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activity (Fig. 3B). Mutation of Phe155 to alanine
severely impaired crRNA processing, suggesting
that this residue also plays an important role in
substrate orientation. However, none of the above
mutations severely disrupted crRNA binding, as
judged by means of electrophoretic mobility shift
assays, indicating that the structural integrity of
themutant proteinswas not compromised (fig. S8).
Thus, interaction between Csy4 and the closing
base pair of the RNA stem is critical for pre-
crRNA processing, whereas sequence-specific rec-
ognition of the penultimate base pair in the stem
is less important. Incubation of Csy4 with a panel
of short RNA oligonucleotides containing a vari-
ety of mutations in the CRISPR repeat stem-loop
sequence further confirmed that Csy4 requires a
C-G base pair closing the RNA stem and that
Csy4 can accommodate different nucleotides at
the penultimate RNA base pair (fig. S10).

Phylogenetic analysis of CRISPR loci sug-
gests that CRISPR repeat sequences and struc-
tures have co-evolved with the Cas genes (19).
The similarity of Csy4 at the fold level to the
CRISPR-processing endonucleases CasE and
Cas6 suggests that collectively they are likely to
have descended from a single ancestral endo-
ribonuclease enzyme that has diverged through-
out evolution. The structure described here reveals
how Csy4 and related endonucleases from the
same CRISPR/Cas subfamily use an exquisite rec-
ognition mechanism to discriminate crRNA sub-
strates from other cellular RNAs. This illustrates
the importance of co-evolution in shaping molec-

ular recognition mechanisms in the CRISPR path-
way. Furthermore, the ability of Csy4 to form a
tight complex with the cleaved crRNA product
points to Csy4 having a functional role within the
CRISPR pathway that extends beyond pre-crRNA
cleavage.
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Prediction of Individual Brain
Maturity Using fMRI
Nico U. F. Dosenbach,1* Binyam Nardos,1 Alexander L. Cohen,1 Damien A. Fair,2

Jonathan D. Power,1 Jessica A. Church,1 Steven M. Nelson,1,3 Gagan S. Wig,1,4,5 Alecia C. Vogel,1

Christina N. Lessov-Schlaggar,6 Kelly Anne Barnes,1 Joseph W. Dubis,1 Eric Feczko,6

Rebecca S. Coalson,1,7 John R. Pruett Jr.,6 Deanna M. Barch,3,6,7

Steven E. Petersen,1,3,7,8 Bradley L. Schlaggar1,7,8,9*

Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable
changes in human functional brain maturity over development. Here we show that support vector
machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make
accurate predictions about individuals’ brain maturity across development. The use of only 5 minutes of
resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed
prediction of individual brain maturity as a functional connectivity maturation index. The resultant
functional maturation curve accounted for 55% of the sample variance and followed a nonlinear
asymptotic growth curve shape. The greatest relative contribution to predicting individual brain
maturity was made by the weakening of short-range functional connections between the adult brain’s
major functional networks.

Functional magnetic resonance imaging
(fMRI) holds the promise that it may one
day aid in the diagnosis of developmental

delays and neuropsychiatric disorders, especially
for conditions that lack structural brain abnor-
malities. Much progress has been made describ-
ing typical and atypical human brain activity at
the group level with use of fMRI. However,

determining whether single fMRI scans contain
sufficient information to classify and make pre-
dictions about individuals remains a critical
challenge (1).

The work described here had two major ob-
jectives. The first aim was to develop an ap-
proach for making accurate predictions about
individuals on the basis of single fMRI scans. The

second aim, building on the first, was to further
illuminate typical brain development, a prerequi-
site for studying developmental disorders and
pediatric-onset neuropsychiatric diseases (2, 3).

Previous developmental fMRI studies have
shown reliable differences between children and
adults (4–9). Thus, we set out to push the study
of functional brain maturation toward making pre-
dictions about single individuals. We used multi-
variate pattern analysis (MVPA) tools (10–14) to
make continuously valued predictions about the
relative functional maturity levels of individual
brains.
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MVPAapplies sophisticatedmachine-learning
algorithms (12, 14) to the complex patterns
generated by a myriad of measurements, termed
features. We chose support vector machines
(SVMs) as our classification and prediction algo-
rithms because they are resilient to overfitting and
allow the extraction of feature weights (15, 16).
Because of its sensitivity, MVPA has become
increasingly used in task-evoked neuroimaging,
beginning with early work by Haxby and col-
leagues (10). When applied to task-related fMRI
data, MVPA has allowed researchers to accom-
plish impressive feats, such as extracting patterns
related to memory reinstatement (17), predicting
which nouns participants heard (18), and explor-
ing the neural correlates of consciousness (19, 20).

