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ABSTRACT
We propose a method of knowledge reuse for an ensem-
ble of genetic programming-based learners solving a visual
learning task. First, we introduce a visual learning method
that uses genetic programming individuals to represent hy-
potheses. Individuals-hypotheses process image representa-
tion composed of visual primitives derived from the train-
ing images that contain objects to be recognized. The pro-
cess of recognition is generative, i.e., an individual is sup-
posed to restore the shape of the processed object by draw-
ing its reproduction on a separate canvas. This canonical
method is extended with a knowledge reuse mechanism that
allows a learner to import genetic material from hypotheses
that evolved for the other decision classes (object classes).
We compare the performance of the extended approach to
the basic method on a real-world tasks of handwritten char-
acter recognition, and conclude that knowledge reuse leads
to significant convergence speedup and, more importantly,
significantly reduces the risk of overfitting.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning—Concept learning

General Terms: Algorithms

Keywords: Genetic Programming, Machine Learning, Pat-
tern Recognition, Knowledge Reuse

1. INTRODUCTION
Despite several decades of intense research, machine learn-
ing (ML) is still a limited imitation of basic human skills.
One of the reasons for that deficiency is the lack of ability
to identify and reuse knowledge fragments across different
learning tasks. Standard ML algorithms do not accumulate
knowledge when faced with consecutive learning tasks, and
work with fixed learning biases. Though such approaches
perform well in many scenarios, as demonstrated by success-
ful ML applications in many areas, an ability to detect and
reuse the universal background knowledge (a.k.a. common-
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sense knowledge), or more specific domain-related knowl-
edge, or even more specific task-related knowledge, would be
definitely a virtue for a learning system. In particular, such
an ability would, among others, improve the convergence
speed of the learning process, reduce the risk of overfitting,
and keep down the number of training examples required
to learn the concept. Some of these profits resulting from
knowledge reuse have been already demonstrated in related
studies on, e.g., multitask learning [2]. However, apart from
scarce studies, the last decade did not see a breakthrough
in this topic, and knowledge reuse has been recently listed
by Tom Mitchell [21] among the most important and chal-
lenging issues in ML.
There are several reasons for the inability of most of stan-
dard ML systems to identify and reuse knowledge fragments.
Firstly, in the most popular paradigm of inductive learning
from attributed examples, it is difficult to identify univer-
sal, or even domain-specific knowledge (often identified with
inductive bias in inductive learning). Secondly, knowledge
encoded in representations that are predominantly used in
machine learning is difficult to modularize or transfer. For
instance, there is little chance for a fragment of a neural net-
work to be useful at another location of the same network, or
a different network delegated to solve another learning task.
This is also due to the fact that, in most ML problems,
attributes that describe examples are highly task-specific,
which reduces chances of finding a similar/analogous at-
tribute in another learning task.
Inspired by these limitations, in this paper we exploit
the paradigm of genetic programming (GP, [9]) as a vehi-
cle for knowledge reuse. GP offers an excellent platform
for knowledge transfer, due to symbolic representation of
solutions and the ability of abstraction from a specific con-
text. This property, together with a built-in mechanisms of
propagation of evolutionary material through crossover, en-
able advanced and effective knowledge manipulation. Thus,
the major contribution of this paper is a novel method of
knowledge reuse in GP that operates between a group of
learners that work in parallel. In particular, we demon-
strate that a relatively simple mechanism of knowledge reuse
introduced between related visual learning tasks improves
dramatically the convergence of the learning process and, in
consequence, prevents overfitting.

