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Supporting Online Material

Materials and Methods

Subjects
 Subjects were recruited from Washington University in St. Louis and the surrounding 
community. Individuals with metal implants, heart arrhythmias, claustrophobia or a history of 
developmental delay, neurological or psychiatric illness, including the use of psychotropic 
medications, were excluded.  All subjects were native English speakers. All adult subjects gave 
informed consent, and subjects under the age of 18 years gave assent with parental informed 
consent, all in accordance with the guidelines and approval of the Washington University Human 
Studies Committee. Children were acclimated to the MRI environment through the use of a 
mock scanner prior to data collection. Subjects were reimbursed for their participation.

Data sets
 The analyses described in this article utilized three separate developmental functional MRI 
(fMRI) data sets (Table S1, S2). Unless specifically noted, these data sets were treated identically 
in processing and analysis.
 Data set #1 (Table S2) consisted of a total of 238 resting-state fMRI scans (age 7-30 years; 
115 female, 123 male), from 192 individuals, matched across chronological age for total 
intracranial volume (6.7-17.8 years, mean = 1463 cm3; 18.1-30 years, mean = 1460 cm3; 
correlation, r = 0.044, P = 0.50) and movement (6.7-17.8 years, mean rms-variance = 0.28 mm; 
18.1-30 years, mean rms-variance = 0.31 mm; correlation, r = -0.014, P = 0.83). Two adults were 
left-handed. For all scans, data were 126 MR frames of continuous resting-state. These data were 
used for all primary analyses, including brain maturity classification and prediction (Fig. 1, 2, 
and 3). 
 Data set #2 (Table S2) consisted of a total of 195 resting-state fMRI scans (age 7-31 years; 
101 female, 94 male), from 183 individuals, matched across chronological age for total 
intracranial volume (7-15.7 years, mean = 1409 cm3; 19-31.4 years, mean = 1421 cm3; 
correlation, r = 0.086; P = 0.23) and movement (7-15.7 years mean rms-variance = 0.51 mm; 
19-31.4 years mean rms-variance = 0.50 mm; correlation, r = -0.092; P = 0.20). One teenage 
subject was left-handed. For 174 scans, rest data were taken from rest periods of mixed blocked/
event-related fMRI designs (1). For nine scans, data were from rest-only paradigms. From each 
scan 128 MR frames of relaxed resting-state were utilized. 
 Data set #3 (Table S2) consisted of 186 event-related fMRI scans (age 6-35 years; 99 
female, 87 male) from 143 individuals performing simple and controlled lexical processing tasks 
(2, 3), again matched across chronological age for total intracranial volume (5.8-17.8 years, 
mean = 1409 cm3; 18.6-35.3 years, mean = 1417 cm3; correlation, r = 0.026; P = 0.73) and 
movement (7-15.7 years, mean rms-variance = 0.30 mm; 18.6-35.3 years, mean rms-variance = 
0.35 mm; correlation, r = -0.008; P = 0.92). Five of the children included in the data set were 
left-handed. These data were made to approximate resting state by regressing out task-related 
variance as well as the linear trend on a voxel-by-voxel basis, retaining only the baseline in the 
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general linear model (GLM) (4, 5). These analyses were carried out using in-house statistical 
software based on IDL (IDL; Research Systems Inc., Boulder, CO), before any resting state 
functional connectivity (rs-fcMRI) pre-processing steps. From each scan, 128 MR frames of 
task-removed event-related data were utilized. 

Data acquisition 
 Data set #1 was acquired on a Siemens MAGNETOM Tim Trio 3.0T Scanner with a 
Siemens 12 channel Head Matrix Coil (Erlangen, Germany), between 03/2007 and 05/2010. A 
T1-weighted sagittal MPRAGE structural image was obtained (TE = 3.08 ms, TR-partition = 2.4 
s, TI = 1000 ms, flip angle = 8°, 176 slices with 1x1x1 mm voxels) (6). A T2-weighted turbo spin 
echo structural image (TE = 84 ms, TR = 6.8 s, 32 slices with 2x1x4 mm voxels) in the same 
anatomical plane as the BOLD images was also obtained to improve alignment to an atlas. 

Functional images for data set #1 were obtained using a BOLD contrast sensitive gradient 
echo echo-planar sequence (TE = 27 ms, flip angle = 90°, in-plane resolution= 4x4 mm; volume 
TR = 2.5 s for 197 scans; volume TR = 2.2 s for 27 scans; volume TR = 2 s for 14 scans). 

Whole brain coverage for the functional data was obtained using 32 contiguous 
interleaved 4 mm axial slices. 
 Data sets #2 and #3 were acquired on the same Siemens 1.5 Tesla MAGNETOM Vision 
MRI scanner (Erlangen, Germany), between 05/2000 and 06/2006 in intermingled fashion. All 
structural images were obtained using a sagittal magnetization-prepared rapid gradient echo 
(MP-RAGE) three-dimensional T1-weighted sequence (TE = 4 ms, TR = 9.7 ms, TI = 300 ms, 
flip angle = 12°, 128 slices with 1.25!1!1 mm voxels). Functional images for data set #2 were 
obtained using an asymmetric spin echo echo-planar sequence sensitive to blood oxygen level-
dependent (BOLD) contrast (T2* evolution time = 50 ms, flip angle = 90°, in-plane resolution 
3.75!3.75 mm; volume TR = 2.5 s for 186 scans; volume TR = 2.68 s for 9 scans). 
Magnetization steady state was assumed after 10 seconds.
 Functional images for data set #3 were obtained using an asymmetric spin echo echo-
planar sequence sensitive to blood oxygen level-dependent (BOLD) contrast (volume TR = 3.08 
s, T2* evolution time = 50 ms, flip angle = 90°, in-plane resolution 3.75!3.75 mm). Steady state 
was assumed after ~ 9 seconds. 
 For data sets #2 and #3, whole brain coverage for the functional data was obtained using 16 
contiguous interleaved 8 mm axial slices, acquired parallel to the plane transecting the anterior 
and posterior commissure (AC-PC plane).

Data pre-processing
 For subjects with more than one fMRI scan, the BOLD data from multiple dates were first 
aligned to each other and then transformed to the atlas, in order to improve spatial registration. 
All subsequent operations were performed on the atlas-transformed volumetric 
timeseries. 
 Functional images were first processed to reduce artifacts (4, 7). These steps included: (i) 
removal of a central spike caused by MR signal offset, (ii) correction of odd versus even slice 
intensity differences attributable to interleaved acquisition without gaps, (iii) correction for head 
movement within and across runs and (iv) within run intensity normalization to a whole brain 
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mode value of 1000. Atlas transformation of the functional data was computed for each 
individual via the MP-RAGE scan. Each run was then resampled in atlas space (8) on an 
isotropic 3 mm grid combining movement correction and atlas transformation in a single 
interpolation (9, 10).

Resting state functional connectivity MRI (rs-fcMRI) pre-processing
 For rs-fcMRI analyses, several additional preprocessing steps, as previously described (1, 
11-15), were utilized to reduce spurious variance unlikely to reflect neuronal activity. These steps 
included: (1) a temporal band-pass filter (0.009 Hz < f < 0.08 Hz) and spatial smoothing (6 mm 
full width at half maximum), (2) regression of six parameters obtained by rigid body head 
motion correction, (3) regression of the whole brain signal averaged across the whole brain, (4) 
regression of ventricular signal averaged from ventricular regions of interest (ROIs), and (5) 
regression of white matter signal averaged from white matter ROIs. Regression of first order 
derivative terms for the whole brain, ventricular, and white matter signals were also included in 
the correlation pre-processing.

Regions of interest (ROI)
 One could argue that the ideal region of interest (ROI) definition approach would be one 
that respects the organization of the brain into separable functional areas. The more closely the 
nodes entered into network analyses represent the underlying functional areas of the brain, the 
more reliable and accurate the descriptions will be (16). Prior network studies have used both 
functionally (13, 14) and anatomically defined ROIs (17, 18), both of which are valid and 
important approaches. 
 In order to gain at least an estimation of the underlying functional area architecture,  we 
chose to functionally define regions of interest from several meta-analyses of fMRI activation 
studies. Our main goal was to generate a large set of ROIs that broadly cover much of the 
cerebral cortex and cerebellum (Fig. S1). The cerebellum is difficult to parcellate anatomically, 
and usually not included in anatomical parcellation schemes. Furthermore, functionally defining 
ROIs provided additional leverage for interpreting developmental changes since it allowed us to 
include ROIs whose function we were already familiar with from previous studies. 
 Building on prior meta-analytic studies (19), a series of five meta-analyses, focused on 
error-processing, default-mode (task-induced deactivations), memory, language and sensorimotor 
functions were carried out (Table S3). All fMRI activation data for these meta-analyses were 
collected on the same Siemens 1.5 Tesla Vision scanner as Data set #2 and Data set #3. 

For the sensorimotor and language meta-analyses, main effect of activation (ANOVA: 
time as single factor over 7 levels) statistical images, were generated from each included study. 
To identify voxels that were reliably activated across these studies, the activation images were 
thresholded at a high Z-score (Z > 7). The error (2-factor ANOVA: correctness (2-levels) x time 
(7-levels)) and memory-related (2-factor ANOVA: oldness (2-levels) x time (7-levels)) meta-
analyses relied on statistically weaker interaction effects therefore the thresholds were scaled 
appropriately lower (error: Z > 4; memory: Z > 2) (19). The default-mode regions were derived 
from meta-analyses of both trial-related (Z > 7; main effect of deactivation) and sustained 
deactivations (Z > 2). As for the analysis of interactions a lower threshold was applied to the 
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sustained signals since they are statistically less reliable. Several thresholds were tested initially, 
and the peaks identified were very similar. Additionally, there was substantial overlap in 
identified peaks between meta-analyses, and so small differences in peaks identified from a 
single meta-analysis were offset by redundancies with other meta-analyses.

