
Asymptotic Genetic Improvement Programming

via Type Functors and Catamorphisms

Zoltan A. Kocsis and Jerry Swan
Computing Science and Mathematics, University of Stirling.

{zak,jsw}@cs.stir.ac.uk

1 Motivation

Genetic Improvement Programming (GIP) is an increasingly important tech-
nique for software maintenance. It employs Genetic Programming (GP) to opti-
mize human-generated source code for a variety of functional and non-functional
properties [1]. For example, it has been successfully used to improve runtime
performance [2] of a 50,000 line C++ program. As observed in [3], exploring the
space of datatypes is likely to be useful, since it allows (for example) memory to
be traded for execution speed. We present a novel semantics-preserving point
mutation that operates on algebraic data types (ADTs). The mutation operator
replaces a source data structure with a target data structure that is functionally-
equivalent but which can have asymptotically superior performance. An ADT
[4] is comprised (possibly recursively) of a choice of constructors (denoted by
sum), tupling (denoted by product) and higher-order function types (denoted
by exponentiation). A simple example of an ADT is the singly-linked list, hav-
ing two constructors, Nil for the empty list and Cons for the combination of a
new element with a list to create a new list. In Scala this is expressed as CList

as shown in Fig. 1. The method we employ is general and can in principle be
applied to most ADTs.

2 Method

The method of datatype substitution is as follows: we obtain a type functor
(described in more detail below) [4] corresponding to the source datatype S.
Using the type functor, we then obtain a mapping between S and the target
datatype T via proof search within the framework of sequent calculus [5]. This
proof yields a ‘wrapper function’ f : S → T which allows all instances of the
source datatype s to be replaced by instances of the target datatype f(s) [6].
The type functor for an ADT is built up from constants, products and sums in
the manner described above by factoring out the recursion [4]. In this manner,
it can be shown that the type functor associated with the CList type defined
above is F (r) = 1 + Int ∗ r.

3 Experiment

We describe how the method can be used to automatically replace CList with a
more efficient alternative. The difference list [7] is a functional representation

1

sealed trait CList
case class Nil extends CList
case class Cons(x: Int, xs: CList) extends CList
sealed case class DList = DList(f : CList => CList)
def fromCListToDList(x : CList) : DList = x match {
case x : Nil => DList((b : CList) => b))
case Cons(c,d) => DList(b => Cons(c,fromList(d).f(b)))

}

Listing 1: Example Scala ADTs and a synthesized mapping between them

of a list that enables concatenation as an O(1) operation (as opposed to O(n)
for CList). The Scala signature for a difference list DList is given in the listing
above. By extending the approach of Djinn [8] to support a bigger class of types
(via catamorphisms) [9], we were able to use proof search to obtain mappings
between lists and difference lists. By the Curry-Howard Isomorphism [5], these
mappings are expressible as code that can be dynamically generated by Scala’s
native reflection mechanism in the manner of [3]. Using reflection, we can search
for all ADTs (expressed as a fixed hierarchy of case classes, as in Fig. 1) and de-
termine if a semantics-preserving transformation between them is possible. The
resulting synthesised code (fromCListToDList) appears at the bottom of Listing
1, and the corresponding point mutation replaces an AST node containing a
CList c with the invocation fromCListToDList(c). This mutation process will be
described in full detail at the workshop.

References
[1] Mark Harman, William B. Langdon, Yue Jia, David R. White, Andrea Arcuri, and John A.

Clark. The GISMOE challenge: Constructing the pareto program surface using genetic
programming to find better programs (keynote paper). In ASE, pages 1–14, 2012.

[2] William B. Langdon and Mark Harman. Optimising existing software with genetic pro-
gramming. IEEE Transactions on Evolutionary Computation, 2013. Accepted.

[3] Jerry Swan, Michael G. Epitropakis, and John R. Woodward. Gen-O-Fix: An embeddable
framework for Dynamic Adaptive Genetic Improvement Programming. Technical Report
CSM-195, University of Stirling, January 2014.

[4] Richard S. Bird and Oege de Moor. Algebra of programming. Prentice Hall International
series in computer science. Prentice Hall, 1997.

[5] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University
Press, New York, NY, USA, 1989.

[6] Andy Gill and Graham Hutton. The Worker/Wrapper Transformation. Journal of Func-
tional Programming, 19(2):227–251, March 2009.

[7] Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999.

[8] Lennart Augustsson. Djinn, a theorem prover in Haskell, for Haskell.
http://hackage.haskell.org/package/djinn, 2005.

[9] Graham Hutton, Mauro Jaskelioff, and Andy Gill. Factorising Folds for Faster Functions.
Journal of Functional Programming Special Issue on Generic Programming, 20(3&4):353–
373, June 2010.

2