2. RELATED WORK
Though knowledge reuse is definitely an important issue in
computational intelligence, it has so far attracted relatively
little attention. Reported research concerns mostly knowl-
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edge reuse within a single learning task, with the exception
of limited work on multitask learning [2], which predom-
inantly uses neural nets for knowledge representation. In
the context of GP, knowledge reuse is often connected with
knowledge encapsulation [11, 25, 3, 5], which is however not
used in the approach presented here. Among reported re-
search, the work done by Louis et al. most resembles our
contribution [18, 16, 17]. In particular, in Case Injected Ge-
netic Algorithms (CIGAR) described in [17], the experience
of the system is stored in a form of solutions to problems
solved earlier (‘cases’). When confronted with a new prob-
lem, CIGAR evolves a new population of individuals and
injects it periodically with such remembered cases. Exper-
iments demonstrated CIGAR’s superiority to standard GA
in terms of search convergence. However, CIGAR injects
complete solutions only, works in a strictly sequential way,
and does not involve GP. These (and also some other) fea-
tures make it different from our approach.
The work presented here is also partially related to visual
learning. As image interpretation is an inherently complex
task, it is difficult to devise a learning method that solves
such a task as a whole. Rather than that, most methods
proposed so far introduce some learning or adaptation at
a particular stage of image processing and analysis, which
enables easy interfacing with the remaining components of
the recognition system. For instance, using a machine learn-
ing classifier to learn and reason from some predefined and
fixed image features computed from the input image is a typ-
ical example of such an approach. In this paper, we propose
a learning method that spans the entire processing chain,
from the input image to the final decision making, and pro-
duces a complete recognition system. Former research on
such systems is rather scant [26, 24, 20, 14, 4]. In [1, 14]
we proposed a methodology that evolved feature extraction
procedures encoded either as genetic programming or lin-
ear genetic programming individuals. The idea of GP-based
processing of attributed visual primitives was explored for
the first time in [13], and was further developed in [12, 6, 27,
8]. In [7], we demonstrate the possibility of cross-task knowl-
edge sharing between learners that explicitly share some GP
code. Here, we come up with a method of knowledge shar-
ing that benefits from code fragments imported from other
learners.
The approach presented in this paper may be considered
as a variant of generative pattern recognition. In a typi-
cal paper on that topic [23], Revow et al. used a prede-
fined set of deformable models encoded as B-splines and
an elastic matching algorithm based on expectation maxi-
mization for the task of handwritten character recognition.
In [15], an analogous approach has been proved useful for
recognition of hand-drawn shapes. However, the approach
presented here goes significantly further, as it does not re-
quire a priori database of object models. And, last but
not least, the recognition (restoration) algorithm has to re-
store the input image using multiple drawing actions, which
implies the ability to decompose the analyzed shape into
elementary components.

3. GENERATIVE VISUAL LEARNING
The proposed approach may be shortly characterized as
generative visual learning, as our evolving learners aim at
reproducing the input image and are rewarded according
to the quality of that reproduction. The reproduction is

partial, i.e., the learner restores only a particular aspect of
the image contents. In this paper, the aspect of interest is
shape, whereas other factors, like color, texture, shading,
are ignored.
The reproduction takes place on a virtual canvas spanned
over the input image. On that canvas, the learner (GP in-
dividual) is allowed to perform some elementary drawing
actions (DAs for short). To enable successful reproduction,
DAs should be compatible with the image aspect that is to
be reconstructed. In this paper, we consider hand-drawn
polygons and, to enable the learner to restore their shape,
we make our DAs draw sections.
As an example, let us consider reconstruction of an empty
triangular shape. It requires from the learner performing the
following steps: (i) detection of conspicuous features — tri-
angle corners, (ii) pairing of the detected triangle corners,
and (iii) performing DAs that connect the paired corners.
However, within the proposed approach, the learner is not
given a priori information about the concept of the cor-
ner nor about the expected number of them. We expect
the learner to discover these on its own.
To reduce the amount of data that has to be processed and
to bias the learning towards the image aspect of interest, our
approach abstracts from raster data and relies only on se-
lected salient features in the input image s. For each locally
detected feature, we build an independent visual primitive
(VP for short). The complete set of VPs derived from s is
denoted in the following by P .
The learning algorithm itself does not make any assump-
tions about the particular salient feature used for VP cre-
ation. Reasonable instances of VPs include, but are not lim-
ited to, edge fragments, regions, texems, or blobs. However,
the type of detected feature determines the image aspect
that is reconstructed. As in this paper we focus on shape,
we use VPs representing prominent local luminance gradi-
ents derived from s using a straightforward procedure. Each
VP is described by three scalars called hereafter attributes;
these include two spatial coordinates of the edge fragment
and the local gradient orientation.
In the preprocessing phase that transforms an input im-
age s into its VP representation P , candidate VPs are ex-
tracted from s based on local image magnitude (brightness).
Then, the obtained candidate locations are sorted with re-
spect to decreasing magnitude, and at most 80% of most
prominent of them are included into the primitive repre-
sentation. Also, to filter out the less prominent candidates
and reduce the final number of VPs, a lower limit dmin on
the mutual proximity of VPs is imposed. The VP candi-
dates are processed sequentially with respect to decreasing
magnitude, and a new primitive p may be added to P only
if there is no other primitive already in P closer than dmin,
i.e., there is no p′ ∈ P such that ‖p, p′‖ < dmin.
The resulting image VP representation P is usually several
orders of magnitude more compact than the original image s.
On the other hand, the essential sketch of the input image s
is well preserved. Figure 2 shows the VP representations de-
rived from objects from Fig. 1. Each short segment depicts
a single VP, with its (x,y) coordinates located in the middle
of the segment and the orientation depicted by slant.
On the top level, the proposed method uses evolution-
ary algorithm that maintains a population of visual learn-
ers (individuals, solutions), each of them implemented as
GP expression. Each visual learner L is a procedure writ-
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Figure 1: Selected training examples.

