers treat the data from the different subjects as if they were all
from the same subject, which assumes that connectivity patterns do not widely
vary from person to person, and what variation there is, is random. Both of
these assumptions are questionable. In the second instance, researchers per-
form subject-specific network analyses. The difficulty with this approach lies
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in interpretation, since if subjects exhibit different networks, it isn’t clear
whether or not these correspond to scientifically important differences and
there is apparently no easy way to test this.

Building a framework for the evaluation of group commonalities and differ-
ences in connectivity networks is the main motivation for the model developed
by Mechelli et al. (2002). In this model, they posit m ROIs and n subjects.
Within a subject, ROIs are connected as in a standard network model; re-
gions from different subjects are not allowed to be connected, since, clearly,
subjects act independently. Hypothesis testing is performed by comparing two
formulations, one in which the effects (connections) are required to be con-
stant across all subjects, and another in which these connections are allowed
to vary from subject to subject. With m ROIs and n subjects there are a total
of m × n regions in the model, and n × m × (m − 1) connections in the most
complete network specification (bidirectional between each pair of regions).
To construct the basic network, one still must rely on theory, of course. For
example, Mechelli et al. (2002) look at a reading task in their study. The ROIs
are chosen according to an anatomical model of reading developed by one of
the researchers; in this study they include all possible connections between
pairs of regions, in both directions, although this could be narrowed down
according to additional theoretical considerations.

The main advantage of this approach is that it provides researchers with a
way of objectively assessing the variability across subjects via model compar-
ison. As noted by Mechelli and colleagues, statistically significant differences
in connectivity may arise either as a result of the networks themselves differ-
ing from subject to subject, or from subjects sharing the network pattern but
having differences in the strength of its expression. It’s not clear that the mul-
tisubject analysis is sensitive enough to distinguish between these two cases,
but it can at least serve as the springboard for a more detailed investigation.

11.2.3 Other Approaches

Various other techniques have also been applied to the problem of studying
connectivity. Among these are self-organizing maps (Ngan and Hu, 1999;
Peltier et al., 2003), spatial ICA (van de Ven et al., 2004), ranking time
courses with spanning trees (Baumgartner et al., 2001), and multivariate au-
toregressive models (Harrison et al., 2003). Most of these efforts are relatively
recent, and therefore don’t have the history of the correlation method (which
is derived from standard ways of thinking about fMRI data) or structural
equation modeling (which was first introduced in the neuroimaging literature
for the analysis of positron emission tomography data more than a decade
ago). They do not appear to have yet been developed beyond the initial work
that introduced them and it remains to be seen which of these directions, if
any, will lead to additional insight into the thorny problems of understanding
brain networks.
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11.2.4 Conclusion

Functional and effective connectivity are at the core of the neuroimaging en-
terprise. Classification of voxels into “active” or “inactive” – long the default
analysis – is a mere weak proxy for the true questions of interest. However,
methodological limitations (at both the imaging level and the statistical) have
made it difficult for scientists to address the problem head-on. The existing
methods show promise, in that they have demonstrated ability to confirm the-
oretically posited networks or have replicated results found in other analyses.
Generating previously unidentified or unsuspected networks of connections is
a much more challenging prospect, yet it seems necessary to achieve this level
of sophistication if we are ever truly to understand the inner workings of the
brain. I suspect that this will continue to be one of the harder, and more
interesting, questions to face statisticians working in fMRI data analysis.

11.3 Model Selection

Although model selection has a venerable history in statistics as a whole, has
received much attention on both the theoretical and applied levels, and has
been the focus of much discussion in the disciplines, this topic has not been at
the forefront of the conversation about fMRI data analysis. Part of the reason
for this no doubt has been that, until very recently, researchers have had to
be so focused on the questions of devising and assessing adequate models that
they have not had the luxury of considering alternative models on a large
scale.

There are two levels at which model selection questions might be addressed
in the context of fMRI. First there is the selection of a model to fit to the
brain as a whole, from among a group of competing models. That is, given
the panoply of models that have been suggested to date, which one fits “the
best” in some (as yet to be defined) sense? The second level touches on a
deeper, and computationally more difficult, problem, namely should the same
model be fit at each voxel of the brain? It seems evident that the answer
to this question must be “no,” since there is no reason to expect any one
single model to provide a reasonable explanation of the observed behavior at
every voxel. Thus when the same model is used at each voxel, some will be
underfit and some will be overfit (Razavi et al., 2003). Furthermore, many
researchers have commented on the apparent differences in the characteristics
of the measured signal in different regions of the brain, bolstering the intuition
that models should selected on a voxel basis. This presents a computational
challenge, but with ever-increasing speed and memory, not to mention the
option of parallel processing (if each voxel is treated independently, they can
be analyzed simultaneously on multiple processors), it becomes more feasible.
For theoretical reasons one might still prefer to fit a single model to the whole
brain; thresholding with the random field approach, for example, requires a
single model (Kherif et al., 2002).
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Model assessment has been similarly neglected, possibly leading to several
drawbacks in the way that fMRI analyses are conducted (Razavi et al., 2003),
including:

1. model misspecification;
2. improper model selection based on the number of active voxels (wherein

a model is judged to be of higher quality if it detects more activation);
3. lack of systematic model evaluation, resulting in the use of potentially

oversimplistic models;
4. use of the same (prespecified) model at each voxel in the brain;
5. lack of standards for formal model comparison.

Razavi et al. (2003)aim to rectify some of these shortcomings by introduc-
ing a formal framework for the assessment and comparison of fMRI models.
They assign two dimensions of quality upon which to evaluate competing
models, validity and goodness of fit. Other fMRI researchers (Kherif et al.,
2002)note that a “good” model should also be parsimonious and simple, both
traits that aid in interpretability and generalizability.

Validity is determined by how well the data fit the assumptions of the
model. For example, the general linear model makes certain assumptions
about the error term (normality, equality of variances, and independence).
Independence is probably the most critical of these, and the one that is al-
most surely violated by fMRI data. Whitening, coloring, and smoothing have
all been used to account for dependence structure, as noted above. If they
are effective, the residuals from such models should not have much (if any)
remaining correlation. The authors therefore suggest assessing the quality of
a model by testing for the presence of temporal autocorrelation (of first order)
in the residuals using the Durbin-Watson statistic:

DW =
∑n

t=2(et − et−1)2∑n
t=1 e2

t

.

Goodness of fit refers to the closeness of the fitted model to the data. The
authors summarize this quality by the usual multiple regression R2 (or its
adjusted version). Among the valid models with good fit, those with higher
values of the goodness of fit statistic should be preferred.

According to Razavi et al., this series of steps (assessing validity, assessing
goodness of fit, comparing values of adjusted R2) offers a more rigorous and
formal way of comparing competing models than counting the number of
detected activations. As they point out, a valid model with a high value of
adjusted R2 could yield a smaller number of active voxels than a valid model
with a lower value of adjusted R2. The former would still be preferred, since
there is nothing intrinsically relating the quality of a model and the number
of active voxels it detects, whereas adjusted R2 does have statistical meaning
as a measure of model quality.

The framework developed by these researchers is a promising one, since it
also provides a context for model building and selection. One might quibble
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with their choice of R2, even in its adjusted version, as the measure of goodness
of fit, realizing that there is a wealth of criteria for model comparison (AIC,
BIC, and Cp, to name just a few; many others should be familiar to the reader).
The importance of the study lies in opening the door for additional exploration
of this critical topic, and not so much in the particular implementation choices
made by the authors.

11.4 Evaluation of Competing Methods

Related to the questions of model building and selection is the evaluation and
comparison of competing methods. This topic, too, has started to receive more
attention in recent years, as a number of researchers have proposed practical
frameworks within which these comparisons can be made. The predominant
method of evaluation is to use receiver operating characteristic (ROC) curves
(see, for example, Skudlarski et al. 1999, for an early application).

