
A framework for measuring the generalization ability of
Geometric Semantic Genetic Programming (GSGP) for

Black-Box Boolean Functions Learning

Andrea Mambrini1, Yang Yu2, Xin Yao1

1 University of Birmingham, Birmingham, UK
2 Nanjing Univeristy, Nanjing, China

Abstract. Moraglio et al. proposed GSGP operators for learning boolean functions [1]. The
work provides upper bounds of the expected time for the algorithm to fit the training set
but it doesn’t give any guarantees on how the learned functions will evolve on unseen input.
In this work we provide a framework to analyse GSGP as learning tool. This can be used
to obtain lower bounds on the generalisation error of the boolean functions evolved by the
algorithm.

1 A framework for measuring Generalization

In this section we define the learning problem which GSGP using the operators from [1] tries to
solve and the generalization ability as a way to measure the performance of a GP algorithm as a
learning tool.

1.1 The learning problem

Given a complete truth table C = {(x1, y1), ..., (xN , yN )} consisting in the complete description of
the input-output behaviour of a fixed boolean function h : {0, 1}n → {0, 1} in n variables (N = 2n),
given an underlying distribution D over the rows of the truth table, i.e., Di ≥ 0 for all row i and∑N
i=1Di = 1. A training set T consisting in τ ≤ N test cases T ⊂ C = {(x1, y1), ..., (xτ , yτ )} is

sampled from the truth table according to the distribution D. The aim is to use just the training set
T to learn a boolean function h : {0, 1}n → {0, 1} matching as better as possible the input-output
behaviour described by C with respect to the distribution D, i.e., to minimise the generalisation
error,

εg(h) =

N∑
i=1

Di · I[h(xi) 6= yi]

where I[·] is the indicator function that is 1 if its inner expression is true and 0 otherwise.
The problem has the additional constraint of being black-box. Which means that the learning

algorithm has no direct access to T . It has instead access to an oracle that, given a candidate
boolean expression X will return how well it match the input-output behaviour described by T .

1.2 Fitness functions

In order to highlight the black-box constraint we will define two different fitness functions. The
fitness on the training set, fT (X) is the training error, which measures how well a given boolean
expression X matches the training set T . It is defined as

fT (X) = εt(X) =
1

τ

τ∑
i=1

I[X(xi) 6= yi] , ∀(xi, yi) ∈ T

and it is equal to zero when an individual perfectly match the training set T , while it has its worst
value of 1 when the training set is completely unmatched. This fitness function represents the
oracle described above and it is the fitness function used by the learning algorithm for selection.



The real fitness fC(X) is instead the generalisation error, measuring how well a given boolean
expression X matches the complete truth table C. It is defined as follow

fC(X) = εg(X) =

N∑
i=1

Di · I[X(xi) 6= yi] , ∀(xi, yi) ∈ C

Its value is equal to 0 when the individual perfectly match the complete truth table C, while it
has its worst value of 1 when the truth table is completely unmatched. Notice that the learning
algorithm has no access to fC(X). It can use the fitness on the training set, fT (X), to measure
the fitness of the current individual X but it cannot get the value of fC(X). This fitness function
will be used in the following to define the generalisation ability of an algorithm.

1.3 Learning performance measures

Being fT the fitness on the training set, and being fC the real fitness we define the generalization
ability of an evolutionary algorithm A as

G(A) = E[1− fC(X̃)]

, where X̃ is the individual obtained after A has converged. The generalisation ability is in the
range [0, 1], and is the larger the better.

Notice that the definition of the generalisation ability depends just on fC while the algorithm
has just access to fT . This means that the best generalisation performance will not necessarily
be achieved by the algorithm which better optimise fT . This is common knowledge in machine
learning, where the effect of maximising fT regardless of fC would be considered as overfitting.

Previous work on the analysis of GSGP [1] have provided upper bounds for the expected
runtime, which in our framework can be defined as:

R(A) = E[T (fT (X) = 0)]

which is the expected time for the algorithm to find an individual with zero error on the training
set since T (fT (X) = 0) is the number of generations until the first individual with zero training
error is produced. This is important to get guarantees on the convergence time of the algorithm but
it has two important problems: it doesn’t give any indication on the goodness of the algorithm as a
learning tool and it wrongly bias the design of the algorithm to minimise R(A) despite of G(A). In
fact good learning algorithm should have low convergence time, while still guarantee good values
for G(A).

2 Application of the framework

This framework can be applied to measure the generalization ability of the GSGP presented in [1].
In order to that one has to answer the question ”Given a GSGP using fT (X) for selection and being

X̃ the best individual when the algorithm has stopped, what is the expected fC(X̃)?”. We did the
calculations and we obtained that the Boolean Semantic Mutation (SGMB, or point mutation)
presented at [1] needs a training set comprising at least half of all the possible inputs (N/2) in
order to have a G(SGMB) > 0. On the other hand, Fixed Block Mutation (FBM) with a proper
size of the blocks, can obtain a G(FBM) > 0.5 with a polynomial training set for a large enough
problem size (n).

References

1. Alberto Moraglio, Andrea Mambrini, and Luca Manzoni. Runtime analysis of mutation-based geometric
semantic genetic programming on boolean functions. In Frank Neumann and Kenneth A. De Jong,
editors, FOGA, pages 119–132. ACM, 2013.