Voxels passing the threshold were set equal to one and all others equal to zero, creating a 
mask of significantly activated voxels for each study. The masks for all studies were summed to 
create a conjunction image, where each voxel carried a value between zero and the number of 
studies in the meta-analysis, indicating how often voxels were significantly activated across the 
meta-analysis. After applying a 4 mm smoothing kernel to these images, peak-finding algorithms 
were used to identify centroids of reliably activated groups of voxels. 
 Ten mm diameter spheres were centered at the activity peaks for each meta-analysis. ROIs 
from the separate meta-analyses were then combined by giving priority to ROIs identified by 
task-induced deactivations (default-mode) and error > correct (control). For overlapping ROIs 
across the language, memory and sensorimotor meta-analyses, a spatial average location was 
first computed. Language, memory and sensorimotor-related ROIs were then added at the final 
step. Previously published cognitive control regions (13, 20) were included in the set of error-
processing related regions.
 In this manner, a total of 160 ROIs were generated. The distance between all ROI centers 
was at least 10 mm, thus not allowing any spatial overlap between ROIs. All three-dimensional 
coordinates reported in the manuscript are in MNI space.

Prediction of individual brain maturity using fMRI - SOM! 4



Fig. S1. Regions of interest (ROIs). All 160 ROIs utilized in the analyses are displayed on a 
surface rendering of the brain (CARET 5.614).

Extraction of functional connections (features)
 For every scan, a separate resting state blood oxygenation level dependent (BOLD) 
timeseries was extracted for each ROI. The BOLD timeseries from each ROI was then correlated 
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with the BOLD timeseries for every other ROI (Pearson’s r), creating a square correlation matrix 
(160 ! 160) for every scan (13). This resulted in 12,270 correlations between region pairs for 
each scan. Fisher’s z-transform was then applied to the correlation values to ensure normality. 
These functional connections (Fisher’s z-transformed r-values) were the features used in all 
subsequent multivariate pattern analyses (MVPA).

Support Vector Machine (SVM)
 Since first proposed by Vapnik as a logical extension of statistical learning theory, support 
vector machines (SVMs) have become widely used in the life sciences because of their ability to 
handle very high-dimensional data, and their accuracy in classification and prediction (21-23). 
Because of these properties, they have proven powerful in the analysis of structural (24-28) and 
functional (29, 30) neuroimaging data (31-33).
 Accessible and practical discussions of SVM methodology, including visual examples, 
have been published recently (23, 28, 34). For more detailed theoretical and mathematical 
explications of SVMs, see (21, 22, 35-39). In light of these explications of SVMs already 
published, we will only provide a brief overview here.
 In SVMs, each of the samples (i.e. subjects) is treated as a point in a multi-dimensional 
space with as many dimensions as features (i.e. functional connections). In the present study, 
SVMs were used to discriminate between subjects belonging to two different classes (i.e. child, 
adult) using soft-margin separation.
 In the original hard-margin SVM formulation, the maximally separating hyperplane is 
found in hyperspace, such that it is as far as possible from the closest members of both classes. 
This approach finds the largest margin between the decision boundary and the samples nearest to 
the boundary (support vectors) when correctly classifying all samples.
 Often an even larger separating margin can be achieved if some samples are allowed to be 
misclassified. Hence soft-margin SVM was developed, which finds the maximal margin, while 
allowing some misclassification. The relative importance of maximizing the margin versus 
minimizing the amount of misclassification is controlled by the constant C. For a larger C, a 
larger penalty is assigned to misclassification errors, making the margin smaller or “harder”. 
Theory and experimental results have shown that soft-margin SVMs are less prone to overfitting 
and will generally provide better performance (23). All SVM classifications described in this 
article used soft-margin SVMs with the Spider Machine Learning Toolbox (http://
www.kyb.tuebingen.mpg.de/de/bs/people/spider) default setting of C=1, as suggested (40).
 Decision boundaries can be made non-linear using the so-called “kernel trick” (22, 23, 34). 
This method entails mapping the data points into a higher-dimensional vector space and applying 
a linear decision function in this higher-dimensional vector space. Even though the decision 
function is linear in the higher-dimensional vector space, it is non-linear in the original input 
space. In many cases, nonlinear decision functions provide slightly greater accuracy (23). All 
SVM classifications and regressions (SVR) described in this article used non-linear decision 
functions, namely radial basis functions (k(x,y) = exp(-|x-y|^2/(2*sigma^2)) with sigma = 2, as 
recommended in the literature (40).
 The SVM procedure has two separate phases. During the training phase, the SVM finds the 
decision boundary. SVM classification is a form of supervised learning since training is done on 
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labeled samples. Each sample consists of the pattern of features for a given subject and a binary 
label (either +1 or -1) that identifies the subject as belonging to one of two classes. Once a 
decision function is learned based on the training data, it can be used to predict the class label of 
a new, previously unseen, test sample.
 In 1997, the SVM approach was extended to include SVM regression (SVR) in order to 
make real-valued predictions (41). SVR retains some of the main features of SVM classification. 
A difference between SVM classification and regression is that in classification a loss penalty is 
incurred for misclassified data (points on the wrong side of the hyperplane), whereas in SVR a 
penalty is assessed for points too far from the regression line in hyperspace.
 Epsilon-insensitive SVR defines a tube of width epsilon around the regression line in 
hyperspace. Any data points within this tube carry a loss of zero, meaning there is no penalty for 
being too far away from the regression line. In essence, SVR performs linear regression in 
hyperspace using epsilon-insensitive loss. In SVR, the C parameter now controls the trade-off 
between how strongly points beyond the epsilon-insensitive tube are penalized and the flatness 
of the regression line (larger C allows the regression line to be less flat). All SVR predictions 
described in this article used epsilon-insensitive SVRs with the Spider Machine Learning 
Toolbox (http://www.kyb.tuebingen.mpg.de/de/bs/people/spider) default setting of C = Infinity, 
while epsilon was set to 0.00001.
 All SVM-related computations were carried out using the Spider Matlab Machine Learning 
Toolbox (http://www.kyb.tuebingen.mpg.de/de/bs/people/spider) implemented in MATLAB 
7.8.0 (R2009a; The Mathworks, Natick, MA), as well as functions available as part of the 
MATLAB Bioinformatics, Curve-fitting and Statistics Toolboxes and in-house MATLAB code.

Cross validation
 Leave-one-out-cross-validation (LOOCV) was used to estimate classification (SVM) and 
prediction (SVR) accuracies (30-32, 42-44). During LOOCV, each sample is designated the test 
sample in turns while the remaining samples are used to train the SVM classifier or SVR 
predictor. The decision function derived from the training sample is then used to classify or make 
a real-valued prediction about the test sample.
 In LOOCV, each sample is designated as the test sample once. Hence, there are as many 
rounds of cross-validation or folds in LOOCV as samples. After all LOOCV folds are completed, 
the accuracies for all folds are averaged together to generate the final accuracy estimate, which is 
then reported. The accuracy estimate generated in this way is the expected accuracy of a 
classifier or predictor on a data set with all but one of the samples (42). LOOCV is a commonly 
implemented cross-validation tool because it allows using most of the data for training. LOOCV 
is widely used in machine learning and MVPA approaches (30-32, 42-44) and has been shown to 
provide a conservative estimate of a classifier’s or predictor’s true accuracy (42).
 Some subjects were scanned more than once, so we performed LOOCV across subjects, 
not scans (45). For every fold of LOOCV, we left out all the scans of the “left out” single 
subject . In this manner we avoided so-called “twinning” bias in our accuracy estimates, which 
can be introduced when a sample very similar to the test sample is included in the training set. 
Keeping all the scans of an individual together in the same test set eliminated the potential for 
this type of bias.
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 All feature ranking and filtering (see immediately below) was always carried out on the 
training sample only, without examining the labels of the test sample, in order to avoid the 
introduction of bias.

Feature ranking and elimination
 Even though SVMs are designed to contend with high-dimensional feature spaces, studies 
have shown that initially reducing the number of features can not only speed up computation, but 
also improve performance (31, 32, 44, 45). Therefore, for both SVM and SVR, an initial 
univariate feature-filtering step was utilized (31, 32, 44).
 For SVM classifications, 12,720 t-tests (two-sided, not assuming equal variance) 
comparing every feature across the classes were performed separately on the training set of each 
LOOCV fold. The test samples were excluded prior to t-testing. For each LOOCV fold, the 
features were then separately ranked by their absolute T-scores in descending order.
 For real-valued SVR predictions (i.e. brain maturity), the correlation (Pearson’s r) of each 
of the 12,720 features with the independent variable (i.e. chronological age) was computed on 
the training set of each LOOCV fold. The test samples were excluded prior to correlating each 
feature with the independent variable. For each LOOCV fold, the features were then separately 
ranked by the absolute value of the correlation coefficients with chronological age in descending 
order.
 After univariate feature ranking for both SVM classification and SVR prediction, the 
highest ranked features were retained while the rest were eliminated. For all analyses reported in 
this article the feature-filtering cutoff was 200 features. Preliminary analyses on a previously 
published subset of Data set #2 (1) had shown that for SVM classification the 200 highest ranked 
features, by t-testing, passed Bonferroni’s correction at P = 0.01. Hence, a cutoff of 200 features 
was carried forward for all analyses.
 Additional preliminary SVM classification analyses (children vs. adults) were also carried 
out to try to define an optimum number of features. We used recursive feature elimination (RFE) 
within nested loops of LOOCV (31, 46). In this approach, LOOCV is run again inside the 
training set of each loop of LOOCV with the aim of identifying an optimum number of features. 
RFE is a backward feature elimination technique that iteratively removes features (functional 
connections) from the data set with the aim of removing as many non-informative features as 
possible while retaining features that carry discriminative information. Although RFE has 
successfully improved accuracy for other data sets, for the data included in this manuscript, 
SVM-RFE did not significantly improve accuracy over simply selecting the 200 highest-ranked 
features. Therefore, SVM-RFE was not used and subsequent analyses relied on simpler feature 
filtering alone.