ROC curves compare methods based on the proportions of true and false
discoveries. In more detail, following the discussion in Nandy and Cordes
(2003b), the ROC curve can be defined as follows. For each voxel, when a
statistical analysis is performed and a decision reached regarding the rejection
of the null hypothesis, we know that there are four possible states: correctly
declare a voxel to be active; incorrectly declare a voxel to be active; correctly
declare a voxel to be inactive; incorrectly declare a voxel to be inactive. The
decision (declare the voxel to be active or inactive) is based on the value of
some test statistic and threshold. The ROC curve is a plot of the conditional
probability of declaring a voxel to be active, given that it is truly active (or,
the response contains signal), against the conditional probability of declaring a
voxel to be active, given that it is truly inactive (or, the response is pure noise),
for different levels of the test statistic. (Sometimes this is equivalently plotted
for different levels of significance.) Area under the ROC curve is generally
used as a measure of quality; methods with greater area under the curve are
preferred.

A simple and highly stylized example is shown in Figure 11.2 where
n1 = 100 data points are generated from N(0, 1) and n2 = 40 from N(2, 1).
All observations below the value c are assumed to come from the first pop-
ulation (with mean zero) and all observations above c are assumed to come
from the second (with mean 2). Obviously, any particular observation can be
correctly or incorrectly classified. The ROC curve shows the false positive rate
(observations incorrectly classified as belonging to the second population, i.e.,
they have a value above c although they come from the N(0, 1) distribution)
against the true positive rate (observations correctly classified as belonging
to the second population, i.e., they have a value above c and come from the
N(2, 1) distribution).

As the threshold c increases we have fewer false positives; that is, we are
better able to allocate the observations from the first distribution correctly.
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Fig. 11.2. ROC curve for a data set composed of n1 = 100 observations from a
N(0, 1) distribution and n2 = 40 observations from a N(2, 1) distribution. The lower
point on the plot corresponds to the characteristics when the cutoff for assigning an
observation to the second population is c = 2; the upper point gives the characteris-
tics when the cutoff is lowered to c = 1. With the lower threshold we are better able
to winnow out the observations from the distribution with the lower mean, resulting
in fewer false positives, but we are less able to correctly assign observations to the
distribution with the higher mean, resulting in fewer true positives as well.

However, we also have fewer true positives. This makes sense, since as the
threshold increases, there are fewer observations overall, from whichever pop-
ulation. When the threshold is very low we can correctly assign all of the
observations from the N(2, 1) distribution, but almost all of the observations
from the N(0, 1) distribution are assigned here as well. Hence there is a trade-
off between the two rates.

Now in practice, the conditional probabilities in question are not, and can-
not, be known precisely for fMRI data, since investigators don’t know which
voxels are truly active and which are truly inactive. Hence the fractions need
to be estimated; this can be accomplished in various ways, most frequently
via simulation of some sort. There has been some discussion in the litera-
ture regarding the “best” standard for obtaining estimates of the ROC curve;
a consensus seems to be forming among many researchers that real data is



226 11 Additional Statistical Issues

preferable to completely artificial simulated data (Nandy and Cordes, 2003b;
Nandy and Cordes, 2004b). Skudlarski et al. (1999) have subjects perform
a standard cognitive processing task, then use slices that do not exhibit acti-
vation related to the task as the source for “noise” or null state; to this noise,
they add artificial activation. By contrast, Nandy and Cordes (2003b) take
the more conventional route and use ordinary resting data to represent the
null state. Skudlarski et al. (1999) justify their choice by noting that the vari-
ance of resting data sets is different from the variance of data sets obtained
while the subject performs a task. Nandy and Cordes (2003b) justify their
choice as correctly incorporating the spatial correlation structure present in
fMRI error.

Beyond this, the two studies are different in their areas of investigation.
Skudlarski et al. (1999) use standard ROC curves to explore the effects of the
various choices available to researchers at each stage of fMRI data analysis,
ranging from experimental design, to preprocessing, to statistical analysis,
and more. Based on their simulations, and the settings used for each of the
stages they consider, the authors are able to make concrete recommendations
for investigators. For example:

1. Temporal detrending at the level of individual voxels is useful, but smooth-
ing the time course decreases the ability to detect true activation.

2. The ordinary t test, and its nonparametric Mann-Whitney analog, are
very powerful. Paired t tests perform well for some experimental designs,
but not others.

3. The optimal length of a task block is about 18 seconds for a simple block
design.

4. Spatially smoothing raw fMRI images with a Gaussian filter of 1-2 voxels
FWHM prior to analysis is generally beneficial.

5. Motion correction has little impact on the relative effectiveness of the
various statistical tests.

Nandy and Cordes (2003b) propose a modified ROC curve to bypass the
difficulties that result from not actually knowing which voxels are active and
which are not, and from having to use simulated data which do not correctly
mimic the correlation structure in the true data. We have already seen that
they address the second issue through the use of real data as the basis of
their simulation technique – resting data represents the null and task data
represents the activation state. For the first issue, the ROC curve requires
estimates of the two conditional probabilities, the probability of declaring
active when the voxel is truly active and the probability of declaring active
when the voxel is truly inactive. Now, if the data at hand are resting, or
null, data, then in principle there is no task or stimulus to which the brain is
reacting, and all voxels are presumed to be “inactive” in that sense. Hence it
is possible to estimate the probability of falsely declaring a voxel to be active,
for different values of the test statistic.
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Estimating the probability of truly declaring a voxel to be active is still
difficult, hence they suggest instead the use of task data to obtain the fraction
of all detections for a given level of the test statistic. The set of detections from
the task data is made up of some truly active voxels and some truly inactive
voxels, but again we don’t know which belong to which group. However, for
a given value of threshold it is possible to plot the proportion of “active
positives” against the proportion of “resting positives” (the detected voxels
in each of the data sets) to get a modified ROC curve; the proportions can be
estimated even if the activation status of the individual voxels is not known. In
practice, some additional work is required to get an estimate of the proportion
of active positives; details are given in Nandy and Cordes (2003b). Nandy
and Cordes show that this modified curve is related to the usual ROC curve;
indeed, the former can be transformed to “reconstruct” a conventional ROC
curve. The area under the modified curve is always smaller than the area under
the conventional curve, since the former is a lower bound for the latter, but
this isn’t important since it is the relative area for different analysis methods
that is compared.

Another framework for comparing analysis pathways is NPAIRS, which
stands for nonparametric prediction, activation, influence, and reproducibility
resampling (Strother et al., 2002); see also Section 3.4. Our earlier discussion
of this approach focused on using it to assess preprocessing strategies, but it
is more general than that, as the name implies. The authors put forward two
criteria for evaluating the quality or validity of neuroimaging results: accurate
prediction of output on a test set of data, based on an independent training
set; reliable reproduction of the parametric map of the test set. The use of
training and test sets places NPAIRS in the family of resampling procedures.
Strother and colleagues contrast the use of real data and resampling to ROC
analysis, which tends to be based on simulated data. However, as we have
discussed just above, more recent work on ROC curves advocates the use of
real data as well.

Acknowledging that many resampling possibilities are available, ranging
from all varieties of k-fold cross-validation, through jackknife and bootstrap,
NPAIRS utilizes a “split-half” paradigm, with subjects as the basic unit. In
other words, the training set and testing set are the same size, both consist-
ing of half of the subjects in a study (hence multiple subjects are required
to implement the comparison, in contrast to the ROC approaches, which are
applicable on single subjects as well). All splits can potentially be considered,
since most fMRI studies do not have large numbers of subjects. For each split,
one applies a processing stream to the training and testing halves individu-
ally. Reproducibility of the statistical parametric maps, one of the criteria for
evaluating competing methods, is then summarized by a similarity measure,
such as the ordinary correlation coefficient between the voxel values. NPAIRS
uses a combination of graphical and analytical techniques, such as the repro-
ducibility histogram, to assess and compare performance of different analysis
streams, from preprocessing options through the choice of statistical model.
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The influence of individual subjects on the output can also be investigated
within NPAIRS.

