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In traditional genetic programming, operators used for crossover and mutation are typically
syntactic, in the sense that they operate in a representation-level, ignoring the semantic impact
they cause. Considering we are mostly interested in generating semantically useful solutions, there
has been an increased interest in semantic-aware operators in GP. However, it was only in [3]
that operators working directly in the semantics of solutions were proposed and they have been
successfully applied in several scenarios [2, 4] when compared to traditional GP.

For regression problems, the semantic crossover operator proposed in [3] was defined as convex
combination. Given two previously generated functions f1 and f2, a new function f3 is created as

f3(x) = c(x) · f1(x) + (1− c(x)) · f2(x) , (1)

where c(x) is a randomly generated expression with outputs in the interval [0, 1]. If c(x) is a constant
in relation to x, it corresponds to the Euclidean based semantic geometric crossover operator; if
c(x) is a random function, it corresponds to the Manhattan based semantic geometric crossover
operator. A function created this way has the property of being semantically intermediate between
its parents (characterizing the operator as geometric). A direct consequence of this fact is that the
new solution is not worse than the worst of its parents. More interestingly, this property holds even
when considering test data. While in [3], the experiments were carried out using the Euclidean
based operator, more recent works have used the Manhattan based operator [1]. In this paper we
study the difference in performance of these operators, including two new variations of the Euclidean
based operator, which analytically determine the constant to be used by the crossover operator.

In the particular case of semantic crossover between two expressions, f1 and f2, where c(x)
is replaced by a constant value c in the interval [0, 1] (Euclidean based crossover), one can define
the error obtained by f3 as a function of the coefficient used in the convex combination. When
considering the root mean squared error in relation to the desired output, we obtain

RMSE(c) =
∑

(xi,yi)∈T

[yi − c · f1(xi)− (1− c) · f2(xi)]
2 , (2)

where T , f1 and f2 are the training set consisting in (xi, yi) pairs—where xi is the input and yi
is the desired output—and two previously generated functions, respectively. Since Equation (2)
is continuous, one can derive it with respect to the coefficient c and equal the derivative to zero,
finding the value c∗ that minimizes the equation. This strategy leads to

c∗ =

∑
(xi,yi)∈T

[yi − f2(xi)] · [f2(xi)− f1(xi)]

[f1(xi)− f2(xi)]2
. (3)

A function generated using such optimized coefficient is guaranteed to be not worse than the
best of its parents in the training set, strengthening the original properties of the Euclidean based
semantic geometric crossover operator. To understand why this property is valid, we must remember
that this optimization is over all possible convex combination, including those that uses c = 1 or
c = 0. Therefore, if Equation (3) returns a value between 0 and 1, the function generated through the
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convex combination will be better than its parents; otherwise, it will be simply replicate the best of
its parents. A similar strategy can lead to the definition of a semantic geometric crossover operator
that uses linear combination (not necessarily convex) and still generates solutions that are better
than its parents considering the training set—this allows a larger number of combinations and, at
the same time, includes every combination allowed by the operator using convex combinations.

In order to assess the impact of operators proposed, we evaluated four algorithms: a Koza-style
standard GP, a semantic GP (SGP) using the Euclidean based semantic geometric operator, a se-
mantic GP using the Euclidean based semantic geometric operator with optimised coefficients given
by Equation 3 (SGP-O), a semantic GP using optimized linear combinations as crossover (SGP-L)
and a semantic GP using the Manhattan based semantic operator (SGP-M). The Manhattan based
operator used a random generated function r and used a sigmoid function s(x) = (1 + e−r(x))−1 to
constrain the output to the interval [0, 1] as in [1]. Table 1 shows the median RMSE obtained in
the test data by each version of SGP in four datasets after 30 executions. Each implementation had
a population size of 1000 individuals and evolved 2000 generations; mutation rate and step were
set to 0.4 and 0.01 for SGP, 0.1 and 0.1 for SGP-O and SGP-M, 0.4 and 0.001 for SGP-L. In terms
of the RMSE achieved in the test data, our experiments show that it is possible to improve the
performance of the SGP by using optimised constants in the semantic geometric crossover. There is
not much difference between SGP-O and SGP-L, therefore, it is not clear if the linear combination
has any impact in the performance of the algorithm. However, the use of the Manhattan based
operator in the SGP-M has clear advantages over Euclidean ones, the only exception is the keijzer-6
dataset. These results suggest that the Manhattan based semantic geometric crossover operator is
more suitable for regression domains.

Table 1: Results for all algorithms in four datasets: N indicates that the method on the column is
statistically better than SGP, while O indicates that the method is statistically worse.

Dataset SGP SGP-O SGP-L SGP-M

bioavailability 95.737 N 114.505 O 110.555 O 36.720 N
keijzer-5 0.243 N 0.214 N 0.303 O 0.142 N
keijzer-6 1.823 N 0.642 N 0.019 N 0.332 N
tower 47.123 N 38.518 N 38.268 N 23.670 N
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