Significance testing of classification and prediction accuracies
 The statistical significance of all LOOCV results was assessed using permutation testing as 
proposed by Golland et al. (47). Using this approach we estimated the empirical cumulative 
distribution of the classifier and predictor accuracies under the null hypothesis (no 
discriminability). In other words, we estimated how likely we were to have observed the same 
classification or prediction performance by chance.
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 For each SVM classification described in this article, the class labels (e.g. child vs. adult) 
were randomly permuted 10,000 times, and the entire classification process including feature 
ranking and elimination was carried out with each one of the sets of randomized class labels. The 
mean accuracies across permutation tests were always 50%, suggesting that the analyses were 
free of introduced bias. 
 For the SVR brain maturity predictions described in this article, the prediction labels (i.e. 
chronological ages) were randomly permuted 1,000 times, and the entire prediction process 
including feature ranking and elimination was carried out with each one of the sets of 
randomized prediction labels. 
 The p-values reported for accuracy represent the probability of observing the reported 
accuracy by chance ((number of permutation errors < observed error) +1) / (number of 
permutations + 1). The reported p-values for the maturity prediction r2 values represent the 
probability of observing the reported r2 values by chance.

Model selection curve fitting and graphing
Model selection for fcMRI maturation curves utilized the Akaike information criterion 

(AIC), which allows comparison of non-nested models (48-51). The AIC (2k - 2ln(L); where k = 
number of parameters and L = maximum likelihood of model) provides a relative goodness of fit 
estimate for different models when applied to the same data (Table S4). It takes into account both 
descriptive accuracy and parsimony, since it carries a penalty for increasing the number of free 
parameters. The absolute AIC values are not particularly meaningful since they are specific to the 
data set being modeled. The relative AIC values (!AICi = AICi – min AIC), however, can be 
used to rank models. The relatively best model is assigned a !AICi of zero. As a rule of thumb, 
Akaike suggested that !AIC values < 2 indicate that models are almost equivalent. In addition, 
!AIC values can be converted to AIC weights (wiAIC). To do so, the likelihood of a model is 
estimated by L = e-1/2!AICi. The AIC weight of each model is its likelihood divided by the sum of 
likelihoods for all models. The AIC weight can be interpreted as the probability that a model is 
the best model among the set of examined models. Using these methods, seven plausible models 
with either two or three parameters were analyzed (Table S4)
 All curve fitting, graphing and statistical testing was carried out using MATLAB 7.8.0 
(R2009a; The Mathworks, Natick, MA) and the MATLAB Statistics and Curve Fitting toolboxes 
and in-house MATLAB code.

Characterization of functional connections (features)
 On every fold of LOOCV, the 200 highest ranked features were selected. Since feature 
ranking is based on a slightly different subset of the data for each fold of LOOCV, the selected 
features (i.e. functional connections) differed slightly from fold to fold of LOOCV. However, 156 
features were included (i.e. passed feature filtering) on every fold of LOOCV for SVR brain 
maturity prediction. These “consensus” features were always selected to form part of the 
predictor (100% overlap). Therefore, all subsequent visualization of feature weights (Fig. 2, Fig. 
S7, Table S5), feature length and angle (Fig. S3) was restricted to these 156 consensus features. 
As with prediction accuracy, displayed feature weights (Fig. 2, Fig. S7, Table S5) are the average 
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across all folds of LOOCV. 
 Fig. S8 graphs connection length in mm and angle from the anterior-posterior (AP) axis in 
degrees. The length of functional connections is simply the root-mean-square distance between 
the centers of the respective ROIs that make up the functional connection, expressed in mm. The 
displayed connection angles against the AP axis were measured by translating all connections to 
a common origin. The connections were projected to the horizontal plane and the absolute angle 
from the AP-axis was measured in degrees. 

Characterization of regions of interest (ROI)
 The contribution of different ROIs to the prediction of brain maturity was not evenly 
distributed. Some ROIs formed many strongly weighted consensus functional connections with 
other ROIs and some did not form any (Fig. 2, Fig. S9, Table S6). To represent the relative 
contribution of different ROIs to brain maturity prediction we computed the “region weight” for 
each ROI. To do so we summed the feature weights (i.e. SVR weights for consensus functional 
connections) for each ROI (Table S6). If an ROI did not form part of any consensus functional 
connections, it was given a region weight of zero. In Fig. 2 and Fig. S9 the diameters of the 
spheres representing ROIs are scaled by the ROI’s region strength, in order to visually represent 
the relative contribution of each ROI to functional brain maturity prediction.

Characterization of adult rs-fcMRI functional connectivity networks
 In order to label ROIs according to their rs-fcMRI module membership in young adults, we 
performed a community detection analysis on our 160 ROI collection (14, 52, 53). We used the 
ROIs as nodes, and the pairwise correlation coefficient between rs-fcMRI timecourses (mean r of 
61 young adult scans ages 25-30 years; movement and brain size matched to children aged 7-11 
years) as connections between nodes (14). We used the modularity optimization algorithm of 
Newman (52). The network partition that was most resistant to perturbation by randomization, as 
measured by variation of information (VOI) (53, 54) (r = 0.18), was used to define the modules 
or communities seen in Fig. 2 and Fig. S9. A high quality index (Q = 0.61) indicated good 
community structure.
 To assess the relative contributions of different rs-fcMRI networks identified in adults to 
predicted brain maturity, we summed the feature weights across all the ROIs in a given network 
(Fig. 3). Functional connections were separated based on whether they connected ROIs 
belonging to the same or different networks (Fig. 3). If a functional connection was between two 
networks, half of the feature weight was assigned to each network.
 
Caret visualization
 ROIs and functional connections were visualized on a surface rendering of a human brain 
atlas using CARET 5.614 (55-57). The sizes of the spheres representing ROIs were scaled by 
their node strengths. The widths of the vectors representing consensus functional connections 
were scaled by their weights.

Supporting text and figures
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Functional connectivity maturation modeling
 Seven common growth/maturation models were analyzed using AIC weights (Table S4). 
For the age range we studied (7-30 years) five of the models (Von Bertalanffy, Pearl-Reed, Von 
Bertalanffy with y-intercept, log, quadratic) provided almost identical fits (Fig. S2), r2 values 
greater than 0.55 and !AIC values less than 2 (Table S4). The only two models that fit the data 
substantially worse were the quadratic constrained to the origin (green in Fig. S2) and the linear 
(red in Fig. S2). These two models had !AIC values greater than 10 and AIC weights close to 
zero, meaning that the probability of these two models being the relatively best ones was very 
close to zero. 

Fig. S2. Individual functional brain maturity levels (black circles) for Data set #1. 
Chronological age is shown on the x-axis and the functional connectivity Maturation Index 
(fcMI) on the y-axis. Fitted curves for functions included in model selection are shown (linear – 
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red; Pearl-Reed – gray; quadratic – green/brown; Von Bertalanffy with y-intercept – brown; Von 
Bertalanffy – black; quadratic constrained to origin – green; log – purple).

 The 5 well-fitting maturation models all document asymptotic maturation. The 2- and 3-
parameter Von Bertalanffy curves, as well as the Pearl-Reed curve, are classic models of 
biological growth. Von Bertalanffy developed his equations initially to forecast the growth of 
sharks, whereas the Pearl-Reed curve provided an early model of human population growth in 
the face of limited resources (58-61). For these curves, parameter a provides the asymptote that 
represents the predicted maximum of the population mean. Hence, these models suggest that a 
“functional brain age” of ~22 years, or an fcMI of slightly greater than 1.0, corresponds to the 
predicted maximum of the population mean. Since fcMI scores are variable across individuals, 
some will have fcMI values greater than the mean for their age, or be relatively more mature, and 
some will have fcMI scores below the mean for their age, suggesting that their functional 
architecture is relatively less mature. 
 These models are very similar for the studied age range of 7-30 years old. They mainly 
differ in their predictions for ages outside of this age-range. For one, they make different 
predictions for the dynamics of brain maturation between birth and age 7 years. The 2-parameter 
Von Bertalanffy curve differs from the Pearl-Reed and the 3-parameter Von Bertalanffy curve in 
that it predicts an fcMI of 0.0 at age 0. Since rs-fcMRI already shows some recognizable 
organization in infancy (62, 63), this possibility seems less likely than the possibility that 
newborns already have an fcMI greater than 0.0. 
 While the shapes of the quadratics are similar to the asymptotic growth curves (Pearl-Reed, 
Von Bertalanffy) between ages 7-30 years, they make different predictions for ages older than 30 
years. In contrast to the classical asymptotic growth curves, the quadratics predict the fcMI to 
peak and then start declining again with advancing age. While an interesting possibility, this 
seems biologically less plausible since it would suggest that aging could be constructed as 
“maturation in reverse” at least to some degree. While continued changes in functional 
connectivity seem likely after age 30 years, these changes may well be driven by features/
functional connections other than the ones used to predict maturation between ages 7-30 years 
and hence they would not be measured by the fcMI. Future collection of rs-fcMRI scans across 
the entire lifespan should help distinguish between these interesting alternatives.

Data set #2 replicates classification and prediction accuracy
 Data set #2, which consisted of 195 fMRI scans (101 female) matched for head size and 
movement was different from Data sets #1 in that for most scans it consisted of 128 MR frames 
taken from the rest periods of blocked or mixed blocked/event-related fMRI designs (cut & 
concatenated). Furthermore, data were collected on a 1.5 Tesla scanner, not a 3 Tesla scanner and 
the distribution of samples across age was also different. 
 Despite these differences, we were able to replicate our initial child vs. young adult SVM 
classification accuracy (92%; permutation test, P < 0.0001) using 62 scans from children and 62 
scans from young adults. 
 The brain maturity prediction results for Data set #2 (Fig. S3, Table S4; two scans older 
than 30 years excluded from curve fits for consistency) were also very similar to the results from 
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our main data set. As for the continuous rest data (Data set #1), linear provided the relatively 
worst fit (AIC weight ~ 0). All other models had relatively good fits with r2 values of 0.51 and 
better. In contrast, to the continuous rest data (Data set #1) both the quadratics provided accurate 
fits (Table S4). However, the good fits of the quadratics for this data set were mainly driven by a 
small number of adults older than 25 years with very low fcMI values. Since subjects with ages 
greater than 25 years were undersampled in Data set #2, and the goodness of the quadratic fits 
was not borne out in the other data sets, we consider these few subjects as outliers towards the 
relatively functionally immature end of the fcMI spectrum. 