Kjems et al. (2002) incorporate learning curves as part of the NPAIRS
evaluation scheme; these are plots of the testing error as a function of the size
of the training set and are again obtained from a cross-validation approach.
Here, however, since interest focuses specifically on changes in performance
that are linked to the size of the training set, there is obviously no longer a
restriction to use split halves. Rather, for different training set sizes, multiple
splits are generated; errors are then averaged over fixed sample sizes to yield
the desired curves. As in the general NPAIRS approach, the learning curve
component introduces a range of interesting graphical techniques for compar-
ing the performance of different analysis streams and the effects of particular
components of those paths.

Taken as a whole, this admittedly small body of work on NPAIRS appears
to offer a good complement to the more traditional ROC curve analysis already
familiar to statisticians. However, it remains to be tested on a wide range of
experimental settings and statistical models. The scientists who introduced
NPAIRS in these two papers recognize the need to make widely generalizable
and applicable statements regarding the efficacy of any aspect of the analysis
stream; indeed, they demonstrate their methods on a range of cognitive tasks,
a first step. The challenge is to take this – or any other similar framework,
including ROC curves – and implement it on a broad enough spectrum of
studies that general conclusions can be reached. To my knowledge, this has
not yet been done, and it is not surprising, as such an enterprise is beyond
the capability of any one laboratory or group of researchers.

11.5 Summary

A recurring thread throughout this book has been that the statistical chal-
lenges inherent in the analysis of fMRI data are many and varied. The rich-
ness of the data and the complexity of the scientific questions place fMRI
squarely in the center of some of the most pressing issues facing modern ap-
plied statistics: modeling – both frequentist and Bayesian – of large data sets
with complicated structure, assessing significance in multiple testing situa-
tions, visualization, and the use of computationally intensive methods. It is
not surprising that the range of statistical procedures that have been applied
to fMRI data is equally wide and varied. The past 15 years have seen a growth
of the popularity of fMRI as an imaging technique, with many universities
acquiring research-dedicated MR scanners, and a concomitant flourishing of
collaborations between statisticians and neuroimaging scientists. These being
early days in the application, we have seen primarily the use of statistics to
attempt solutions to the scientific problems. Less common so far has been the
inspiration of new statistical methodology, although recent works particularly
in the area of spatiotemporal and Bayesian modeling, have approached this.
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Ideally, we will find ourselves in the situation where the flow of ideas will be
from statistics to neuroimaging and back again. Continued collaborations and
the involvement of more statisticians in this exciting and important field will
no doubt lead to that outcome.
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Case Study: Eye Motion Data

In the previous chapters we have encountered a plethora of statistical ques-
tions and proposed solutions. Without a doubt it can be bewildering for new-
comers to the field to maneuver through all the techniques that have been put
forth in the literature for analyzing fMRI data. The purpose of this chapter
is to take some of the most basic analyses and demonstrate them on a sample
data set. The data appear courtesy of Dr. Rebecca McNamee, University of
Pittsburgh.

12.1 Description of the Data

We will look at data from one subject performing simple eye motion (saccade)
tasks, in a block design experiment. The two alternating tasks are antisaccade
and prosaccade. In the antisaccade task, a light appears on a screen in the
peripheral vision of the subject, and the subject needs to direct his vision to
the oppposite orientation. If, for instance, the light appears in the upper right
corner of the screen, for the antisaccade task the subject would need to look in
the lower left. The antisaccade task requires inhibition of the natural tendency
to look where the light appears. For the prosaccade task, again a light appears
on the screen, but now the subject is asked to look in the correct location.
Saccade tasks are often used in the study of schizophrenia, brain lesions, and
other syndromes that may be characterized by loss of inhibition or by deficits
in eye movement control.

The data set consists of 30 slices, each of size 64 × 64, taken over 156
time points. Image volumes were collected every 2.5 seconds. Denoting the
antisaccade task by AS and the prosaccade task by PS, the stimulus stream
was {AS, 1; PS, 1; PS, 12; AS, 12; PS, 12; AS, 12; . . . ; AS, 12; PS, 10}. See Fig-
ure 12.1 for a graphical description of the stimulus trail.

Preprocessing steps performed on this data set included: removal of spatial
outliers, motion correction, outlier correction in image space, removal of linear
trends and drift, and Gaussian smoothing with a radius of two voxels.

N.A. Lazar, The Statistical Analysis of Functional MRI Data,

DOI: 10.1007/978-0-387-78191-4 12, c© Springer Science+Business Media, LLC 2008
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Fig. 12.1. Stimulus trail for block design experiment that generated the data ana-
lyzed in this chapter. The main paradigm alternates 6 times between 12 presentations
of the prosaccade task and 12 presentations of the antisaccade task.

12.2 Data Analysis

We start with some simple exploratory analysis , based on calculating the
correlation coefficient of each of the voxel time series with the stimulus pre-
sentation trail. Figure 12.2 shows the histogram of the correlations for all
64 × 64 × 30 = 122, 880 voxels in the data set. The average correlation is
0.01, with a standard deviation of 0.093. The minimum correlation over all
voxels is −0.51 (indicating behavior that is opposite in trend to that of the
stimulus presentation; in this case, higher levels of activation in response to
the prosaccade task than to the antisaccade task) and the maximum is 0.45
(higher levels of activation in response to the antisaccade task than to the
prosaccade task). Hence none of the time series are very strongly correlated
with the experimental paradigm in this individual. As can be seen in the
figure, the distribution of the correlation coefficients looks roughly normal.

To explore the correlation behavior more closely, we now consider two
slices of possible interest. According to the researcher who provided the data,
the fourth slice is expected to show activation; therefore we might expect the
correlations in this slice to be higher than those in other slices. The twelfth
slice has the highest average correlation of all the slices: 0.048. By contrast, the
average correlation in the fourth slice is only 0.021. Both slices have standard
deviation of 0.09. The minimum correlation in the fourth slice is −0.29 and



12.2 Data Analysis 233

-0.4 -0.2 0.0 0.2 0.4

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Correlation coefficient

Fig. 12.2. Distribution of correlation coefficients between voxel time courses and
stimulus time course, for all 122,880 voxels in the data set. The distribution looks
approximately normal, with mean near zero and standard deviation of 0.093

in the twelfth slice, −0.23; the maximum values in the two slices are 0.37 and
0.36, respectively. In terms of the typical summary statistics, the two slices
are quite similar.

Histograms of the 64× 64 = 4096 correlations for the two slices are shown
in Figure 12.3. These are also rather similar, however the distribution for the
twelfth slice is more skewed.

Figure 12.4 displays images of the correlation coefficients in each of the
two slices, with contours superimposed. For clarity, only the two highest con-
tours representing the strongest correlations, are plotted. As can be seen in
the figure, in the fourth slice the dark shading, which corresponds to higher
positive correlation, is quite widespread in the central part of the image; this
is the brain, occupying only a relatively small part of the 64 × 64 grid. The
high correlations are furthermore concentrated more or less on the edges of
the brain, that is, in the gray matter. This is even more striking in the twelfth
slice. Note that since the twelfth slice is further from the top of the head the
proportion of this grid covered by brain is greater. Again, the darkest shadings
are quite localized in contiguous patches.