However, in many pediatric and clinical pop-
ulations, the acquisition of task-related data
becomes increasingly difficult because of a variety
of causes (e.g., ability to perform task). Therefore,
we used functional connectivity MRI (fcMRI)
data, which can be collected quickly and easily
under different conditions, including but not limited
to anesthesia, sleep, and quiet rest (21). Resting-
state fcMRI (rs-fcMRI) studies measure the cor-
relations in spontaneous activity between brain
regions (22). These rs-fcMRI measurements are
reliable across scans and institutions (23) and are
thought to have been shaped by the cumulative
effect of experiences across one’s lifespan (24).

Thus, we developed a functional connectivity
MVPA (fcMVPA) approach that combines the
sensitivity of MVPA with the robust and easy
data acquisition of fcMRI. To build a machine
that could predict the functional maturity level of
individual brains from about 5 min of fMRI data,
we used 238 rs-fcMRI scans (3 T; continuous rest)
from typically developing participants ranging in
age from 7 to 30 years (tables S1 and S2). Blood
oxygen level–dependent (BOLD) time courses

were generated for 160 regions of interest (ROIs)
derived from a series of meta-analyses of task-
related fMRI studies that cover much of the brain
(fig. S1 and table S3). All possible interregional
temporal correlations, or functional connections
(n = 12,720), were computed for each individual.
By using standard MVPA methodology to avoid
circularity bias (14), we first reduced the number
of features to the 200 functional connections most
reliably different between children and adults in
each round of leave-one-out cross-validation (16).

Binary SVM classification of individuals as ei-
ther children (61 scans of 7- to 11-year-olds;mean =
9.4) or adults (61 scans of 24- to 30-year-olds;
mean = 26.2), matched for brain volume and in-
scanner movement, was 91% accurate (permuta-
tion test,P < 0.0001; 90% sensitive; 92% specific).

To assess the relative functional brain matu-
rity of individuals more precisely, we used SVM
regression (SVR). Chronological age served as
the training measure for SVR brain maturity pre-
diction because, in contrast to other potential
measures of maturity such as hormone levels or
developmental milestones, age is easily obtained
and free of measurement error. In this manner, we
generated a predicted “brain age” as an estimate
of each participants’ functional maturity level.
Achieving functional brain maturity in this sense
is likely the consequence of integrated processes
that are both developmental (e.g., myelination
and synaptic pruning) and experiential.

The predicted brain ages for all scans were
converted to a functional connectivity maturation
index (fcMI) by setting the mean predicted brain
age of typically developed young adults (18 to 30
years old) equal to 1.0. The fcMI thus represents
a 200-dimensional, weighted index of an indi-
vidual’s overall functional brain maturity.

Model selection analyses were carried out by
usingAkaike information criterion (AIC)weights

(16, 25). These analyses showed that functional
maturity levels between the ages of 7 and 30
years, as measured by fcMI, are best fit by classic
biological models of asymptotic growth or matu-
ration (26), such as Von Bertalanffy’s growth
curve or the Pearl-Reed logistic growth curve
(Fig. 1 and table S4).

The most probable models of functional brain
maturation provided almost identical curve fits in
the 7- to 30-years-old age range (Fig. 1 and fig.
S2). Linear models generated the poorest fits (fig.
S2 and table S4). The best fitting models showed
asymptotic maturation toward a predicted popu-
lation mean maximum brain age of ~22 years,
corresponding to an fcMI of slightly greater than
1.0. The fitted models mainly differed in their
predictions for younger ages. The two-parameter
Von Bertalanffy curve predicts more rapid mat-
uration between birth and age 7 years than the
three-parameter Pearl-Reed curve. Future collec-
tion of additional rs-fcMRI scans between birth
and age 7 years should help decide between these
interesting alternatives.

