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One of the most significant developments in genetic programming (GP) research in the last few years has been a growing
focus on the semantics of programs. Traditional GP is focused on program text and designed operators and representations
around syntactic transformations. For example, a mutation operator will be designed to make a small-but-not-too-small change
to the text of the program, with the hope that it would have a similar effect on program behaviour. By contrast, semantic
methods are based on the idea that GP should be designed so that operators and representations work on the meaning and
behaviour of the programs represented—i.e. on their input-output mappings. So, for example, a semantic mutation operator
would (either by generate-and-test or by design) make a small-but-not-too-small change to that input-output behaviour.

Early work on semantic methods in GP focused on the creation of semantic diversity; for example, ensuring that the IO
behaviours of programs in the initial population were all different [2], or that crossover and mutation operators did not give
rise to child programs that had the same behaviour as the parent programs, or which made a transformation of the behaviour
of a certain distance in semantic space [1, 3, 8, 9]. The core of this process is a generate-and-test approach that generates
candidate programs and rejects them if some semantic measure is exceeded.

More recently, focus has shifted towards the creation of GP methods that operate on semantics by design. For example,
the geometric semantic GP approach [7, 10] redesigns the operators so that, for example, a crossover operator generates a
program that is “inbetween” the behaviours of the two parent programs. This is achieved by construction, by forming a child
program consisting of the two parent programs plus a third, randomly generated function, in such a way that the outputs of the
function is a form of interpolation between the two parent functions, mediated by the third randomly generated one. Naively,
this leads to vast programs, but the combination of program simplification [7] and careful use of caching [10] has produced an
efficient technique that has been applied successfully both to benchmark toy problems and to real-world applications in, for
example, pharmacogenetics [10] and civil engineering [4].

A less well explored area is the connection between semantics and fitness. Here we will explore a promising link between
one of the ideas in semantic GP, sampling semantics, and the idea of fitness measurement in GP-like systems. This will involve
a new kind of fitness-like measurement grounded in ideas around entropy, Kolmogorov complexity [6], compression-based
metrics [5] and information gain.

Sampling semantics [8] is one way of formalising the semantics of a program in a GP population. To define a sampling
semantics, we begin by choosing a list of inputs P = [p0, p1, . . . , pn] in the input space of the problem being tackled (typically
these coincide with the fitness cases). The corresponding sampling semantics for each program is a set S = [s0, s1, ..., sn] in
the output space of the program, where each si corresponds to the evaluation of pi on that program. Thus, for each program,
we have a set up input-output pairs on the same set of inputs. These have then been used to define measures that compare the
semantics of two programs, for example by measuring the distances between the S vectors for two programs.

This vector can be used in an interesting new way to provide a new way of evaluating the fitness of a program—actually,
of a program fragment. The traditional way of evaluating fitness in GP is to measure the number of fitness cases that the
program solves, or the aggregate error across the fitness cases. However, this way of measuring fitness rewards solutions that
solve particular training cases in an arbitrary and unstructured way, rather than building program fragments that contribute
towards the overall solution of the problem. Furthermore, it is often difficult for more complicated problems to be solved
using traditional GP, because none of the programs in the initial population come anywhere close to solving the problem, and
so there is no fitness difference for evolution to work on.

Here we describe a new approach to fitness evaluation. Firstly, this takes populations that consist of fragments of programs
rather than complete candidate solutions. Secondly, it takes the set of outputs that current population members generate (the
sampling semantics of those incomplete programs), compares it with the target set of outputs, and measures the algorithmic
complexity of the program required to transform those inputs into the target outputs. This measurement will be done using
information-theoretic measures which approximate the complexity of that putative bridging program.

The key idea is as follows. As a successful program evaluates, each statement executed puts the program into a state
where less computation needs to be done to solve the problem. Another way to think about this is that at each step, the length
of the optimal program required to transform the current output of the program into the target will be be shorter than at the
previous execution step. This measure—the length of the shortest program required to transform one vector of values into
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another—is known as the Kolmogorov complexity of the transformation [6]. This is not computable, but good approximations
can be made, most typically by measuring the compression length of the difference between the sequences—that is, how short
it becomes when compressed with an algorithm such as gzip.

Using this, we can build a new program construction algorithm. We call this TDFComp
1.

FUNCTION TDFComp.
Input a problem specification Prob consisting of fitness cases, terminal set (just the variable names), and a function set. Declare

a set C, called the construction set.
Place all of the variable names in the construction set.
LOOP:

Construct m program fragments by combining two elements of C using the functions from Prob.
Evaluate each of the program fragments on the fitness cases to get a sampling semantics S.
Calculate the difference vector between S and the target value on the fitness cases.
Use gzip to compress each of these difference vectors.
Assign a fitness to each program fragment equal to the length of the compressed vector.
Add the best (most compressible) fragment to C (the remaining fragments can be thrown away).

UNTIL (problem is solved or timeout)
RETURN current best program.

Let us examine a run of this algorithm on the 4-bit even parity problem (variables notated as v0, . . . , v3), the function set
consisting of all two-input one-output boolean functions, and m = 500; the typical run of TDFComp is as follows (in a simple
experiment, 18/20 runs found a solution of minimal size within 3 iterations):

Iteration 1:
C = {v0, v1, v2, v3}
Best fragment is (XNOR v3 v2) with compression value 26

Iteration 2:
C = {v0, v1, v2, v3, (XNOR v3 v2)}
Best fragment is (XOR v1(XNOR v3 v2)) with compression value 24

Iteration 3:
C = {v0, v1, v2, v3, (XNOR v3 v2), (XOR v1(XNOR v3 v2))}
Best fragment is (XNOR(XOR v1(XNOR v3 v2))v0) with compression value 23
Problem solved

We are currently experimenting with these methods (and related methods based on information gain ratio) for a wide
variety of problems that are currently tackled using GP.
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1TDF is “theories destroy facts”, a neat summary of scientific progress from biologist Peter Medawar; in this context it refers to the way in which program
fragments (“theories”) gradually replace and generalise variable values (“facts”) as a program executes)
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