Figure 12.5 shows the minimum, mean, and maximum correlation in each
slice. The mean is more or less stable around zero as we descend through the
brain from the first to the thirtieth, but there is an apparent slight downward
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Fig. 12.3. Distribution of the correlation coefficient for two slices of the data set.
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Fig. 12.4. Contour plots of the correlation coefficients in the fourth (left) and
twelfth (right) slices. Darker shading indicates higher positive correlation.

trend in both the minimum and the maximum from approximately the twen-
tieth slice on. This indicates that, overall, the correlation with the stimulus
presentation trail is somewhat weaker in the deeper slices.

Another simple analysis is a two sample t test, as described in Section 5.2.
In this study, there are 83 presentations of the prosaccade task and 73 of the
antisaccade, so the design is not perfectly balanced. This doesn’t matter for
the t test, as the sample sizes are close enough. The distributions of the test
statistic in the fourth and twelfth slices are shown in Figure 12.6. Interestingly,
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Fig. 12.5. Minimum, mean, and maximum correlation in each of the 30 slices.

while the histogram for the fourth slice looks very normal in shape at first
glance, the histogram for the twelfth slice is obviously skewed, possessing a
long right tail.

(a) Slice 4 (b) Slice 12

Fig. 12.6. Distributions of the t statistics in the fourth (left) and twelfth (right)
slices. The distribution in the twelfth slice is clearly skewed; the distribution in the
fourth slice is also skewed, with a small mode in the far right tail.
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In fact the distribution in the fourth slice is also skewed, with a smallish
mode in the far right tail. This demonstrates the subtlety of the effects that
we are searching for, and the difficulty of the inferential process. We show this
in another way in Table 12.1 for a few selected slices. The table shows the
number of voxels in each of the slices with t values greater than 4 and the
number with t values less than −4. In all cases, even the twelfth slice, there are
voxels with very high t values (that is, stronger activation during antisaccade
conditions than during prosaccade conditions) and none with very low.

Slice t > 4 t < −4 t > 1.655 t > 4.35 t > 5.14

4 20 0 434 5 0
5 33 0 553 20 0
12 11 0 667 6 0

Table 12.1. Number of voxels attaining particular thresholds for three slices in the
data set. The first two columns give the numbers of voxels with t values above 4
and below −4, respectively. The lack of balance in these numbers is one indication
of the slight skewness in the direction of the effect of interest and demonstrates
the subtlety of the response. The third column corresponds to thresholding without
any correction for multiplicity, at level α = 0.05. The fourth and fifth columns
show Bonferroni-adjusted thresholds based on a single slice and the whole brain,
respectively.

We can also use these slices to explore some of the thresholding methods
discussed in Chapter 10. This is also presented in Table 12.1. With α = 0.05
and no correction for multiplicity, the t threshold on 154 degrees of freedom is
1.655 (compared to 1.645 with the z score), resulting in hundreds of significant
voxels in every slice; this is clearly too many since most of those are outside
the brain. An adjustment for multiple testing is needed to avoid many false
discoveries.

With the same α = 0.05, and applying a Bonferroni correction on each
slice separately, the adjusted level is 0.05/4096 = 0.0000122; this corresponds
to an equivalent t score of 4.35 for t with 154 degrees of freedom (or 4.22 if we
use the z score instead). With this adjustment, the number of detected voxels
in each slice is dramatically reduced, from several hundred to at most tens.
Of course, the appropriate correction in this case should be over all slices, for
a t cutoff of 5.14 or a z of 4.93, in which case no significant voxels remain,
belying the robustness and well-understood behavior of the antisaccade task.

Slicewise false discovery rate procedures applied to the same three slices
with q = 0.05 yield equivalent t thresholds of 3.12 (fourth slice; 90 significant
voxels), 3.02 (fifth slice; 125 significant voxels), and 3.33 (twelfth slice; 46
significant voxels), respectively.

Figure 12.7 shows the results of three thresholding approaches (no correc-
tion, slicewise Bonferroni, and slicewise false discovery rate control) for the
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fourth slice; as reference, the first panel in the figure is a plot of the slice at
an arbitrary point in time. Ordinarily, a high-resolution anatomical image is
taken at the same time as the functional data are acquired and this is used
as background for presenting assessments of significant voxels. We don’t have
such an image for this data set, and so the low-resolution functional is given
instead in order to point out the general shape and location of the brain in
this slice.

Even when no correction for multiple testing is performed, the majority
of the voxels declared active are in the brain. The problem is that the de-
tected activation is so widespread as to be meaningless; the effect is more
localized than indicated by these results. Furthermore, many “active” voxels
are detected outside of the brain altogther. At the other extreme, the slice-
wise Bonferroni correction removes almost all traces of activation, although
the detected voxels are in an appropriate location for the tasks in question.
Control of the false discovery rate yields a good middle ground, as is expected.
The significantly active voxels are localized in regions that are relevant to the
task, organized contiguously, and confined to the brain.

In and of itself, this analysis stream (voxel-by-voxel t tests followed by
a correction for multiple testing) is sufficient, if not sophisticated. The more
elaborate analyses derived and advocated by various researchers, as described
in the chapters devoted to statistical methodology, aim to refine these results
in different ways. But it is evident that one could be satisfied with the simpler
analysis, and indeed one often is. Additionally, in terms of understanding the
outcome of an experiment, it is not clear on the face of it how much one gains
from applying more complicated models. Obviously, if the goal is to delve, for
example, into questions of connectivity, the analysis presented here is wholly
inadequate. For basic detection of regions of activation, on the other hand,
the “variations on a theme” should be taken as just that.

The remainder of this chapter will explore briefly other analyses that could
be carried out on these data, demonstrating some of the approaches explained
in previous chapters. For ease of calculation and comparison, the fourth slice
will be used for all analysis.

First, we consider clustering the voxel time courses, as described in Section
6.3.1; this is a simple spatiotemporal approach. As discussed there, some re-
searchers advocate crudely thresholding the activation map prior to clustering
in order to reduce the number of voxels and ease the computational burden.
In fact, at least for a single slice of data, clustering on the unthresholded data
is not that much more time consuming than clustering on a reduced data set.
Results from both approaches are therefore included here.

Without prescreening we look at k = 3, 4, . . . , 10 clusters, in Figures 12.8
and 12.9. It is interesting to note that with k = 3, one cluster is used for
voxels outside the head, as can be seen by the clear shape of the brain in the
plot. As more clusters are added, this feature is retained and the additional
clusters partition the brain area more finely. However, starting with k = 6
clusters, some of the air voxels are joined with the cluster that defines the
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Fig. 12.7. Fourth slice of the data set. For reference, the slice at an arbitrary
point in time is shown in the top left panel. The other panels show the significant
voxels when there is no correction for multiple testing (top right), when the slicewise
Bonferroni correction is applied (bottom left), and when the slicewise false discovery
rate procedure is applied (bottom right). The results of thresholding are qualitatively
similar in all three cases, but differ meaningfully in the details.

outer edge of the brain. This pattern, too, is consistent from k = 6 to k = 10
clusters. Furthermore, it is not apparent that adding clusters actually succeeds
in isolating the voxels in which activity is taking place, if we compare to Figure
12.7. So, while the initial result for k = 3 is promising, in that brain voxels
and nonbrain voxels belong to disjoint clusters, this method does not do a
very good job at detecting activation.

As a crude prescreening method, we take only those voxels for which the
calculated t statistic is greater than 2. This leaves 287 voxels. These are shown
in the top left panel of Figure 12.10. The shape of the brain is only roughly
apparent, and note also that some of the retained voxels are clearly outside
the brain. Now the main utility of the clustering algorithm is to isolate those
air voxels into a single cluster, and this it accomplishes. Note that some brain
voxels are included in the cluster as well; this is not a problem, since the rough
threshold should include voxels that are not truly in the regions of activation.
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Fig. 12.8. Clustering all the voxels in the fourth slice with hierarchical clustering;
distance is between the voxel time courses. Results of k = 3, 4, 5, 6 clusters.