Fig. S3. Individual functional brain maturity levels (black triangles) for Data set #2. 
Chronological age is shown on the x-axis and the functional connectivity Maturation Index 
(fcMI) on the y-axis. Fitted curves for functions included in model selection are shown (linear – 
red; Pearl-Reed – gray; quadratic – green/brown; Von Bertalanffy with y-intercept – brown; Von 
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Bertalanffy – black; quadratic constrained to origin – green; log – purple).

Data set #3 replicates classification and prediction accuracy 
 Data set #3, which consisted of 186 fMRI scans matched for head size and movement (99 
female), was fairly different from both Data sets #1 and #2 in that it consisted of 128 MR frames 
taken from an event-related fMRI design after the task-effects had been regressed out. In 
addition, the TR was slightly longer (3.08 seconds). The data were collected on a 1.5 Tesla 
scanner and the distribution of scans across age was different from both Data set #1 and Data set 
#2. 
 Despite these differences, we were able to replicate our initial child vs. young adult SVM 
classification accuracy (93%; permutation test, P < 0.0001) using only 49 scans from children 
and 49 scans from young adults. The brain maturity prediction results for Data set #3 (Fig. S4) 
were also very similar to the results from Data sets #1 and #2. 
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Fig. S4. Individual functional brain maturity levels (black squares) for Data set #3. 
Chronological age is shown on the x-axis and the functional connectivity Maturation Index 
(fcMI) on the y-axis. Fitted curves for functions included in model selection are shown (linear – 
red; Pearl-Reed – gray; quadratic – green/brown; Von Bertalanffy with y-intercept – brown; Von 
Bertalanffy – black; quadratic constrained to origin – green; log – purple).

 The brain maturity prediction results for Data set #3 (Fig. S4, Table S4; four scans older 
than 30 years excluded from curve fits for consistency) were also very similar to the results from 
our other data sets. As for Data set #1 and Data set #2, linear provided the relatively worst fit 
(AIC weight ~ 0). All other models had relatively good fits with r2 values of 0.55 and better. The 
best fit for Data set #3 was provided by the Pearl-Reed growth curve (Table S4). 
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Combining fcMI measurements across data types
 The similar brain maturity prediction results across disparate data sets (Data set #1, #2 and 
#3) suggested that generating fcMI values for each data set separately, they could then be 
combined to generate a more precise maturation curve constrained by all available samples (Fig. 
S5, Fig. S6).   

Fig. S5. Individual functional brain maturity levels combining Data sets #1, #2, #3. Scans from 
Data set #1 (continuous pure rest scans, 3Tesla) are indicated by circles, scans from Data set #2 
(cut & concatenated rest periods, 1.5 Tesla) are indicated by triangles, scans from Data set #3 
(event-related fMRI, task-effects regressed out, 1.5 Tesla) are indicated by squares. 
Chronological age is shown on the x-axis and the functional connectivity Maturation Index 
(fcMI) on the y-axis. Fitted curves for functions included in model selection are shown (linear – 
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red; Pearl-Reed – gray; quadratic – green/brown; Von Bertalanffy with y-intercept – brown; Von 
Bertalanffy – black; quadratic constrained to origin – green; log – purple).

 The Pearl-Reed growth function best fit the combined datasets between ages 6-30 years 
(Fig. S5, Fig. S6, Table S4). The linear fit was very poor with an !AIC of 29 and an AIC weight 
of zero. The log and quadratic constrained to the origin also provided relatively poor fits with 
!AICs of around 10 and AIC weights close to zero. 

Fig. S6. Functional maturation curve for combined data. Individual functional brain maturity 
levels combining Data sets #1, #2, #3. Scans from Data set #1 (continuous pure rest scans, 
3Tesla) are indicated by circles, scans from Data set #2 (cut & concatenated rest periods, 1.5 
Tesla) are indicated by triangles, scans from Data set #3 (event-related fMRI, task-effects 
regressed out, 1.5 Tesla) are indicated by squares. Chronological age is shown on the x-axis and 
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the functional connectivity Maturation Index (fcMI) on the y-axis. Functional connectivity 
maturation with best fit (Pearl-Reed) is shown by bold gray line, 95% predictions limits are 
shown with dashed gray lines.

 The Pearl-Reed model predicts a non-zero fcMI (~0.3) at birth, and somewhat faster 
maturation rates during puberty followed by an asymptotic plateau in young adulthood, all of 
which seem biologically plausible.

Significant differences between weakening and strengthening connections
 Striking differences were observed between strengthening (positive correlation between 
connection strength and chronological age; orange) and weakening (negative correlation between 
connection strength and chronological age; light green) functional connections (Fig. S7, Fig. S8, 
Table S5).
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Fig. S7. Functional connectivity multivariate pattern analysis (fcMVPA) functional connection 
weights (feature weights). The functional connections driving the SVR brain maturity predictor 
are displayed on a surface rendering of the brain. The thickness of the 156 consensus functional 
connections scales with their weights. Connections positively correlated with age (stronger with 
increasing age) are shown in orange, whereas connections negatively correlated with age 
(weaker with increasing age) are shown in light green.
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 The functional connections that grew in strength with maturation were significantly (t(154) 
= 14.66, P < 1 x 10-30) longer in anatomical vector distance (mean length 80 mm) than the 
functional connections that diminished in strength (mean length 37 mm) (Fig. S7, Fig. S8).  
Growing-up functional connections were also significantly (t(154) = 4.84, P < 1 x 10-5) more 
likely to run along the anterior-posterior (AP) axis in the horizontal plane (mean angle 37 deg) 
than the growing-down functional connections (mean angle 58 deg) (Fig. S7, Fig. S8). No 
obvious differences between intra- and inter-hemispheric functional connections were noted (Fig. 
S8; filled vs. empty diamonds). Sixty-eight percent of the total connection weights were assigned 
to connections that weakened (light green), highlighting their great importance for predicting 
brain maturity.

Fig. S8. Lengths and angles of consensus functional connections. Consensus functional 
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connections (diamonds) are displayed in orange if they are positively correlated with 
chronological age (stronger with age), they are displayed in light green if they are negatively 
correlated with chronological age (weaker with age). Displayed on the x-axis is the length of 
functional connections in mm. Displayed on the y-axis is the absolute angle (in degrees) 
functional connections make with the anterior-posterior (AP) axis in the horizontal plane. Filled 
diamonds represent cerebral and cerebellar interhemispheric connections, as well as ipsilateral 
connections between the cerebellum and cortex. Empty diamonds indicate connections within 
cerebral and cerebellar hemispheres as well as contralateral connections between the 
cerebellum and cerebrum. 

 As stated in the main body of the report, the quantitative nature of fcMVPA revealed that 
functional segregation (weakening of short-range functional connections) is a more powerful 
overall predictor of individual functional brain maturity than functional integration 
(strengthening of long-range functional connections). It is unknown to what extent progressive 
events (e.g. myelination, axon terminal arborization, synapse formation) and regressive events 
(e.g., axon collateral pruning, removal of axon terminal branching, synaptic pruning) in 
neurogenesis (64), whether experience dependent or experience expectant (65), contribute to the 
functional connectivity changes observed here. (14, 66, 67). Although pure speculation, it seems 
plausible that functional segregation is related to progressive events (particularly pruning of 
synapses and exuberant axon terminals/collaterals), while functional integration has a closer 
relationship to myelination (68).

Patterns of predictor regions (nodes)
 ROI or node weights were computed by equally dividing the weight assigned to each 
functional connection between its two constituent ROIs and then, summing all the assigned 
weights for each ROI (Fig. S9, Table S6). 
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Fig. S9. Functional connectivity multivariate pattern analysis (fcMVPA) region (node) weights. 
All regions of interest (ROIs) that contributed to any of the 156 consensus functional connections 
are displayed, scaled by their node weights (1/2 sum of the weights of all the connections to and 
from that ROI). The ROIs are color-coded according to the six identified adult rs-fcMRI 
networks (cingulo-opercular = black, fronto-parietal = yellow, default = red, sensorimotor = 
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cyan, occipital = green, cerebellum = dark blue).
 