Figure 2: Visual primitives derived from examples
in Fig. 1.

ten in a form of a tree, with nodes representing elemen-
tary operators that process sets of VPs. The terminal nodes
(named ImageNodes) fetch the set of primitives P derived
from the input image s, and the consecutive internal nodes
process the primitives, all the way up to the root node.
A particular tree node may (i) group primitives, (ii) perform
selection of primitives using constraints imposed on VP at-
tributes or their other properties, or (iii) add new attributes
to primitives.
We use strongly-typed GP (cf. [10]), which implies that
two operators may be connected to each other only if their
input/output types match. The following types are used:
numerical scalars (� for short), sets of VPs (Ω, potentially
nested), attribute labels (A), binary arithmetic relations
(R), and aggregators (G).
The full list of GP operators may be found in [6, 27].
The non-terminal GP operators may be divided into the fol-
lowing categories:
1) Scalar operators (as in standard GP applied to sym-
bolic regression; see [10]). Scalar operators accept argu-
ments of type � and return result of type �.
2) Selectors. The role of a selector is to filter out some
of the VPs it receives from its child node(s) according to
some objectives or condition. Selectors accept at least one
argument of type Ω and return result of type Ω. Non-
parametric selectors expect two child nodes of type Ω and
produce an output of type Ω. Operators that implement
basic set algebra, like set union, intersection, or difference,
belong to this category. Parametric selectors expect three
child nodes of types Ω, A, and �, respectively, and produce
output of type Ω. For instance, operator LessThan applied
to child nodes (P , po, 0.3) filters out all VPs from P for
which the value of the attribute po (orientation) is less than
0.3.
3) Iterators. The role of an iterator is to process, one by
one, the VPs it receives from one of its children. For in-
stance, operator ForEach iterates over all the VPs from its
left child and processes each of them using the GP code spec-
ified by its right child. The VPs resulting from all iterations
are grouped into one VP and returned.
4) Grouping operators. The role of those operators is to
group primitives into a certain number of sets according to
some objectives or conditions. For instance, GroupHierar-
chyCount uses agglomerative hierarchical clustering, where
euclidean distance of primitives serves as the distance met-
ric.
5) Attribute constructors. An attribute constructor de-

Figure 3: The primitive hierarchy built by the
learner from VPs, imposed on the image (left) and
shown in an abstract form (right); VP attributes not
shown for clarity.