Here, too, we see the phenomenon that successive clusters seem to be “peeling
away” different layers or rings within the brain slice. Simply clustering the
voxel time courses is apparently not sufficient to separate regions of activation
from other voxels with similar behavior, even with some prescreening.

Basic principal components analysis is an example of a multivariate ap-
proach. Here, the 287 prescreened voxels are used in the analysis, which for
purposes of demonstration builds components that are linear combinations of
voxels as opposed to time (recall that the roles of voxels and time are inter-
changeable; the components based on one are a transformation of those based
on the other). A scree plot of the first ten components is in Figure 12.11. The
first component explains 60% of the variance; the first ten together explain
86%.

A representation of the first six principal components is given in Figure
12.12. To obtain these figures, only voxels with loadings greater than 0.08 (in
absolute value) on the component are plotted. The first component only has
voxels with high positive loadings, whereas the other five have voxels with
both negative and positive loadings. The first component is made up of voxels
around the edge of the brain image; depending on where exactly these are
located relative to the actual brain space, this could represent either head
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Fig. 12.9. Clustering all the voxels in the fourth slice with hierarchical clustering;
distance is between the voxel time courses. Results of k = 7, 8, 9, 10 clusters.

motion or gray matter. The second component contrasts voxels on the edge
of the brain with voxels in the middle; the middle voxels correspond roughly
to the task-related areas. The third component is almost a complement of the
second. The fourth component contrasts the front of the brain and the back.
The fifth and sixth components aren’t easily interpreted, although the sixth
is close to a contrast between the left and right sides of the brain.

Figure 12.13 shows the distribution of the number of principal components
(out of the first six) to which each of the 287 prescreened voxels belongs. Only
155 have high loadings, according to our definition, on any of the first six
principal components; of these, 65 load on a single component, 47 on two, 24
on three, 12 on four, 6 on five, and 1 voxel loads on all six. As can be seen
in the figure there is a clustering in this distribution, with voxels that load
on more than one component (a darker appearance means loading on more
components) appearing laterally in the frontal eye field (the dark patch near
the front of the brain, towards the bottom of the plot) and in the occipital
cortex (the darkish patch near the back of the brain image on the far right of
the plot).

Another way to look at the results from these analyses is to consider the
average time course of the different sets of voxels, for example those retained
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Fig. 12.10. Clustering on 287 prescreened voxels, k = 3, 4, 5.

by the Bonferroni correction, or those that load on the first principal com-
ponent. Insofar as task-related voxels are being distinguished by a particular
method, the average time course should reflect the boxcar shape of the block
design. Some sample average time courses are given in Figures 12.14, 12.15,
and 12.16.

Figure 12.14 shows the signal averaged (at each time point) over all the
voxels retained by the slicewise Bonferroni correction and by the slicewise
false discovery rate procedure. The two series exhibit largely similar behavior,
very roughly paralleling the design of the experiment.

In Figure 12.15 we see the average time courses for the case k = 3 clusters
based on the 287 prescreened voxels. These series differ widely in their average
level, although closer inspection of the time courses individually reveals that
the general pattern of each is the same. However, this does indicate that
the clusters are picking up something other than just the overall trend of
relatedness to the stimulus trail. Since the clustering is based on distance
between the voxel time courses, it makes sense that voxels with similar levels of
activation (and not just similar patterns) will cluster together. It is interesting
to note that of the ten most significant voxels (that is, those with the highest
value of the t statistic calculated earlier), seven belong to the first cluster,
two belong to the second, and one to the third. While the first cluster thus
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Fig. 12.11. Screeplot of the first ten principal components, fourth slice of the data,
prescreened voxels only.

is most highly associated with activation, the suspicion raised earlier that the
clusters are largely based on location receives some additional validation from
this analysis.

Finally, Figure 12.16 shows the average time courses for the voxels that
load highly (loading greater than 0.08 in absolute value) on the first four
principal components. The picture is similar to what we have already seen.
Again, there is not a simple correspondence between the derived principal
components and overall levels of activation as detected by the t statistic. For
example, of the ten most significant voxels, four do not load strongly on any
of the first six principal components, three load on only one, two load on
two, and one loads on four components. Only two of the ten load on the
first component, and only two load on the second; these components are not
solely isolating extremely active voxels. The similarity of the average time
courses, both in pattern and in overall level of signal, is further proof of this.
In addition, the seven voxels that load on at least five of the first six principal
components (one loads on all six, the rest load on five) are not among the
most active; they have t values between 3.2 and 3.6.
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Fig. 12.12. Voxels with loadings greater than 0.08 in absolute value, for each of
the first six principal components.

12.3 Summary

In this chapter we have shown just a small sampling of the possible analysis;
we have looked primarily at a single slice and have simplified by either per-
forming univariate analyses or prescreening prior to analyses that are more
multivariate in nature. We have not fit any of the complex models that are
available in software packages such as SPM, or from individual researchers.
Even with the purposely restricted analysis, however, we have been able to
uncover many interesting relationships among the voxels, we have located ar-
eas of apparent scientific interest, and we have set ourselves up to perform
deeper and more intricate analysis of the data at hand.
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Fig. 12.13. Distribution of the number of principal components, out of the first six,
on which each of the voxels in the analysis has high (positive or negative) loading.
Darker colors correspond to higher numbers of components. Almost half – 132 out
of 287 voxels – do not load highly on any of the first six principal components. Of
the rest, 65 load on only one component and 47 on two. The voxels that load on
four or more of the principal components, the dark patches in the image, seem to
correspond roughly to task-relevant areas.
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Fig. 12.14. Average time course for voxels retained by slicewise Bonferroni correc-
tion and by slicewise control of the false discovery rate. The patterns exhibited by
the two sets of voxels are similar, following the design of the experiment.
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Fig. 12.15. Average time courses for the case k = 3, hierarchical clustering on the
287 prescreened voxels.
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Fig. 12.16. Average time courses for the voxels in the first four principal compo-
nents, among the prescreened voxels.



A

Survey of Major fMRI Software Packages

The focus of this appendix is fMRI software. Although there is both com-
mercial software and freely downloadable software available for the analysis
of fMRI data, I concentrate here on the latter, since most analyses published
in the literature are performed in one of two noncommercial packages: AFNI
and SPM. Thus there is no discussion in this appendix of popular commer-
cial packages such as Brain Voyager and Analyze. Many groups also develop
their own procedures using programming languages such as MATLAB. Soft-
ware is constantly being updated and upgraded; readers are advised that the
content of this appendix is current to the time of writing, and they should
check the relevant links for the newest versions. Homepages for the various
software packages give detailed explanation on downloading and use, hence
I don’t provide this information here. SPM and AFNI both have active user
lists (email fora for discussion); SPM also has several “wikis” that users new
and old can consult and contribute to. The electronic resources for these pack-
ages in particular are extensive and are an important source of knowledge and
information for the communities of users.

Also worthy of note here is the Internet Analysis Tools Registry whose
address is http://www.cma.mgh.harvard.edu/iatr. It contains a listing of
image analysis tools available to the community. As of January 2008, 186
tools, both commercial and freeware, are registered at the website. The page
for each tool includes a brief description, contact information (email addresses
of developers, and a link to the tool’s website), software requirements, whether
or not it is open source, whether or not it is freeware, and lists of technical
and applied references. Researchers can also review and evaluate the tools in
the registry.