 The ROI with the greatest relative prediction power about brain maturity was in right 
anterior prefrontal cortex (MNI coordinates: 27, 49, 26; shown in black Fig. 2, Fig. S9), thought 
to be important for cognitive control and higher-order relational reasoning (19, 69-71). This is 
consistent with developmental fMRI studies that have suggested that the activation profile of 
prefrontal cortex matures later in childhood and adolescence (2, 69-71). 
 The precuneus, which has recently been found to be most highly structurally (18) and 
functionally (72) connected, contained the second most predictive ROI (MNI coordinates: 8, -40, 
50; shown in black Fig. 2, Fig. S9). It stands to reason that regions such as those in the 
precuneus, situated at the center of the adult brain’s connectome could carry much information 
about how the network develops.
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Supporting Tables
Table S1. Data sets available for analyses. 
Data set Tesla data type function # frames length # scans # females # scans < 30 yrs 

#1 3 T continuous rest primary 126 ~ 5 min 238 115 238

#2 1.5 T cut & concatenated rest confirmatory 128 ~ 5 min 195 101 193

#3 1.5 T event-related; task effects 
regressed

confirmatory 128 ~ 5 min 186 99 182

all - - - - 619 315 613

q

Table S2. Subject demographics.
Data set #1Data set #1Data set #1Data set #1Data set #1Data set #1Data set #1Data set #1Data set #1Data set #1Data set #1

age (years)age (years) # of subjects# of subjects# of subjects IQ (est.)IQ (est.)
bin meanmean range total F MM mean rangerange

<10 8.58.5 6.7-9.9 39 20 1919 120.0 86-14186-141

10-13 11.911.9 10.1-13.8 44 9 3535 117.4 89-14189-141

14-17 15.215.2 14.1-17.8 31 14 1717 110.9 86-13186-131

18-21 20.420.4 18.1-21.9 28 17 1111 --- ------
22-25 24.324.3 22.1-25.9 63 37 2626 --- ------
26-29 27.227.2 26.1-29.9 33 18 1515 --- ------
> 30 ------ --- 0 0 00 --- ------

Data set #2Data set #2Data set #2Data set #2Data set #2Data set #2Data set #2Data set #2Data set #2Data set #2Data set #2

age (years)age (years) # of subjects# of subjects# of subjects IQ (est.)IQ (est.)
bin meanmean range total F MM mean rangerange

<10 8.68.6 7-9.9 62 35 2727 115.2 84-13184-131

10-13 12.112.1 10.5-13.8 37 17 2020 111.3 89-13789-137

14-17 15.015.0 14.1-15.7 11 3 88 103.0 94-12494-124

18-21 21.121.1 19-21.9 22 15 77 --- ------
22-25 23.923.9 22-25.7 45 23 2222 --- ------
26-39 27.727.7 26-29.9 16 6 1010 --- ------
> 30 30.830.8 30.2-31.4 2 2 00 --- ------

Data set #3Data set #3Data set #3Data set #3Data set #3Data set #3Data set #3Data set #3Data set #3Data set #3Data set #3

age (years)age (years) # of subjects# of subjects# of subjects IQ (est.)IQ (est.)
bin meanmean range total F MM mean rangerange

<10 8.78.7 5.8-9.9 47 24 2323 118.4 98-15698-156

10-13 11.911.9 10.1-13.8 57 32 2525 118.5 98-15698-156

14-17 15.515.5 14.1-17.8 33 17 1616 116.2 96-12896-128

18-21 20.520.5 18.6-21.9 6 4 22 --- ------
22-25 24.024.0 22.1-25.7 24 11 1313 --- ------
26-39 27.827.8 26.1-29.9 15 8 77 --- ------
> 30 32.132.1 30.3-35.3 4 3 11 --- ------

All dataAll dataAll dataAll dataAll dataAll dataAll dataAll dataAll dataAll dataAll data

age (years)age (years) # of subjects# of subjects# of subjects IQ (est.)IQ (est.)
bin meanmean range total F MM mean rangerange

<10 8.68.6 5.8-9.9 148 79 6969 117.5 84-15684-156

10-13 11.911.9 10.1-13.8 138 58 8080 116.2 89-15689-156

14-17 15.315.3 14.1-17.8 75 34 4141 111.9 86-13186-131

18-21 20.720.7 18.1-21.9 56 36 2020 --- ------
22-25 24.124.1 22.1-25.9 132 71 6161 --- ------
26-29 27.527.5 26.1-29.9 64 32 3232 --- ------
> 30 31.731.7 30.2-35.3 6 5 11 --- ------
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Table S3. Meta-analyses of fMRI studies used for region of interest definition. 
meta-analysis # of studies # subjects Z-score threshold

Sensorimotor 12 310 7

Language 14 336 7

Default-mode 11 217 7 (trials); 2 (sustained)

Error-related 8 176 4

Memory 5 128 2

q

Table S4. Model selection and curve fitting.
parameterparameterparameter

Data set data type function equation r2 adj.  r2 ! AIC w(AIC) a b c

#1 3T - 
continuous 
rest

Von Bertalanffy a⋅(1 - e-bx) 0.553 0.551 0.00 0.30 1.11 0.10 -#1 3T - 
continuous 
rest

Pearl-Reed a / (1 + b⋅e-cx) 0.555 0.552 0.57 0.23 1.07 2.55 0.15

#1 3T - 
continuous 
rest Log a + b⋅ln(x) 0.551 0.549 0.76 0.21 -0.11 0.35 -

#1 3T - 
continuous 
rest

Von Bertalanffy (y-intercept) a⋅(1 - b⋅e-cx) 0.554 0.550 1.53 0.14 1.15 0.90 0.08

#1 3T - 
continuous 
rest

Quadratic ax2 + bx + c 0.553 0.549 1.95 0.11 -0.00 0.05 0.26

#1 3T - 
continuous 
rest

Quadratic (constr. to origin) ax2 + bx 0.531 0.529 11.52 0.00 -0.00 0.08 -

#1 3T - 
continuous 
rest

Linear ax + b 0.532 0.530 10.95 0.00 0.02 0.49 -

#2 1.5T – cut & 
concatenated 
rest

Von Bertalanffy a⋅(1 - e-bx) 0.511 0.509 3.29 0.08 1.11 0.09 -#2 1.5T – cut & 
concatenated 
rest

Pearl-Reed a / (1 + b⋅e-cx) 0.519 0.514 2.37 0.12 1.07 2.70 0.15

#2 1.5T – cut & 
concatenated 
rest Log a + b⋅ln(x) 0.506 0.504 5.37 0.03 -0.15 0.36 -

#2 1.5T – cut & 
concatenated 
rest

Von Bertalanffy (y-intercept) a⋅(1 - b⋅e-cx) 0.512 0.507 5.04 0.03 1.15 0.92 0.08

#2 1.5T – cut & 
concatenated 
rest

Quadratic ax2 + bx + c 0.524 0.519 0.32 0.34 -0.00 0.07 0.12

#2 1.5T – cut & 
concatenated 
rest

Quadratic (constr. to origin) ax2 + bx 0.520 0.517 0.00 0.40 -0.00 0.08 -

#2 1.5T – cut & 
concatenated 
rest

Linear ax + b 0.489 0.487 11.86 0.00 0.02 0.45 -

#3 1.5T - event-
rel; task 
regressed out

Von Bertalanffy a⋅(1 - e-bx) 0.554 0.552 1.07 0.17 1.20 0.07 -#3 1.5T - event-
rel; task 
regressed out

Pearl-Reed a / (1 + b⋅e-cx) 0.562 0.557 0.00 0.29 1.11 3.20 0.14

#3 1.5T - event-
rel; task 
regressed out Log a + b⋅ln(x) 0.550 0.548 2.82 0.07 -0.32 0.41 -

#3 1.5T - event-
rel; task 
regressed out

Von Bertalanffy (y-intercept) a⋅(1 - b⋅e-cx) 0.556 0.551 2.50 0.08 1.29 0.91 0.06

#3 1.5T - event-
rel; task 
regressed out

Quadratic ax2 + bx + c 0.560 0.555 0.74 0.20 -0.00 0.06 0.13

#3 1.5T - event-
rel; task 
regressed out

Quadratic (constr. to origin) ax2 + bx 0.555 0.553 0.82 0.19 -0.00 0.07 -

#3 1.5T - event-
rel; task 
regressed out

Linear ax + b 0.540 0.537 7.01 0.01 0.03 0.37 -

#1,2,3 all Von Bertalanffy a⋅(1 - e-bx) 0.551 0.550 6.30 0.02 1.14 0.09 -#1,2,3 all
Pearl-Reed a / (1 + b⋅e-cx) 0.557 0.555 0.00 0.53 1.09 2.78 0.14

#1,2,3 all

Log a + b⋅ln(x) 0.548 0.547 10.23 0.00 -0.20 0.38 -

#1,2,3 all

Von Bertalanffy (y-intercept) a⋅(1 - b⋅e-cx) 0.552 0.551 6.65 0.02 1.20 0.90 0.07

#1,2,3 all

Quadratic ax2 + bx + c 0.557 0.555 0.49 0.42 -0.00 0.06 0.17

#1,2,3 all

Quadratic (constr. to origin) ax2 + bx 0.548 0.547 10.56 0.00 -0.00 0.08 -

#1,2,3 all

Linear ax + b 0.533 0.533 29.75 0.00 0.02 0.43 -
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Table S5. Consensus features (156 functional connections) for SVR brain maturity prediction, 
their correlation with chronological age and their feature weights, sorted by functional modules.
ROI A: MNI 
coordinates
ROI A: MNI 
coordinates
ROI A: MNI 
coordinates