For independent replication, the same analy-
ses were also carried out on two other large-scale
developmental functional connectivity data sets
with somewhat different characteristics. Data set
2 consisted of 195 fcMRI scans (age 7 to 31 years;
1.5 T) where rest periods had been extracted from
blocked fMRI designs. Data set 3 consisted of
186 event-related fMRI scans (age 6 to 35 years)
that were made more similar to resting state by
regressing out task effects. Despite these differ-
ences in the type of functional connectivity data,
binary adult-versus-child classification results
replicated (accuracy of 92% for data set 2 and
93% data set 3), as did the functional brain
maturity prediction results (data set 2, r2 = 0.519;
data set 3, r2 = 0.557) (figs. S3 and S4, and table
S4). After separately generating fcMI values for
each data set, 613 scans between the ages of 6 and
30 years were combined into a single, “mixed-
type” functional connectivity maturation curve
(figs. S5 and S6), with very similar properties to
the pure 3-T rs-fcMRI maturation curve (Fig. 1).
Six participants older than 30 years from data sets
2 and 3 were excluded from the fits for con-
sistency across data sets. These findings demon-
strate that fcMRI-based maturation analyses
generalize across cohorts and different types of
fcMRI data.

A crucial aspect of MVPA is displaying and
analyzing the features that drive the multivariate
predictor. Therefore, we extracted the weighting
assigned to each feature (i.e., functional connec-
tion) by the predictor and displayed the 156
consensus features (16) from the SVR maturity
prediction (data set 1) scaled by their weights
(Fig. 2 and fig. S7). The resulting pattern of
feature weights verified and expanded on find-
ings from prior developmental rs-fcMRI studies
(7, 8, 27). These previous studies, which were
based on smaller sets of regions and sample
numbers, had suggested that the brain’s function-
al organization is dominated by more local

Fig. 1. Functional brain
maturation curve. Individ-
ual functional brain matu-
rity levels of 238 rs-fcMRI
scans (115 females) be-
tween the ages of 7 to 30
years. Chronological age is
shown on the x axis and the
fcMI on the y axis (females
pink, males blue). The fit
for the Von Bertalanffy’s
equation [a•(1– e–bx), r2=
0.553, permutation test,
P < 0.001, AIC weight =
0.3] is shown with a solid
black line. The fit for the
Pearl-Reed equation [a/(1+
b•e–cx), r2 = 0.555, AIC
weight = 0.23] is shown
with a solid gray line. The
95% prediction limits are
shown with dashed lines.
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interactions between brain regions in children
and shifts to a more distributed architecture in
young adults.

The fcMVPA brain maturity predictor has its
basis in two types of functional connections,
those whose strengths were positively correlated

(strengthening) with chronological age and those
that were negatively correlated (weakening) with
chronological age (Fig. 2, figs. S7 and S8, and
table S5). As previously noted (7, 8, 27), func-
tional connections that grew in strength across
development were significantly longer (mean = 80
mm) than functional connections that diminished
in strength (37mm) [t(154) = 14.66,P< 1 × 10−30]
(figs. S7 and S8). In addition, we found that
functional connections increasing in strength were
significantly more likely to run along the anterior-
posterior (AP) axis in the horizontal plane (mean
angle = 37°) than the functional connections that
becameweaker (58°) [t(154) = 4.84,P < 1 × 10−5].
The quantitative nature of the MVPA approach
also allowed us to extract the relative contributions
of weakening and strengthening functional con-
nections. These analyses revealed that weakening
connections contributed more to predicting brain
maturity (68%) than strengthening connections
(32%), a finding better visualized by separately
summing weights for both weakening and
strengthening features (Fig. 3).

To extract the relative contributions of dif-
ferent ROIs to maturity prediction, we computed
their node or ROI weights by summing the
weights across all functional connections for each
ROI (Fig. 2, fig. S9, and table S6).

Some of the regions in ventromedial pre-
frontal cortex and parietal cortex have previously
been associated with the brain’s default-mode
network (28), whereas other anterior, dorsolateral,
and medial prefrontal regions are known to be
important for cognitive control (4, 6, 29). Hence,
we assessed the network affiliations of each ROI
more formally by performing modularity optimi-
zation on the average adult functional connec-
tivity matrix (8). Doing so partitioned the 160
ROIs into six networks: cingulo-opercular, fron-
toparietal, default mode, sensorimotor, occipital,
and cerebellar (Figs. 2 and 3 and fig. S9) (8, 30).