A.1 Analysis of Functional NeuroImages: AFNI

The package AFNI (homepage http://afni.nimh.nih.gov) was developed
by Robert Cox starting in 1994, originally as a program for translating images
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into Talairach coordinates. Today it is one of the most widely used packages
for the analysis of fMRI data, providing a full range of tools for statistical
modeling and inference, and the visual display of results. AFNI is a collection
of programs written in C, and runs in Unix environments (including Linux
and Mac OS X).

Among the capabilities of AFNI are transformation of brain images to
Talairach coordinates; display of axial, coronal, or sagittal views of the data;
display of voxel time series; linear models, including the simple correlation
method for computing activation maps (see Chapter 5, Sections 5.2 and 5.4 for
details); thresholding using contiguity thresholds or FDR control (see Chapter
10, Sections 10.1 and 10.4).

For information on how to join the AFNI mailing lists and message board,
see the websites http://afni.nimh.nih.gov/afni/community/lists and
http://afni.nimh.nih.gov/afni/community/board, respectively.

A.2 Statistical Parametric Mapping: SPM

The package SPM (homepage http://www.fil.ion.ucl.ac.uk/spm) is a
suite of MATLAB programs for the analysis of brain imaging data in gen-
eral, including imaging modalities beyond fMRI. It was originally developed
in 1991 by Karl Friston to analyze images collected using positron emission
tomography (PET). SPM can be run in both Unix (including Linux) and
Windows environments.

Among the capabilities of SPM are realignment of image sequences; auto-
mated spatial normalization; segmentation of images; spatial smoothing; data
analysis via a general linear model approach (maximum likelihood and Bayes
estimation); display of statistical maps; display of posterior probability maps;
analysis of functional connectivity.

SPM is perhaps the leading software package for the analysis of fMRI data
in terms of popularity, and as such has played a prominent role in shaping
how practitioners think about the statistical aspects of their data. The gen-
eral linear model approach – and in particular the random effect model, the
canonical HRF model, the ways in which SPM presents the output of an anal-
ysis, have all become standards in the literature. This is useful, on the one
hand, since it provides a uniform frame of reference for researchers from differ-
ent laboratories; however, this uniformity can pose problems for neuroimagers
who use other software packages, or indeed who develop their own programs.
I have seen referee reports, for example, in which it was asked why the data
weren’t analyzed using SPM, as if this were the only available option. As a
field, we need, I think, to be wary of such trends. Fortunately, most of the
people involved in software development seem to believe this, too.

For information on how to join the SPM discussion list, see the website
http://www.fil.ion.ucl.ac.uk/smp/support. The wiki-books on SPM can
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be found at the sites http://en.wikibooks.org/wiki/SPM and
htpp://en.wikipedia.org/wiki/Statistical parametric mapping.

A.3 Other Packages

Although SPM and AFNI are widely used, there are other prominent packages
also available. Some of these are described here. The list is by no means
exhaustive, however.

Functional Imaging Analysis Software, Computational Olio (FIASCO;
homepage http://www.stat.cmu.edu/∼fiasco/)was developed at Carnegie
Mellon University’s Statistics Department, primarily by Bill Eddy. FIASCO
is a collection of shell scripts and executables written in C and Python. It
performs preprocessing (detrending, motion correction, and so forth), fits lin-
ear models to the data, thresholds and displays images. Users can also write
their own procedures to customize their analyses.

Automated Image Registration (AIR; homepage http://bishopw.loni.
ucla.edu/AIR5/index.html) was developed by Roger Woods to perform au-
tomated registration of two- and three-dimensional images, both within and
across subjects. Registration across imaging modalities is also supported. AIR
is written in C and runs in Unix, Windows, and Apple environments.

FMRIB Software Library (FSL; homepage http://www.fmrib.ox.ac.uk
/fsl) is written mainly by the members of the Analysis Group, FMRIB,
at Oxford University. FSL is a library of tools for image analysis and sta-
tistical processing of fMRI data, among other modalities. It runs in Apple,
PC (Linux and Windows), and Unix environments. Among the capabilities
of FSL for functional imaging are: general linear model analysis; Bayesian
analysis; model-free analysis via Independent Component Analysis; spatial
mixture modeling; thresholding using the permutation test, Gaussian random
field, and false discovery rate approaches; interactive display of three- and
four-dimensional images; registration and segmentation of images. FSL has
an email list for users; archives and information on joining this list can be
found at http://www.jiscmail.ac.uk/lists/fsl.html.

VoxBo (homepage http://www.voxbo.org) is a suite of C/C++ programs
that runs in a Linux environment, including OS X for Mac and Cygwin for
Windows. VoxBo performs standard preprocessing (motion correction, nor-
malization, smoothing); data analysis via the general linear model for block
and event-related designs; and graphical presentation at the voxel level (voxel
time series, for example). The analysis focus is on the univariate general linear
model; other types of analysis are not supported in VoxBo. A characteristic
of VoxBo is its scheduling mechanisms, which allow for easy batch processing
of fMRI data sets.

Like SPM, VoxBo has a wiki, found at http://voxbo.org/wiki/index.
php/Main Page. There are also several mailing lists for this package; for infor-
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mation on the lists and how to join them, see http://www.voxbo.org/lists.
html.

fMRIstat (homepage http://www.math.mcgill.ca/keith/fmristat)
was developed by Keith Worsley of McGill University. It is a MATLAB-based
collection of tools and can be run in Windows and Linux environments. fMRI-
stat features a variety of linear model analyses, analysis of the hemodynamic
response function, thresholding via random field theory or false discovery rate
control, and an advanced suite of visualization modules.

A.4 Comparison of Imaging Software Packages

Gold et al. (1998) report a descriptive comparison of many of the packages
(both freeware and commercial) available in the late 1990s for the analysis of
fMRI data. The comparison considers operating system; availability of source
code; completeness of documentation (including ease of learning and the in-
clusion of a graphical user interface – GUI); necessary preprocessing steps;
inclusion of image realignment routines; capability to input images of differ-
ent dimension; types of statistical analysis; image display features; inclusion
of spatial transformations; and corrections for multiple testing.

As might be expected, Gold et al. (1998) find that each package has
advantages and drawbacks. The choice of software depends, to a large extent,
on the requirements of the particular laboratory or group. Hence it is not
possible to conclusively recommend one package over the others. AFNI and
SPM, for example, have extensive GUIs, which make them easy to use. On the
other hand, SPM relies heavily on MATLAB, a potential barrier for users who
would therefore be required to obtain the latter in order to run the former.
FIASCO doesn’t have a GUI at all; rather, routines are invoked on command-
line operations, in a hierarchical structure (scripts call scripts); while some
may see this as a drawback, it does in fact allow users a great deal of flexibility
in customizing analysis.

The following table summarizes some of the features of the packages de-
scribed in this appendix. In practice, many people find it helpful to use dif-
ferent packages for different parts of their analyses in order to build on the
strengths of each. The software developers themselves generally take an ecu-
menical “mix and match” approach; useful analyses from one package are also
often quickly adopted by others.
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Feature AFNI SPM FIASCO FSL VoxBo fMRIstat

Computing Unix Linux Unix Linux Linux Linux
environment Windows Windows Windows
Source code language C MATLAB C/Python Unknown C/C++ MATLAB
GUI Yes Yes No Yes Yes No
Email list Yes Yes No Yes Yes No
Other user resources No Wiki No No Wiki No
Statistical analysis LM+ LM+ LM+ LM+ LM LM+
Multiple testing CT/FDR RF/FDR FDR CT/FDR CT+ RF/FDR

Table A.1. Summary of fMRI software analysis packages. Readers are encouraged
to visit the homepages of the packages, listed in the text for a more in-depth discus-
sion of each one. Across from Statistical analysis, an entry of “LM” means that the
linear model is the sole method of analysis; an entry of “LM+” means that other
modes of analysis are also available. Across from Multiple testing, “CT” refers to
contiguity cluster thresholding, “FDR” refers to false discovery rate control, and
“RF” refers to random field theory.
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Glossary of fMRI Terms

Aliasing Distortion of the measured signal. If the sampling rate is too low,
the highest frequencies in the signal will be expressed as lower frequencies
and the reconstructed image will be contaminated with artifacts: the high
frequencies are aliased as low frequencies.

