An Efficient Implementation of GSGP using
Higher-Order Functions and Memoization

Alberto Moraglio

Abstract

Geometric Semantic Genetic Programming (GSGP) [1] is a novel form of Genetic
Programming (GP) that can be interpreted as searching directly the semantic
space of programs. This new form of GP is very promising as it induces always a
simple unimodal fitness landscape for any problem it is applied to, hence it con-
verges to the optimum very quickly. A drawback of GSGP with crossover is the
exponential growth of individuals due to the fact that the offspring tree contains
both parent trees, hence individuals double their size at each generation. Van-
neschi et al. [2] have proposed an implementation of GSGP with crossover using
a complex pointer-based data structure that prevents the exponential growth by
keeping trace of the ancestry of individuals rather than storing them directly.
We propose a new implementation of GSGP also based on tracing the ancestry
of individuals, that however does not explicitly build and maintain a data struc-
ture, but uses higher-order functions and memoization to achieve the same effect,
leaving the burden of book-keeping to the compiler. The resulting implemen-
tation is fast, elegant and concise. A Python implementation (under 100 lines
without comments) is on GitHub at https://github.com/amoraglio/GSGP.
SOLUTION REPRESENTATION: We represent solutions using directly
functions of the programming language used to program the GSGP system. E.g.,
in a GSGP to evolve Boolean expressions written in Python, the representation
of a Boolean expression is directly a Python (anonymous) function computing
that Boolean expression, and not a data structure (e.g., a tree) representing the
Boolean expression.

SEARCH OPERATORS: Geometric sematic crossover and mutation can be
interpreted as higher-order functions. We implement them directly as such:
they do not manipulate data structures representing solutions, but take directly
in input (anonymous) parent functions and return (anonymous) offspring func-
tions. The returned offspring function calls the parent functions in its definition.
In particular, the parent function definitions are not substituted in the offspring
definition, hence there is no growth of the offspring function. The function calls
to the parents in the offspring implicitly build the data structure that relates
offspring to parents all the way down the ancestry without the need to use
pointers, manage memory and maintain an archive of past solutions.



FITNESS EVALUATION: Even if individuals do not grow, evaluating them
takes exponential time, as querying a function for some input requires calling
both its parents on that input that in turn need to call their parents on it and
so forth, doubling the number of calls at each generation. The complexity of
queries can be reduced from ezxponential to constant time by memoization (i.e.,
caching the output values of a function of previously encountered inputs rather
than recomputing them) of all individuals (functions) generated in the course of
evolution. This works because each individual caches its outputs on the training
examples the first time its fitness is computed, and the fitness of the offspring
is computed by calling its parents on the training examples whose outputs are
ready available in the cache as they were already encountered when their fitness
was computed. This reduces the number of calls needed to compute the fitness
of an individual from the size of its ancestry to two i.e., number of parents.
Memoization is easily implemented as a higher-order wrapping function (it is a
standard library function in Python 3.2).

FINAL SOLUTION: As solutions are represented directly as compiled Python
functions, displaying them would require decompilation, which is not very prac-
tical. In particular, this would be required to extract the final solution. Note
also that storing directly solutions during evolution is not feasible as their size
grows exponentially (this is the original problem we wanted to solve to obtain
an efficient implementation).

The technique we have used to display functions that avoids both decompila-
tion and direct representations of functions during evolution consists of doubling
the implicit call structures in individuals, where the second structure implicitly
keeps track of how to reconstruct the final genotype of the individual (i.e., its
source code) mirroring the first call structure (i.e., its semantics) interpreting
subroutine calls as function bodies substitutions (i.e., asking the parents to re-
turn their source code to embed in the offspring source code). Then individuals
can be asked to display themselves by calling their associated ‘source code’
function. This can be implemented with minor additions to the code.

Naturally displaying the final solution after evolution takes exponential time
as its genotype is exponentially long. However, querying the final solution on
unseen values (i.e., to make predictions) takes only linear time thanks to the
memoization of individuals.

References

[1] Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic pro-
gramming. In: Proc. PPSN XII, Springer (2012) 21-31

[2] Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of

geometric semantic gp and its application to problems in pharmacokinetics.
In: EuroGP. (2013) 205-216