fines and assigns a new attribute to the VP it processes.
The definition of a new attribute, which must be based on
the values of existing VP attributes, is given by the GP code
contained in the right child subtree. To compute the value of
a new attribute, attribute constructor passes the VP (opera-
tor AddAttribute) or the sub-primitives of the VP (operator
AddAtributeToEach) through that subtree. Attribute con-
structors accept one argument of type Ω and one of type �,
and return a result of type Ω.
Given the elementary operators, an individual-learner L
applied to an input image s builds gradually a hierarchy of
VP sets derived from s. Each application of selector, it-
erator, or grouping operator creates a new set of VPs that
includes other elements of the hierarchy. In the end, the root
node returns a nested VP hierarchy built atop of P , which
reflects the processing performed by L for s. Some of the el-
ements of the hierarchy may be tagged by new attributes
created by attribute constructors.
Figure 3 illustrates an example of VP hierarchy built by
the learner in response to input image/stimulus s. In the left
part of the figure, the short edge fragments labeled by sin-
gle lower-case letters represent the original VPs derived from
the input image s, which together build up P . In the right
part, the VP hierarchy is shown in an abstract way, without
referring to the actual placement of particular visual prim-
itives in the input image. Note that the hierarchy does not
have to contain all VPs from P , and that a particular VP
from P may occur in more than one branch of the hierarchy.
Individual’s fitness is based on DAs (drawing actions) that
it performs in response to visual primitives P derived from
training images s ∈ S. To reconstruct the essential features
of the input image s, the learner is allowed to perform DAs
that boil down to drawing sections on the output canvas c.
To implement that within the GP framework, we introduce
an extra GP operator called Draw. It expects as an argu-
ment one VP set T and returns it unchanged, drawing on
canvas c sections connecting each pair of VPs from T .
The drawing created on the canvas c by the learner L for
an input image s is then evaluated to provide feedback for L
and enable its potential improvement. This evaluation con-
sists in comparing the contents of c to s. For this purpose,
a simple and efficient approach was designed. In general,
this approach assumes that the difference between c and s
is proportional to the minimal total cost of bijective assign-
ment of lit pixels of c to lit pixels of s. The total cost is a sum
of costs for each pixel assignment. The cost of assignment
depends on the distance between pixels in the following way.
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When the distance is less than 5, the cost is 0; maximum
cost equals 1 when the distance is greater than 15; between
5 and 15 the cost is a linear function of the distance. For
pixels that cannot be assigned (e.g., because there are more
lit pixels in c than in s), an additional penalty of value 1 is
added to the total cost. In order to compute the minimal
total cost of assignment, a greedy heuristic was applied.
The (minimized) fitness of L is defined as the total cost
of the assignment normalized by the number of lit pixels
in s ∈ S, averaged over the entire training set of images
S. The ideal learner perfectly restores shapes in all training
images and its fitness amounts to 0. The more the canvas c
produced by a learner differs from s, the greater its fitness
value.

4. INTRODUCING KNOWLEDGE REUSE
In terms of ML, the procedure described in Section 3 per-
forms one-class learning [22], as it uses training examples
from the positive class only and tries to describe it, having
no idea about the existence of other decision classes (ob-
ject classes in case of visual learning). When applying our
approach to a k-class classification problem, we run in par-
allel k independent evolutionary processes for n generations.
Each evolutionary process uses representation of individuals
and fitness function described in Section 3 and is devoted to
one decision class. The best representatives obtained from
particular runs form a complete multi-class classifier (recog-
nition system), which is then ready to classify new examples
using a straightforward voting procedure detailed in Sec-
tion 5. This basic approach will be in the following denoted
shortly as ‘GP’.
Such multiple application of one-class learning has many
advantages. Firstly, each class may be learnt in isolation,
making possible processing of multiple classes in parallel.
Secondly, extension to incremental learning becomes triv-
ial, as adding a new class to the already learnt problem is
straightforward and does not require re-training of the al-
ready evolved recognizers.
On the other hand, given the similar nature of particular
elementary learning tasks, we expect them to share some
domain knowledge. Running the elementary tasks in iso-
lation may be partially redundant, as some basic function-
alities may be common for many (or all) decision classes.
For instance, locating the lower end of the shape of letter
Y presented in an image may require similar subtree of GP
operators as locating the lower ends of letter X. Thus, it
seems natural to hypothesize that enabling some knowledge
sharing between the elementary learning processes would be
profitable for convergence of evolutionary processes and/or
for the performance of the resulting recognition system.
To verify this possibility, we come up with the following
architecture that extends our approach by cross-class knowl-
edge reuse, denoted by ‘GPKR’ in the following. For the ini-
tial m generations (m < n), evolutionary runs (called here-
after primary runs) proceed exactly in the same way as in
the basic version of the approach. As the run devoted to ith

decision class (i = 1...k) reaches themth generation, we store
its population in a pool Pi, so that Pi constitutes a snapshot
of ith evolutionary run at mth generation. Next, the current
population of the run is re-initialized (in the same way as
the initial population of the primary run), and the evolution
continues for the remaining n − m generations, referred to
as secondary run.

Figure 4: The architecture of GPKR.