Anterior Toward the front of the brain (see rostral).
Axial slice A view of the brain, as if looking from the top of the head.
B0 field The static magnetic field generated by the MRI scanner.
B1 field The magnetic field caused by the introduction of energy into the

scanner system.
Bandwidth The range of frequencies over which the data are sampled.

Determines the thickness of the slices.
Bloch equation The equation that describes how the net magnetization of

a tissue changes over time. The Bloch equation is the sum of three terms:
a precession term, involving the gyromagnetic ratio and the field strength;
a T1 term; and a T2 term.

Blood Oxygenation Level Dependent (BOLD) response The changes
in oxygen levels of the blood as a result of neuronal activity in reaction
to a presented stimulus. Under stimulation, blood flow increases to the in-
volved regions of the brain. However, the extra oxygen that travels along
with the blood is not recruited to the working cells, causing changes in
the relative levels of oxyhemoglobin and deoxyhemoglobin. These changes
are measured as the BOLD response. Stereotypically, this response man-
ifests itself in: (i) an initial dip below baseline levels; (ii) an increase to
peak levels; (iii) decay following the cessation of the stimulus, possibly
to a level below the baseline, before recovering baseline. The peak BOLD
response is small, on the order of 2-3% signal change at 1.5T, occurring
approximately 6 seconds after stimulus presentation. Most functional MR
imaging measures BOLD contrast.

Caudal Toward the back of the brain (see posterior).
Cerebrospinal fluid (CSF) A clear liquid that surrounds the brain and

spinal cord.
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Coronal slice A view of the brain, as if looking from the front of the head.
Crosstalk The phenomenon by which radiofrequency pulses that are ap-

plied to adjacent slice positions excite the same region of tissue, resulting
in contamination of the measured signal. Crosstalk is often avoided by
leaving a gap between slices and by not acquiring the slices in sequential
order.

Deoxyhemoglobin Hemoglobin (the protein in red blood cells) without
oxygen (“blue blood”). Deoxyhemoglobin is paramagnetic.

Diamagnetism Having a weak repulsion from a magnetic field. Most tissues
in the body are diamagnetic. When diamagnetic substances are placed in
an external magnetic field, the effective strength of the field is reduced.

Dorsal Toward the top of the brain (see superior).
Echo-planar imaging (EPI) A data acquisition sequence that traverses

k-space in a boustrephedonic fashion, alternating the reading of rows from
left to right and from right to left. The fast switching of gradient direction
allows for rapid image acquisition.

Excitation The application of energy at the resonant frequencies of tissue
inside of the static magnetic field.

Ferromagnetism Having a strong attraction to a magnetic field. When
ferromagnetic substances are placed in an external magnetic field, they
become permanently magnetized. Iron, cobalt, and nickel are ferromag-
netic.

Field of view (FOV) The dimensions of the acquired image of the tissue.
Field inhomogeneity Nonuniformity of the static magnetic field, caused

by imperfections in the magnet and interference from external sources.
Flip angle The change in precession angle from aligning with the z-axis

(direction of the magnetic field) to aligning with the transverse (x, y)-plane
following application of a pulse. A 90o flip angle flips the net magnetization
into the (x, y)-plane; lesser flip angles tilt the net magnetization in the
direction of that plane.

Fourier transform The mathematical operation that is used to reconstruct
data acquired from the MR scanner into an image recognizable as a brain.
If ρ(x, y) is the density of hydrogen nuclei at location (x, y), and I(t) is
the signal that is stored by the scanner at time t, then it can be shown
that the measured signal is the Fourier transform of the values ρ, which
are ultimately of interest. The discrete (sampled on an n × n grid) two
dimensional Fourier transform of a function f(x, y) is given by

g(w, v) =
1
n2

n−1∑
x=0

n−1∑
y=0

f(x, y)e−i2π(wx/n+vy/n).

Free induction decay (FID) The shape of the signal that is picked up
and measured by the receiver coil, which is a slowly decaying sinusoidal
wave.
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Frequency encoding gradient The gradient applied in the x direction of
a slice, this determines location along the x-axis. Also called the readout
gradient.

Gap The space left between consecutive slices of data. Used to limit
crosstalk.

Ghost An artifact that manifests itself in a shadow image superimposed on
the main reconstructed image. Ghosts are the result of improper alignment
of the gradients.

Gradient A magnetic field that varies spatially, usually linearly. The gradi-
ents, when applied in each of the x, y, and z directions, induce temporary
inhomogeneities in the static field, so that each locus in the tissue be-
ing imaged has a unique resonant frequency. Hence protons at each voxel,
determined by the gradients, are differentially excited.

Gradient coil The physical mechanism by which the gradients are applied.
Coils are electrical devices made up of loops of wire.

Gray matter The tissue in the brain in which neural activity takes place.
Areas in gray matter consist of nerve cell bodies with no myelin (fatty)
covering.

Gyromagnetic ratio The ratio of the field strength (the magnetic mo-
ment) to the frequency, or angular momentum, of the nucleus. Denoted γ.
Each type of nucleus has its own value of the gyromagnetic ratio. For 1H
(hydrogen) γ = 42.58 MHz/T. γ depends only on the charge and the mass
of the atomic nucleus, hence it is constant for a given type.

Hemodynamic response The changes that occur in the measured MR
signal due to brain activity. The hemodynamic response is a result of
the decrease in levels of deoxygenated blood around active regions. It is
characterized by a short lag following stimulation, after which a rise in
signal is observed. This reaches a peak some 6-7 seconds after stimulus
presentation (with some variability); if no further stimulation is present,
the signal will slowly decay, often dipping below the starting levels before
returning eventually to baseline.

Image space The space in which the data are viewed. Most statistical
analysis takes place in image space.

Inferior Toward the bottom of the brain (see ventral).
k-space The space in which the data are acquired. Some data preprocessing,

and some statistical analysis, may be performed in k-space.
Larmor equation This equation provides the rate at which a proton pre-

cesses around the external (static) magnetic field: ω = γB0, where γ is the
gyromagnetic ratio and B0 is the strength of the field (typically 1.5 or 3T
for imaging experiments on humans).

Lateral Away from the middle of the brain; toward the edge of the brain.
Longitudinal magnetization The magnetic field in the direction of the

main, external, field, denoted as the z-axis. Longitudinal magnetization is
caused by the fact that when tissue is placed in the strong external field,
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more protons align parallel to the field than anti-parallel to it, resulting
in a net magnetization in the z direction.

Longitudinal relaxation time The time required for the magnetization
in the longitudinal direction to return to its starting (maximal) value.
Following the application of a pulse that tips the field into the transverse
plane, the longitudinal magnetization is zero. When the pulse is turned
off, the magnetization parallel to the main field begins to recover, finally
reachieving the initial value. Also known as spin-lattice relaxation or T1

recovery.
Medial Toward the middle of the brain.
Net magnetization The total magnetization of the system at a given time.

This is influenced by the external field, as well as any gradient pulses that
have been applied.

Neurological convention The display of brain images so that the right
side of the image corresponds to the right side of the brain, and the left
side of the image corresponds to the left side of the brain.

Nuclear magnetic moment The (small) magnetic field generated by an
individual nucleus with nonzero spin.

Oblique slice A view of the brain that is not from any of the three main
directional planes (axial, coronal, or sagittal). Oblique slices are obtained
by linearly combining the slice selection, phase encoding, and frequency
encoding gradients.