Separately summing the feature weights for
each network (Fig. 3) revealed that the cingulo-
opercular control network had the greatest sum
total of feature weights, meaning that it was the
relatively best predictor, but all six identified
networks made sizeable contributions toward
predicting functional maturity. Separating func-
tional connection weights according to whether
the connections occur within or between net-
works (Fig. 3) revealed that the vast majority of
predictor weights for within-network connections
were assigned to strengthening connections (Fig.
3, left). In contrast, most of the weights for
between-network connections were taken up by
connections that weaken (Fig. 3, right). This
pattern is consistent with the internal strengthening
of the adult brains’ six identified major functional
networks, as well as the sharpening of the
boundaries between them.

The region with the greatest relative predic-
tion power about brain maturity was the right
anterior prefrontal cortex [Montreal Neurological
Institute (MNI): 27, 49, 26], thought to be im-
portant for cognitive control and higher-order

Fig. 2. fcMVPA connection and region weights. The functional connections driving the SVR brain
maturity predictor are displayed on a surface rendering of the brain. The thicknesses of the 156
consensus functional connections scale with their weights. Connections positively correlated with
age are shown in orange, whereas connections negatively correlated with age are shown in light
green. Also displayed are the 160 ROIs scaled by their weights (1/2 sum of the weights of all the
connections to and from that ROI). The ROIs are color-coded according to the adult rs-fcMRI networks
(cingulo-opercular, black; frontoparietal, yellow; default, red; sensorimotor, cyan; occipital, green; and
cerebellum, dark blue).

Fig. 3. SVR brain maturity weights by adult rs-fcMRI networks. The sums of all the functional
connection weights within each network are shown to the left of the vertical black line. The sums of
all the functional connection weights between networks are shown to the right.
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reasoning (4, 6, 9, 29). The precuneus, which has
recently been found to be the most highly struc-
turally (31) and functionally (32) connected brain
region, contained the secondmost predictive ROI
(MNI: 8, –40, 50). It stands to reason that regions
such as those in the precuneus, situated at the
center of the adult brain’s connectome, could carry
much information about how the network develops.

The results presented here strongly suggest
that the fcMVPA approach derives its accuracy
from important neurophysiologic changes. The
functional connectivity maturation curve (Fig.
1 and fig. S6) has a biologically plausible asymp-
totic shape, first used to describe the growth of
animals (Von Bertalanffy) and human popula-
tions in the setting of limited resources (Pearl-
Reed) (26). Similarly shaped growth curves that
plot measures such as height and head circum-
ference against age are used routinely in pediatric
medicine. The maturation curves suggest that
mean population functional brain maturity as-
ymptotes toward a maturity level or brain age of
~22 years (33). The shape of the functional
maturation curve highlights the nonlinear nature
of functional brain maturation (34, 35).

The pattern of fcMVPA feature weights
indicated that functional maturation is driven both
by the segregation of nearby functional areas,
through the weakening of short-range functional
connections, and the integration of distant regions
into functional networks, by strengthening of long-
range functional connections (fig. S7) (2, 7, 8, 27).
It is interesting that fcMVPA revealed the rela-
tively greater importance of functional segregation
when compared to functional integration for the
prediction of functional brainmaturity. In addition,
fcMVPA showed that functional integration is
mainly carried by longer-range functional con-
nections along the AP axis. Grouping brain re-
gions into functional networks (8) showed that
both integration within functional networks and
segregation between them are widely distributed
across the cortex and cerebellum.

Several important, large-scale structural MRI
studies of brain maturation have already mapped
out anatomical maturation curves for a variety of
measures (33, 34, 36, 37). The present study pro-
vides a functional counterpart to the prior ana-
tomical studies. In addition, it combines the most
relevant features into a single index instead of
separately listing different measures. It should be

informative to apply similar MVPA methods to
the study of structural brain maturation, as well as
combining MVPA of structural and functional
data.

Important group-level rs-fcMRI studies have
already shown differences in spontaneous activity
in disorders such as autism, schizophrenia, depres-
sion, and attention-deficit hyperactivity disorder
(21). Hence, imaging-based binary classification
studies of clinical populations are starting to be
pursued (38). The use of SVR in fcMVPA to
make continuously valued predictions may be-
come relevant in clinical scenarios where binary
classification is insufficient (e.g., to predict years
until Alzheimer’s disease symptom onset).

The standard clinical workup for many de-
velopmental neuropsychiatric disorders already
includes a structural MRI scan of the brain. The
present observations suggest that the addition, at
little extra cost, of a brief resting acquisition to the
standard clinical study could one day provide
useful information to aid in the screening, diag-
nosis, and prognosis of individualswith disordered
brain function.
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