ROI B: MNI 
coordinates
ROI B: MNI 
coordinates
ROI B: MNI 
coordinates

x y z ROI label A network A x y z ROI label B network B corr w/ age weight

32 -12 2 mid insula      cingulo-opercular          32 -12 2 basal ganglia   cingulo-opercular          -0.43 4.8
14 6 7 basal ganglia   cingulo-opercular          14 6 7 mid insula      cingulo-opercular          -0.35 3.9
-20 6 7 basal ganglia   cingulo-opercular          -20 6 7 vFC             cingulo-opercular          -0.36 6.0
-20 6 7 basal ganglia   cingulo-opercular          -20 6 7 vFC             cingulo-opercular          -0.36 4.1
-20 6 7 basal ganglia   cingulo-opercular          -20 6 7 ant insula      cingulo-opercular          -0.37 1.9
-30 -14 1 mid insula      cingulo-opercular          -30 -14 1 thalamus        cingulo-opercular          -0.35 6.1
11 -24 2 basal ganglia   cingulo-opercular          11 -24 2 thalamus        cingulo-opercular          -0.36 8.5
11 -24 2 basal ganglia   cingulo-opercular          11 -24 2 thalamus        cingulo-opercular          -0.35 1.9
27 49 26 aPFC            cingulo-opercular          27 49 26 precuneus       cingulo-opercular          0.36 6.2
27 49 26 aPFC            cingulo-opercular          27 49 26 post insula     cingulo-opercular          0.39 7.2
8 -40 50 precuneus       cingulo-opercular          8 -40 50 mid insula      cingulo-opercular          0.37 5.0
8 -40 50 precuneus       cingulo-opercular          8 -40 50 vFC             cingulo-opercular          0.38 5.0
8 -40 50 precuneus       cingulo-opercular          8 -40 50 ant insula      cingulo-opercular          0.37 8.5
8 -40 50 precuneus       cingulo-opercular          8 -40 50 ant insula      cingulo-opercular          0.42 5.0
-2 30 27 ACC             cingulo-opercular          -2 30 27 dlPFC           fronto-parietal          -0.35 9.1
27 49 26 aPFC            cingulo-opercular          27 49 26 dFC             fronto-parietal          -0.37 3.1
27 49 26 aPFC            cingulo-opercular          27 49 26 dlPFC           fronto-parietal          -0.36 7.5
27 49 26 aPFC            cingulo-opercular          27 49 26 dlPFC           fronto-parietal          -0.38 9.0
-6 17 34 basal ganglia   cingulo-opercular          -6 17 34 dlPFC           fronto-parietal          -0.38 3.8
58 -41 20 parietal        cingulo-opercular          58 -41 20 post cingulate  default     -0.37 8.9
27 49 26 aPFC            cingulo-opercular          27 49 26 vmPFC           default     -0.35 3.6
27 49 26 aPFC            cingulo-opercular          27 49 26 mPFC            default     -0.37 3.1
27 49 26 aPFC            cingulo-opercular          27 49 26 IPS             default     -0.37 8.3
27 49 26 aPFC            cingulo-opercular          27 49 26 sup frontal     default     -0.41 0.2
27 49 26 aPFC            cingulo-opercular          27 49 26 sup frontal     default     -0.36 3.0
8 -40 50 precuneus       cingulo-opercular          8 -40 50 IPS             default     -0.40 12.2
8 -40 50 precuneus       cingulo-opercular          8 -40 50 angular gyrus   default     -0.38 4.6
-6 17 34 basal ganglia   cingulo-opercular          -6 17 34 sup frontal     default     -0.37 6.9
-6 17 34 basal ganglia   cingulo-opercular          -6 17 34 sup frontal     default     -0.43 4.1
0 15 45 mFC             cingulo-opercular          0 15 45 sup frontal     default     -0.34 4.5
32 -12 2 mid insula      cingulo-opercular          32 -12 2 mid insula      sensorimotor -0.47 6.7
32 -12 2 mid insula      cingulo-opercular          32 -12 2 precentral gyrus sensorimotor -0.34 14.9
14 6 7 basal ganglia   cingulo-opercular          14 6 7 vFC             sensorimotor -0.36 5.2
14 6 7 basal ganglia   cingulo-opercular          14 6 7 mid insula      sensorimotor -0.36 4.7
14 6 7 basal ganglia   cingulo-opercular          14 6 7 mid insula      sensorimotor -0.36 4.4
-20 6 7 basal ganglia   cingulo-opercular          -20 6 7 vFC             sensorimotor -0.38 4.2
-20 6 7 basal ganglia   cingulo-opercular          -20 6 7 mid insula      sensorimotor -0.40 2.4
-20 6 7 basal ganglia   cingulo-opercular          -20 6 7 mid insula      sensorimotor -0.47 5.3
-30 -14 1 mid insula      cingulo-opercular          -30 -14 1 mid insula      sensorimotor -0.37 7.1
-30 -14 1 mid insula      cingulo-opercular          -30 -14 1 mid insula      sensorimotor -0.46 7.0
-30 -14 1 mid insula      cingulo-opercular          -30 -14 1 mid insula      sensorimotor -0.42 9.7
37 -2 -3 mid insula      cingulo-opercular          37 -2 -3 parietal        sensorimotor 0.39 3.4
-12 -3 13 thalamus        cingulo-opercular          -12 -3 13 mid insula      sensorimotor -0.41 3.2
-12 -3 13 thalamus        cingulo-opercular          -12 -3 13 mid insula      sensorimotor -0.39 3.4
11 -24 2 basal ganglia   cingulo-opercular          11 -24 2 mid insula      sensorimotor -0.36 3.4
0 15 45 mFC             cingulo-opercular          0 15 45 parietal        sensorimotor -0.37 7.3
8 -40 50 precuneus       cingulo-opercular          8 -40 50 mid insula      sensorimotor 0.39 8.4
37 -2 -3 mid insula      cingulo-opercular          37 -2 -3 parietal        sensorimotor 0.37 4.2
11 -12 6 thalamus        cingulo-opercular          11 -12 6 mid insula      sensorimotor -0.37 3.7
-4 -31 -4 post cingulate  cingulo-opercular          -4 -31 -4 occipital       occipital   -0.36 4.4
-12 -12 6 thalamus        cingulo-opercular          -12 -12 6 occipital       occipital   -0.40 3.1
11 -12 6 thalamus        cingulo-opercular          11 -12 6 occipital       occipital   -0.45 5.6
11 -24 2 basal ganglia   cingulo-opercular          11 -24 2 occipital       occipital   -0.35 5.9
-4 -31 -4 post cingulate  cingulo-opercular          -4 -31 -4 occipital       occipital   -0.38 5.0
11 -12 6 thalamus        cingulo-opercular          11 -12 6 occipital       occipital   -0.35 6.2
-12 -12 6 thalamus        cingulo-opercular          -12 -12 6 occipital       occipital   -0.35 2.4
11 -12 6 thalamus        cingulo-opercular          11 -12 6 occipital       occipital   -0.38 1.1
-2 30 27 ACC             cingulo-opercular          -2 30 27 lat cerebellum  cerebellum  0.37 5.2
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ROI A: MNI 
coordinates
ROI A: MNI 
coordinates
ROI A: MNI 
coordinates

ROI B: MNI 
coordinates
ROI B: MNI 
coordinates
ROI B: MNI 
coordinates

x y z ROI label A network A x y z ROI label B network B corr w/ age weight

27 49 26 aPFC            cingulo-opercular          27 49 26 lat cerebellum  cerebellum  0.37 5.1
-6 17 34 basal ganglia   cingulo-opercular          -6 17 34 lat cerebellum  cerebellum  0.37 4.4
-48 -47 49 IPL             fronto-parietal          -48 -47 49 vent aPFC       fronto-parietal          0.41 10.0
-43 47 2 vent aPFC       fronto-parietal          -43 47 2 IPS             fronto-parietal          0.37 3.8
42 48 -3 vent aPFC       fronto-parietal          42 48 -3 vmPFC           default     -0.36 10.3
39 42 16 vlPFC           fronto-parietal          39 42 16 mPFC            default     -0.36 5.5
39 42 16 vlPFC           fronto-parietal          39 42 16 vmPFC           default     -0.36 4.2
-48 -47 49 IPL             fronto-parietal          -48 -47 49 parietal        sensorimotor -0.40 5.4
-1 28 40 ACC             fronto-parietal          -1 28 40 pre-SMA         sensorimotor -0.37 7.8
-48 -47 49 IPL             fronto-parietal          -48 -47 49 parietal        sensorimotor -0.37 4.2
-48 -47 49 IPL             fronto-parietal          -48 -47 49 parietal        sensorimotor -0.40 7.6
-48 -47 49 IPL             fronto-parietal          -48 -47 49 post parietal   sensorimotor -0.40 4.1
40 17 40 dFC             fronto-parietal          40 17 40 parietal        sensorimotor -0.35 5.2
40 17 40 dFC             fronto-parietal          40 17 40 pre-SMA         sensorimotor -0.39 3.5
40 17 40 dFC             fronto-parietal          40 17 40 SMA             sensorimotor -0.35 4.3
54 -44 43 IPL             fronto-parietal          54 -44 43 parietal        sensorimotor -0.36 4.9
-44 27 33 dlPFC           fronto-parietal          -44 27 33 pre-SMA         sensorimotor -0.36 5.2
-44 27 33 dlPFC           fronto-parietal          -44 27 33 mid insula      sensorimotor -0.35 6.4
54 -44 43 IPL             fronto-parietal          54 -44 43 post parietal   sensorimotor -0.35 4.0
-53 -50 39 IPL             fronto-parietal          -53 -50 39 post parietal   sensorimotor -0.43 3.4
44 -52 47 IPL             fronto-parietal          44 -52 47 occipital       occipital   -0.35 5.1
32 -59 41 IPS             fronto-parietal          32 -59 41 occipital       occipital   -0.38 6.7
32 -59 41 IPS             fronto-parietal          32 -59 41 occipital       occipital   -0.36 4.0
-35 -46 48 post parietal   fronto-parietal          -35 -46 48 inf cerebellum  cerebellum  0.35 6.8
-48 -47 49 IPL             fronto-parietal          -48 -47 49 inf cerebellum  cerebellum  0.38 13.4
-41 -40 42 IPL             fronto-parietal          -41 -40 42 inf cerebellum  cerebellum  0.35 10.2
9 51 16 vmPFC           default     9 51 16 precuneus       default     0.36 10.5
9 39 20 ACC             default     9 39 20 post cingulate  default     0.38 4.2
-9 -72 41 occipital       default     -9 -72 41 angular gyrus   default     -0.35 8.2
-48 -63 35 angular gyrus   default     -48 -63 35 sup frontal     default     0.37 4.9
10 -55 17 post cingulate  default     10 -55 17 sup frontal     default     0.39 10.1
23 33 47 sup frontal     default     23 33 47 precuneus       default     0.35 5.1
-3 -38 45 precuneus       default     -3 -38 45 parietal        sensorimotor -0.36 3.4
9 39 20 ACC             default     9 39 20 frontal         sensorimotor -0.35 8.8
1 -26 31 post cingulate  default     1 -26 31 parietal        sensorimotor -0.36 3.7
-3 -38 45 precuneus       default     -3 -38 45 parietal        sensorimotor -0.41 4.7
23 33 47 sup frontal     default     23 33 47 pre-SMA         sensorimotor -0.35 5.7
-16 29 54 sup frontal     default     -16 29 54 pre-SMA         sensorimotor -0.35 2.9
-36 -69 40 IPS             default     -36 -69 40 occipital       occipital   -0.43 5.2
9 -43 25 precuneus       default     9 -43 25 occipital       occipital   -0.36 6.6
-5 -43 25 post cingulate  default     -5 -43 25 occipital       occipital   -0.36 7.5
-36 -69 40 IPS             default     -36 -69 40 occipital       occipital   -0.36 3.2
51 -59 34 angular gyrus   default     51 -59 34 occipital       occipital   -0.34 6.8
1 -26 31 post cingulate  default     1 -26 31 inf cerebellum  cerebellum  0.34 8.4