Oxyhemoglobin Hemoglobin (the protein in red blood cells) that is loaded
with oxygen. Oxyhemoglobin is bright red in color.

Paramagnetism Having an attraction to a magnetic field. When a para-
magnetic substance is placed in an external magnetic field, it becomes
magnetized; it becomes demagnetized once the field is turned off or it
is removed from the field. Paramagnetic substances increase the effective
strength of the magnetic field in which they are placed.

Phantom An object, usually filled with a liquid or gel of known properties,
used for testing the MR system.

Phase coherence The state of the protons after the application of a ra-
diofrequency pulse, whereby they all precess around the central axis of the
magnet in unison.

Phase encoding gradient The gradient applied in the y direction of a
slice, this determines location along the y-axis.

Posterior Toward the back of the brain (see caudal).
Precession The motion of an object with a central axis, such as a spinning

top or a proton, around that axis. When there is no external magnetic
field, a proton will rotate around its central axis, thereby generating a
small magnetic field. When there is an external field, a proton will rotate
around its central axis, but will also precess around the center of the
external field. The rate of precession of the proton around the external
magnetic field is determined by the Larmor equation.
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Proton One of the elemental particles, along with neutrons and electrons,
that make up the atom. Different atoms have different numbers of protons,
and this determines their properties. The nuclei of hydrogen atoms have a
single proton; since hydrogen is the most common element in the human
body, fMRI usually images hydrogen, and the properties of single pro-
tons are of prime importance in understanding how the imaging technique
works.

Pulse sequence A description of the various energies injected into the MR
system over the course of a study, which allows the scanner to create the
required images.

Radiofrequency (RF) coil Coil that transmits or receives RF pulses. RF
coils may be transmitters only, receivers only, or both.

Radiofrequency (RF) pulse An insertion of energy into the system that
generates a weak magnetic field and “flips” the net magnetization vector
into the transverse plane.

Radiological convention The display of brain images so that the right
side of the image corresponds to the left side of the brain, and the left side
of the image corresponds to the right side of the brain.

Resonance The result when the frequency of the RF pulse matches the rate
of precession of the protons in a region of tissue. Resonance adds energy
to the system; without it, the flip of the magnetization vector into the
(x, y)-plane could not occur.

Rostral Toward the front of the brain (see anterior).
Sagittal slice A view of the brain, as if looking from the side of the head.
Shimming coil Part of the MR coil system that corrects for field inhomo-

geneities in the external magnetic field.
Signal to noise ratio (SNR) The size of the signal in the data relative to

the external variability.
Slice A single cross-section of an imaging volume, that is, a plane of data

in the axial, coronal, or sagittal direction (see axial slice, coronal slice,
sagittal slice).

Slice selection The process of exciting the protons within a chosen slice of
the imaging volume by the application of gradients and electromagnetic
pulses.

Spin A nucleus with the nuclear magnetic resonance (NMR) property,
namely, one possessing both a magnetic moment and angular momentum.
Only these nuclei can be used in magnetic resonance imaging. Nuclei with
even-valued atomic masses cannot be spins. The most commonly used spin
for functional MRI is hydrogen, as it is the most prevalent of the nuclei
having the NMR property.

Spin-lattice relaxation time The time required for the magnetization
in the longitudinal direction to return to its starting (maximal) value.
Following the application of a pulse that tips the field into the transverse
plane, the longitudinal magnetization is zero. When the pulse is turned
off, the magnetization parallel to the main field begins to recover, finally
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reachieving the initial value. Also known as longitudinal relaxation or T1

recovery.
Spin-spin relaxation time The time required for the magnetization in the

(x, y)-plane to decay to zero after the radiofrequency pulse is turned off.
When the RF pulse is turned off, the protons, which had been precessing
in phase, begin to lose phase coherence, causing the loss of magnetization
in the transverse plane. Also called transverse relaxation or T2 decay.

Spiral imaging A data acquisition sequence that traverses k-space in a
spiraling pattern. Images maybe be acquired in a spiral-in fashion, which
starts at the edge of k-space and ends in the center; or in a spiral-out
fashion, which starts at the center of k-space and ends at the edge.

Static magnetic field The strong external magnetic field inside the MR
scanner. The strength of this field is a constant, measured in Tesla (T),
and is usually 1.5 or 3T for research on humans.

Superior Toward the top of the brain (see dorsal).
Susceptibility artifact A distortion in the acquired image due to field

inhomogeneities where sinuses (air) and tissue neighbor each other.
T1 recovery The time required for the magnetization in the longitudinal

direction to return to its starting (maximal) value. Following the applica-
tion of a pulse that tips the field into the transverse plane, the longitudinal
magnetization is zero. When the pulse is turned off, the magnetization par-
allel to the main field begins to recover, finally reachieving the initial value.
Also known as longitudinal relaxation or spin-lattice relaxation.

T2 decay The time required for the magnetization in the (x, y)-plane to
decay to zero after the radiofrequency pulse is turned off. When the RF
pulse is turned off, the protons, which had been precessing in phase, begin
to lose phase coherence, causing the loss of magnetization in the transverse
plane. Also called transverse relaxation or spin-spin relaxation.

T ∗
2 decay The time until magnetization in the (x, y)-plane decays to zero,

due to both loss of phase coherence and local inhomogeneities in the mag-
netic field. T ∗

2 is shorter than T2, as it incorporates two sources of decay,
and is the basis for BOLD fMRI imaging.

Tesla The unit of measurement of a magnetic field. The magnets used for
fMRI research typically are 1.5 or 3 Tesla (T) strong.

Time to echo (TE) The interval between application of the radiofrequency
pulse and acquisition of the signal. Measured in milliseconds.

Time to repetition (TR) The interval between successive applications of
radiofrequency pulses. Measured in seconds.

Tissue contrast (T1, T2, and T ∗
2 weighting) The use of the different val-

ues of T1, T2, and T ∗
2 in different types of tissue to enhance certain features

of the image. T2 weighted images are sensitive to regions filled with fluid,
such as tumors and other pathologies. T ∗

2 weighted images are sensitive to
the amount of deoxyhemoglobin in the tissue, making them particularly
useful for BOLD functional MR. T1 weighting is not a significant factor in
fMRI.
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Transverse magnetization The magnetization in the (x, y)-plane, follow-
ing a radiofrequency pulse that flips the field. After a 90o pulse, all mag-
netization is in the transverse plane.

Transverse relaxation time The time required for the magnetization in
the (x, y)-plane to decay to zero after the radiofrequency pulse is turned off.
When the RF pulse is turned off, the protons, which had been precessing
in phase, begin to lose phase coherence, causing the loss of magnetization
in the transverse plane. Also called T2 decay.

Ventral Toward the bottom of the brain (see inferior).
Voxel Three-dimensional volume element. The basic unit of fMRI data, a

voxel comprises millions of neurons.
White matter The part of the brain responsible for transmitting informa-

tion between areas of gray matter. Consists of nerve cells covered by a
fatty myelin sheath.
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Pélégrini-Issac, M., 78, 79
Panych, L.P., 21
paramagnetism, 12, 258
parameter estimates

clustering of, 115
parietal lobe, 2, 3
Park, C., 159, 161
Parrish, T., 40, 46, 47
partial least squares, 128–129

spatiotemporal, 128, 129
behavioral analysis, 129
task analysis, 129

particle spin, 5, 259
Parzen, E., 165
Patel, R., 115

path analysis, 214
Patterson, D., 55, 76, 77, 82, 114, 117,

199, 200
Pattynama, P.M.T., 40–42
Pauling, L., 13
Paulson, O.B., 117, 118, 142, 143
Pavlicová, M., 69
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