The secondary run proceeds with almost the same evolu-
tionary settings as the primary one, with the only exception
of activating an extra crossbreeding operator, which is in-
tended to import some genetic material from the pools cre-
ated in the primary run. Technically, for a certain task i, this
operator works similarly to the crossover operator used in
both primary and secondary runs, but it interbreeds individ-
uals from the current population (‘natives’) with the individ-
uals from one of the pools Pj j �= i (‘aliens’). First, it selects
a native parent from the current population using the same
selection procedure as crossover (see experimental part for
details). Then, it selects an alien parent by randomly choos-
ing one of the pools Pj , j �= i, and then randomly selecting
an individual from Pj , where this choice is not influenced
by individual’s fitness. Then, two nodes Nn and Na are
randomly selected in the native and alien parent, respec-
tively, and the subtree rooted in Nn in the native parent is
replaced by the tree rooted in Na. The modified native par-
ent is treated as offspring and injected into the subsequent
population (provided it meets the constraints optionally im-
posed on GP trees).
Figure 4 shows the architecture of the GPKR approach.
Boxes represent primary and secondary evolutionary runs,
and arrows depict the transfer of genetic material between
them. Each ith column containing sequence of primary and
secondary run is responsible for learning the ith decision
class.
It should be emphasized that GPKR does not involve
knowledge encapsulation. No building blocks are explicitly
defined in the genetic material gathered in pools. Virtu-
ally any code fragment evolved in a primary run may be
injected into an individual evolving in one of the secondary
runs. The crossbreeding operation may involve large por-
tions of code as well as small code fragments, even single
terminal nodes in an extreme case.
Both GP and GPKR use the same parameter settings (ex-
cept for crossbreeding) and require k evolutionary runs last-
ing n generations each. The number of fitness function calls
(the effort) is therefore the same. Thus, if we ignore the neg-
ligible needed for population re-initialization, the time com-
plexity of GPKR is the same as that of GP on the average
(though the actual evolution time may vary due to vari-
ability of fitness computation time, which in turn depends
on tree size). This eases the comparison of both meth-
ods in the following experimental part. Note also, that,
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as the pools Pis are fixed, the runs devoted to particular
classes do not have to work literally in parallel, but may be
carried out sequentially.

5. THE EXPERIMENT

5.1 The Setup and Parameters
The purpose of the experiment is to compare GPKR,
the method with knowledge reuse, to the basic method (GP)
on a real-world task of handwritten character recognition.
Using a TabletPC computer we prepared a training set con-
taining 72 images (examples, objects) of six (k = 6) upper-
case characters: A, E, W, X, Y, and Z, each character class
represented by 12 examples. The letters were written by
three persons, and placed at random locations on a raster
image of 640×480 pixels. Figure 1 illustrates selected train-
ing examples, and Fig. 2 shows the primitives obtained from
them. Each segment depicts a single VP, with its spatial co-
ordinates located in the middle of the segment and the ori-
entation depicted by slant.
The runs of the GP method serve as control experiment.
Technically, we use generational evolutionary algorithm main-
taining a population of 25,000 GP individuals for n = 400
generations. The initial population is created using Koza’s
ramped half-and-half operator with ramp from 2 to 6 [10].
We apply tournament selection with tournament of size 5,
using individuals’ sizes for tie breaking and thus promoting
smaller GP trees and alleviating the problem of code bloat.
For GP runs, offspring are created by crossing over selected
parent solutions from previous generation (with probabil-
ity 0.8), or mutating selected solutions (with probability
0.2). For GPKR runs, crossover probability stays the same,
while mutation probability is lowered to 0.17 to yield 0.03
to the crossbreeding operator (see Section 4). The GP tree
depth limit is set to 10; the mutation and crossover oper-
ations may be repeated up to 5 times if the resulting indi-
viduals do not meet this constraint; otherwise, the parent
solutions are copied into the subsequent generation. Except
for the fitness function implemented for efficiency in C++,
the algorithm has been implemented in Java with help of
the ECJ package [19]. For evolutionary parameters not men-
tioned here explicitly, ECJ’s defaults have been used.
To intensify the search, we split the population into 10
islands and exchange individuals between them every 20th

generation starting from the 50th generation. During ex-
change, each odd-numbered island donates 10% of its well-
performing individuals (selected by tournament of size 5)
to five even-numbered islands, where the donated individu-
als replace the ‘worst’ individuals selected using an inverse
tournament of the same size. The even-numbered islands
donate their representatives to the odd-numbered islands in
the same way. The islands should not be confused with
the boxes depicting evolutionary runs in Fig. 4 – the island
model described here is implemented within each evolution-
ary process independently.
The experiment was conducted according to the following
procedure. Using the above settings, we evolved the entire
recognition system thrice: once without knowledge reuse
(GP, the control experiment), and twice for the approach
with knowledge reuse (GPKR), as depicted in Fig. 4, for two
different lengths m of the primary run, m = 100 (GPKR-
100) and m = 200 (GPKR-200). In all three scenarios, this
involves running k = 6 evolutionary processes, each of them

Table 1: Fitness of the best-of-run individuals aver-
aged over 33 evolutionary runs.