-48 -63 35 angular gyrus   default     -48 -63 35 inf cerebellum  cerebellum  0.35 5.5
-54 -9 23 precentral gyrus sensorimotor -54 -9 23 parietal        sensorimotor 0.37 3.1
58 -3 17 precentral gyrus sensorimotor 58 -3 17 parietal        sensorimotor 0.36 3.2
58 -3 17 precentral gyrus sensorimotor 58 -3 17 sup parietal    sensorimotor 0.36 3.7
-24 -30 64 parietal        sensorimotor -24 -30 64 vFC             sensorimotor 0.38 8.5
-24 -30 64 parietal        sensorimotor -24 -30 64 mid insula      sensorimotor 0.38 5.9
-24 -30 64 parietal        sensorimotor -24 -30 64 mid insula      sensorimotor 0.36 4.8
-41 -37 16 temporal        sensorimotor -41 -37 16 parietal        sensorimotor 0.36 8.1
34 -39 65 sup parietal    sensorimotor 34 -39 65 vFC             sensorimotor 0.39 8.1
34 -39 65 sup parietal    sensorimotor 34 -39 65 mid insula      sensorimotor 0.37 6.2
18 -27 62 parietal        sensorimotor 18 -27 62 mid insula      sensorimotor 0.37 4.0
18 -27 62 parietal        sensorimotor 18 -27 62 mid insula      sensorimotor 0.38 6.3
-24 -30 64 parietal        sensorimotor -24 -30 64 post occipital  occipital   0.35 6.2
18 -27 62 parietal        sensorimotor 18 -27 62 post occipital  occipital   0.35 6.1
-47 -12 36 parietal        sensorimotor -47 -12 36 occipital       occipital   0.35 5.1
-24 -30 64 parietal        sensorimotor -24 -30 64 occipital       occipital   0.36 7.7
-54 -22 22 precentral gyrus sensorimotor -54 -22 22 occipital       occipital   0.35 5.5
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x y z ROI label A network A x y z ROI label B network B corr w/ age weight

58 -3 17 precentral gyrus sensorimotor 58 -3 17 occipital       occipital   0.36 6.9
-24 -30 64 parietal        sensorimotor -24 -30 64 occipital       occipital   0.37 5.0
-47 -18 50 parietal        sensorimotor -47 -18 50 occipital       occipital   0.36 1.4
44 -11 38 precentral gyrus sensorimotor 44 -11 38 occipital       occipital   0.37 6.6
-5 -80 9 post occipital  occipital   -5 -80 9 med cerebellum  cerebellum  -0.41 6.7
33 -81 -2 post occipital  occipital   33 -81 -2 med cerebellum  cerebellum  -0.36 5.9
33 -81 -2 post occipital  occipital   33 -81 -2 med cerebellum  cerebellum  -0.41 6.0
33 -81 -2 post occipital  occipital   33 -81 -2 med cerebellum  cerebellum  -0.36 3.4
33 -81 -2 post occipital  occipital   33 -81 -2 med cerebellum  cerebellum  -0.38 5.1
-37 -83 -2 post occipital  occipital   -37 -83 -2 med cerebellum  cerebellum  -0.35 5.9
36 -60 -8 occipital       occipital   36 -60 -8 lat cerebellum  cerebellum  -0.35 5.2
13 -91 2 post occipital  occipital   13 -91 2 lat cerebellum  cerebellum  -0.38 5.0
20 -78 -2 occipital       occipital   20 -78 -2 lat cerebellum  cerebellum  -0.40 4.5
27 -91 2 post occipital  occipital   27 -91 2 lat cerebellum  cerebellum  -0.35 3.8
19 -66 -1 occipital       occipital   19 -66 -1 lat cerebellum  cerebellum  -0.35 8.7
19 -66 -1 occipital       occipital   19 -66 -1 med cerebellum  cerebellum  -0.36 7.1
19 -66 -1 occipital       occipital   19 -66 -1 med cerebellum  cerebellum  -0.38 3.2
19 -66 -1 occipital       occipital   19 -66 -1 med cerebellum  cerebellum  -0.43 6.4
20 -78 -2 occipital       occipital   20 -78 -2 med cerebellum  cerebellum  -0.39 5.8
36 -60 -8 occipital       occipital   36 -60 -8 lat cerebellum  cerebellum  -0.35 6.0
36 -60 -8 occipital       occipital   36 -60 -8 med cerebellum  cerebellum  -0.35 3.1
36 -60 -8 occipital       occipital   36 -60 -8 med cerebellum  cerebellum  -0.34 3.3
36 -60 -8 occipital       occipital   36 -60 -8 med cerebellum  cerebellum  -0.37 4.1
13 -91 2 post occipital  occipital   13 -91 2 med cerebellum  cerebellum  -0.39 4.5
13 -91 2 post occipital  occipital   13 -91 2 med cerebellum  cerebellum  -0.38 3.4
20 -78 -2 occipital       occipital   20 -78 -2 med cerebellum  cerebellum  -0.41 3.8
20 -78 -2 occipital       occipital   20 -78 -2 med cerebellum  cerebellum  -0.39 3.1
20 -78 -2 occipital       occipital   20 -78 -2 med cerebellum  cerebellum  -0.44 4.5
27 -91 2 post occipital  occipital   27 -91 2 med cerebellum  cerebellum  -0.37 7.6
27 -91 2 post occipital  occipital   27 -91 2 med cerebellum  cerebellum  -0.35 5.5
-4 -94 12 post occipital  occipital   -4 -94 12 med cerebellum  cerebellum  -0.38 5.6
17 -68 20 occipital       occipital   17 -68 20 med cerebellum  cerebellum  -0.35 6.7
-18 -50 1 occipital       occipital   -18 -50 1 med cerebellum  cerebellum  -0.38 3.5
-34 -60 -5 occipital       occipital   -34 -60 -5 med cerebellum  cerebellum  -0.38 5.2
-6 -79 -33 inf cerebellum  cerebellum  -6 -79 -33 inf cerebellum  cerebellum  -0.38 4.7
-6 -79 -33 inf cerebellum  cerebellum  -6 -79 -33 inf cerebellum  cerebellum  -0.39 5.0
14 -75 -21 med cerebellum  cerebellum  14 -75 -21 med cerebellum  cerebellum  -0.37 2.2
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Table S6. Region strengths (sum of feature weights) for 160 ROIs sorted by MNI coordinates.
MNI-coordinatesMNI-coordinatesMNI-coordinates summed feature weightssummed feature weightssummed feature weights

x y z ROI label
+ corr w/ 
age

- corr w/ 
age all network

6 64 3 vmPFC           0.0 0.0 0.0 default     
29 57 18 aPFC            0.0 0.0 0.0 fronto-parietal          
-29 57 10 aPFC            0.0 0.0 0.0 fronto-parietal          
0 51 32 mPFC            0.0 8.6 8.6 default     

-25 51 27 aPFC            0.0 0.0 0.0 default     
9 51 16 vmPFC           10.5 3.6 14.2 default     
-6 50 -1 vmPFC           0.0 10.3 10.3 default     
27 49 26 aPFC            18.5 37.9 56.4 cingulo-opercular          
42 48 -3 vent aPFC       0.0 10.3 10.3 fronto-parietal          
-43 47 2 vent aPFC       13.7 0.0 13.7 fronto-parietal          
-11 45 17 vmPFC           0.0 4.2 4.2 default     
39 42 16 vlPFC           0.0 9.6 9.6 fronto-parietal          
8 42 -5 vmPFC           0.0 0.0 0.0 default     
9 39 20 ACC             4.2 8.8 13.0 default     
46 39 -15 vlPFC           0.0 0.0 0.0 default     
40 36 29 dlPFC           0.0 9.1 9.1 fronto-parietal          
23 33 47 sup frontal     15.2 12.8 28.0 default     
34 32 7 vPFC            0.0 0.0 0.0 cingulo-opercular
-2 30 27 ACC             5.2 9.1 14.2 cingulo-opercular
-16 29 54 sup frontal     4.9 14.6 19.5 default     
-1 28 40 ACC             0.0 7.8 7.8 fronto-parietal          
46 28 31 dlPFC           0.0 9.0 9.0 fronto-parietal          
-52 28 17 vPFC            0.0 0.0 0.0 fronto-parietal          
-44 27 33 dlPFC           0.0 22.8 22.8 fronto-parietal          
51 23 8 vFC             0.0 0.0 0.0 cingulo-opercular 
38 21 -1 ant insula      5.0 0.0 5.0 cingulo-opercular
9 20 34 dACC            0.0 0.0 0.0 cingulo-opercular