GP GPKR-100 GPKR-200
Class avg avg p value avg p value
A 0.200 0.1792 0.000 0.1856 0.002
E 0.193 0.1445 0.001 0.1416 0.000
W 0.189 0.1836 0.439 0.1807 0.081
X 0.182 0.1724 0.003 0.1769 0.118
Y 0.168 0.1613 0.001 0.1649 0.140
Z 0.158 0.1557 0.726 0.1587 0.913

Table 2: Test set fitness of the best-of-run individu-
als averaged over 33 evolutionary runs.

GP GPKR-100 GPKR-200
Class avg avg p value avg p value
A 0.415 0.3939 0.302 0.3599 0.000
E 0.462 0.3279 0.000 0.3250 0.000
W 0.322 0.3183 0.848 0.2993 0.086
X 0.444 0.3542 0.000 0.3291 0.000
Y 0.381 0.3862 0.670 0.3915 0.324
Z 0.283 0.2710 0.616 0.2808 0.930

using training examples from one character class as fitness
cases for fitness computation. Each run produces one best-
of-run individual. The ensemble of all 6 best-of-run individ-
uals for particular character classes constitute the ultimate
result of the learning process, i.e., the complete recognition
system. Finally, the complete recognition system undergoes
evaluation on the test set of characters, which is disjoint
with the training set. This entire procedure of evolutionary
training and testing is repeated 33 times to obtain statisti-
cally conclusive results.

5.2 The Results
In Fig. 5, we show the fitness graphs of the best-of-gen-
eration individuals averaged over all 33 evolutionary runs,
plotted with 0.95 confidence intervals. Continuous lines plot
results for GP, while dashed and dotted ones for GPKR-100
and GPKR-200, respectively. For GPKR, only secondary
runs are shown, as the plots for the primary runs overlap
with the results for GP (primary run of GPKR is equivalent
to GP stopped after m generations).
The first general observation is that, despite the reduced
number of available generations (300 for GPKR-100 and 200
for GPKR-200), the secondary runs of GPKR converge to
solutions that are not worse than GP. Moreover, for char-
acter tasks A, E, and W, GPKR ends up with significantly
better fitness values. This difference is especially prominent
for the task E, where it amounts to approximately a quar-
ter of the fitness value attained by GP. On the other hand,
for character class Z, the virtual lack of difference in per-
formance between GP and GPKR, together with the rel-
atively quick GP’s convergence to good solutions suggest
that GPKR cannot help much if the task at hand may be
successfully solved without knowledge reuse.
Table 1 shows the final results, i.e., fitness values of the
evolved best-of-run individuals averaged over 33 evolution-
ary runs, for GP and for the two separate GPKR experi-
ments that use different lengths of the primary run: GPKR-
100 (m = 100) and GPKR-200 (m = 200). Table 2 shows
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Figure 5: Mean fitness graphs with 0.95 confidence intervals (whiskers shifted to improve legibility).

an analogous information for the testing set, which is a sepa-
rate collection of 6×68 = 408 hand-drawn characters created
analogously to the testing set. In should be emphasized that
the testing set contains also characters written by different
people than the training set. Values printed in bold indi-
cate GPKR’s superiority to GP with respect to the paired
two-sided t-Student test at 0.05 significance level. Each fit-
ness column is accompanied by an extra column contain-
ing the p-value of the corresponding t-Student test. Again,
GPKR never performs worse than GP; quite on the contrary,
it is superior to GP on the training set in six out of twelve
cases, and in five out of twelve cases on the testing set.
This last observation is especially appealing, as it clearly
suggests that GPKR successfully prevents overfitting. Note
also that, apart from these conclusive cases, there are a few
other characters for which the p-values are reasonably small
(e.g., character W for GPKR-200), suggesting possible pos-
itive impact of knowledge reuse.
The results shown so far refer to fitness values only; in
the following, we describe the performance in terms of ma-
chine learning. To this aim, for each set of GP or GPKR
results, we combine the six best-of-run individuals into one
recognition system. The system performs recognition of an ex-
ample t by computing fitnesses (responses) of all six individ-
uals for t and indicating the class associated with the fittest
individual. Such procedure is motivated by an obvious ob-