-36 18 2 ant insula      8.5 1.9 10.5 cingulo-opercular
40 17 40 dFC             0.0 16.2 16.2 fronto-parietal          
-6 17 34 basal ganglia   4.4 14.8 19.3 cingulo-opercular
0 15 45 mFC             0.0 11.8 11.8 cingulo-opercular
58 11 14 frontal         0.0 8.8 8.8 sensorimotor
-46 10 14 vFC             0.0 4.1 4.1 cingulo-opercular
44 8 34 dFC             0.0 0.0 0.0 fronto-parietal          
60 8 34 dFC             0.0 0.0 0.0 sensorimotor
-42 7 36 dFC             0.0 0.0 0.0 fronto-parietal          
-55 7 23 vFC             0.0 0.0 0.0 sensorimotor
-20 6 7 basal ganglia   0.0 23.8 23.8 cingulo-opercular
14 6 7 basal ganglia   0.0 18.2 18.2 cingulo-opercular 
-48 6 1 vFC             5.0 6.0 10.9 cingulo-opercular
10 5 51 pre-SMA         0.0 25.0 25.0 sensorimotor
43 1 12 vFC             16.6 9.4 25.9 sensorimotor
0 -1 52 SMA             0.0 4.3 4.3 sensorimotor
37 -2 -3 mid insula      12.6 3.9 16.5 cingulo-opercular
53 -3 32 frontal         0.0 0.0 0.0 sensorimotor
58 -3 17 precentral gyrus 13.8 0.0 13.8 sensorimotor
-12 -3 13 thalamus        0.0 6.6 6.6 cingulo-opercular
-42 -3 11 mid insula      14.6 25.7 40.3 sensorimotor
-44 -6 49 precentral gyrus 0.0 0.0 0.0 sensorimotor
-26 -8 54 parietal        0.0 5.2 5.2 sensorimotor
46 -8 24 precentral gyrus 0.0 14.9 14.9 sensorimotor
-54 -9 23 precentral gyrus 3.1 0.0 3.1 sensorimotor
44 -11 38 precentral gyrus 6.6 0.0 6.6 sensorimotor
-47 -12 36 parietal        5.1 0.0 5.1 sensorimotor
33 -12 16 mid insula      9.9 28.8 38.7 sensorimotor
-36 -12 15 mid insula      11.1 12.8 23.9 sensorimotor
-12 -12 6 thalamus        0.0 20.0 20.0 cingulo-opercular
11 -12 6 thalamus        0.0 18.5 18.5 cingulo-opercular
32 -12 2 mid insula      0.0 26.4 26.4 cingulo-opercular

Prediction of individual brain maturity using fMRI - SOM! 29



MNI-coordinatesMNI-coordinatesMNI-coordinates summed feature weightssummed feature weightssummed feature weights

x y z ROI label
+ corr w/ 
age

- corr w/ 
age all network

59 -13 8 temporal        0.0 0.0 0.0 sensorimotor
-30 -14 1 mid insula      0.0 29.9 29.9 cingulo-opercular
-38 -15 59 parietal        8.1 4.2 12.3 sensorimotor
52 -15 -13 inf temporal    0.0 0.0 0.0 default     
-47 -18 50 parietal        1.4 11.0 12.4 sensorimotor
46 -20 45 parietal        0.0 4.9 4.9 sensorimotor
-55 -22 38 parietal        0.0 0.0 0.0 sensorimotor
-54 -22 22 precentral gyrus 5.5 0.0 5.5 sensorimotor
-54 -22 9 temporal        0.0 0.0 0.0 sensorimotor
41 -23 55 parietal        3.1 0.0 3.1 sensorimotor
42 -24 17 post insula     0.0 0.0 0.0 sensorimotor
11 -24 2 basal ganglia   0.0 24.5 24.5 cingulo-opercular
-59 -25 -15 inf temporal    0.0 0.0 0.0 default     
1 -26 31 post cingulate  8.4 3.7 12.1 default     
18 -27 62 parietal        20.7 12.2 33.0 sensorimotor
-38 -27 60 parietal        0.0 0.0 0.0 sensorimotor
-30 -28 9 post insula     7.2 0.0 7.2 cingulo-opercular
-24 -30 64 parietal        44.6 8.8 53.4 sensorimotor
51 -30 5 temporal        0.0 0.0 0.0 cingulo-opercular
-41 -31 48 post parietal   0.0 11.5 11.5 sensorimotor
-4 -31 -4 post cingulate  0.0 9.4 9.4 cingulo-opercular
54 -31 -18 fusiform        0.0 0.0 0.0 cingulo-opercular
-41 -37 16 temporal        8.1 0.0 8.1 sensorimotor
-53 -37 13 temporal        0.0 0.0 0.0 sensorimotor
28 -37 -15 fusiform        0.0 0.0 0.0 default     
-3 -38 45 precuneus       0.0 8.1 8.1 default     
34 -39 65 sup parietal    18.0 0.0 18.0 sensorimotor
8 -40 50 precuneus       38.2 16.7 54.9 cingulo-opercular

-41 -40 42 IPL             10.2 0.0 10.2 fronto-parietal          
58 -41 20 parietal        0.0 8.9 8.9 cingulo-opercular
-8 -41 3 post cingulate  0.0 0.0 0.0 default     
-61 -41 -2 inf temporal    0.0 0.0 0.0 default     
-28 -42 -11 occipital       0.0 0.0 0.0 default     
-5 -43 25 post cingulate  4.2 7.5 11.8 default     
9 -43 25 precuneus       0.0 6.6 6.6 default     
43 -43 8 temporal        0.0 0.0 0.0 cingulo-opercular
54 -44 43 IPL             0.0 8.9 8.9 fronto-parietal          
-55 -44 30 parietal        0.0 0.0 0.0 cingulo-opercular
-28 -44 -25 lat cerebellum  14.7 0.0 14.7 cerebellum  
-35 -46 48 post parietal   6.8 0.0 6.8 fronto-parietal          
42 -46 21 sup temporal    0.0 0.0 0.0 cingulo-opercular
-48 -47 49 IPL             23.4 21.3 44.6 fronto-parietal          
-41 -47 29 angular gyrus   0.0 0.0 0.0 cingulo-opercular
-59 -47 11 temporal        0.0 0.0 0.0 cingulo-opercular
-53 -50 39 IPL             0.0 3.4 3.4 fronto-parietal          
5 -50 33 precuneus       15.6 0.0 15.6 default     

-18 -50 1 occipital       0.0 12.9 12.9 occipital   
44 -52 47 IPL             0.0 5.1 5.1 fronto-parietal          
-5 -52 17 post cingulate  0.0 8.9 8.9 default     
-24 -54 -21 lat cerebellum  0.0 14.7 14.7 cerebellum  
-37 -54 -37 inf cerebellum  8.4 0.0 8.4 cerebellum  
10 -55 17 post cingulate  10.1 0.0 10.1 default     
-6 -56 29 precuneus       0.0 0.0 0.0 default     
-34 -57 -24 lat cerebellum  0.0 0.0 0.0 cerebellum  
-32 -58 46 IPS             3.8 0.0 3.8 fronto-parietal          
-11 -58 17 post cingulate  0.0 0.0 0.0 default     
32 -59 41 IPS             0.0 10.7 10.7 fronto-parietal          
51 -59 34 angular gyrus   0.0 6.8 6.8 default     
-34 -60 -5 occipital       0.0 5.2 5.2 occipital   
36 -60 -8 occipital       0.0 26.7 26.7 occipital   
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MNI-coordinatesMNI-coordinatesMNI-coordinates summed feature weightssummed feature weightssummed feature weights

x y z ROI label
+ corr w/ 
age

- corr w/ 
age all network

-6 -60 -15 med cerebellum  0.0 50.2 50.2 cerebellum  
-25 -60 -34 inf cerebellum  0.0 0.0 0.0 cerebellum  
32 -61 -31 inf cerebellum  0.0 0.0 0.0 cerebellum  
46 -62 5 temporal        0.0 0.0 0.0 occipital   
-48 -63 35 angular gyrus   10.4 12.7 23.1 default     
-52 -63 15 TPJ             0.0 0.0 0.0 cingulo-opercular
-44 -63 -7 occipital       0.0 0.0 0.0 occipital   
-16 -64 -21 med cerebellum  0.0 11.7 11.7 cerebellum  
21 -64 -22 lat cerebellum  0.0 18.5 18.5 cerebellum  
19 -66 -1 occipital       0.0 38.4 38.4 occipital   
1 -66 -24 med cerebellum  0.0 15.2 15.2 cerebellum  

-34 -67 -29 inf cerebellum  0.0 0.0 0.0 cerebellum  
11 -68 42 precuneus       0.0 0.0 0.0 default     
17 -68 20 occipital       24.9 6.7 31.6 occipital   
-36 -69 40 IPS             0.0 28.9 28.9 default     
39 -71 13 occipital       0.0 0.0 0.0 occipital   
-9 -72 41 occipital       0.0 8.2 8.2 default     
45 -72 29 occipital       0.0 0.0 0.0 default     
-11 -72 -14 med cerebellum  0.0 0.0 0.0 cerebellum  
29 -73 29 occipital       0.0 4.0 4.0 occipital   
33 -73 -30 inf cerebellum  5.5 0.0 5.5 cerebellum  
-2 -75 32 occipital       0.0 0.0 0.0 default     
-29 -75 28 occipital       0.0 0.0 0.0 occipital   
5 -75 -11 med cerebellum  0.0 0.0 0.0 cerebellum  
14 -75 -21 med cerebellum  0.0 46.6 46.6 cerebellum  
-16 -76 33 occipital       5.5 16.9 22.5 occipital   
-42 -76 26 occipital       0.0 0.0 0.0 default     
9 -76 14 occipital       7.7 0.0 7.7 occipital   
15 -77 32 occipital       0.0 24.1 24.1 occipital   
20 -78 -2 occipital       0.0 27.9 27.9 occipital   
-21 -79 -33 inf cerebellum  0.0 5.0 5.0 cerebellum  
-6 -79 -33 inf cerebellum  30.4 9.6 40.0 cerebellum  
-5 -80 9 post occipital  12.3 6.7 19.0 occipital   
29 -81 14 post occipital  0.0 0.0 0.0 occipital   
33 -81 -2 post occipital  0.0 20.4 20.4 occipital   
18 -81 -33 inf cerebellum  0.0 4.7 4.7 cerebellum  
-37 -83 -2 post occipital  0.0 5.9 5.9 occipital   
-29 -88 8 post occipital  0.0 0.0 0.0 occipital   
13 -91 2 post occipital  0.0 12.9 12.9 occipital   
27 -91 2 post occipital  0.0 16.8 16.8 occipital   
-4 -94 12 post occipital  0.0 5.6 5.6 occipital   
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