servation, that a learner is taught to perform well on images
from one class and its raw (minimized) fitness should be
near 0 only for images of this class. For example, it is un-
likely that an individual that successfully learned to restore
the shape of (recognize) character E could equally well re-
store the shape of letter W; for such negative examples, it
will thus produce a large (i.e., worse) fitness value.
Table 3 presents the average confusion matrix of the com-
plete, six-class recognition systems built from the best-of-
run individuals evolved using the GP approach according
to the procedure described at the end of section 5.1. To
demonstrate the average expected behavior of an evolved
recognition system, this matrix has been computed by aver-
aging the 33 confusion matrices obtained from 33 indepen-
dent recognition systems applied to the test set. Tables 4
and 5 show analogous results for GPKR-100 and GPKR-200,
respectively. In all these tables, rows correspond to actual
class assignments of an example, while columns correspond
to the decisions of the recognition system. To improve read-
ability, the matrices do not show absolute numbers of ex-
amples but are normalized row-wise; for instance, the value
1.83 at the intersection of row A and column E in Table 3
means that, on the average, 1.83% of examples of character
A have been mistakenly classified as E by the GP recognition
system.
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Table 3: Normalized test-set confusion matrix for
the complete GP recognition system (rows: actual
object classes, columns: system’s decisions).

class A E W X Y Z
A 95.23 1.83 2.32 0.31 0.04 0.27
E 0.98 91.00 0.98 0.18 0.13 6.73
W 0.13 0.27 99.38 0.13 0.04 0.04
X 0.27 1.29 0.13 81.51 15.55 1.25
Y 0.04 1.34 2.18 6.51 89.35 0.58
Z 0.13 3.74 0.09 0.40 0.31 95.32

Figure 6: Visualization of the process of shape
restoration.

All the evolved recognition systems perform well, exceed-
ing 90% accuracy of classification on the average. For all
three recognition systems, most of misclassifications occur
between character classes X and Y, which may be due to
the visual similarity of the shapes of these letters. How-
ever, both GPKR-100 and GPKR-200 perform better than
GP, attaining overall classification accuracy of 93.07% and
93.82%, respectively, versus 91.96% for GP.
The presented confusion matrices reflect the expected per-
formance of a recognition system that has been obtained at
a relatively low computational expense. Given more evolu-
tionary runs, these results may be further boosted by em-
ploying more voters per each decision class, as opposed to
one voter per class in the above scheme. Such an approach
is especially appealing in the context of evolutionary compu-
tation, as each evolutionary run usually produces a unique
best-of-run individual, so their fusion may result in synergy.
For instance, a compound recognition system composed of
five voters per class (i.e., 5 × 6 = 30 voters in total) yields
98.77% accuracy of classification for GPKR-100, 98.28% for
GPKR-200, whereas only 93.87% for GP.
In Fig. 6, we illustrate the process of generative shape
restoration performed by the well-performing individuals for
selected character classes. Thin dotted lines mark the shapes
drawn by a human, whereas thick continuous lines depict
drawing actions performed by the individual. It may be
easily observed that, in most cases, the evolved individuals
successfully reproduce the overall shape of the recognized
object. Reproduction seems to be robust despite various
forms of imperfectness of the hand-drawn characters.

6. CONCLUSIONS
We demonstrated the possibility of obtaining substan-
tial performance increments by introducing knowledge reuse

Table 4: Normalized test-set confusion matrix for
the complete GPKR-100 recognition system (rows:
actual object classes, columns: system’s decisions).

class A E W X Y Z
A 93.40 1.69 4.28 0.18 0.04 0.40
E 0.98 95.90 0.22 0 0.13 2.76
W 0.04 0.22 98.98 0.22 0.53 0
X 0.31 0.71 0.13 91.53 6.55 0.76
Y 0.18 0.89 2.05 11.23 84.71 0.94
Z 0.18 4.81 0.09 0.80 0.22 93.89

Table 5: Normalized test-set confusion matrix for
the complete GPKR-200 recognition system (rows:
actual object classes, columns: system’s decisions).

class A E W X Y Z
A 95.68 0.18 3.57 0.04 0.04 0.49
E 0.45 96.52 0.18 0.04 0.22 2.58
W 0.04 0.04 99.69 0 0.13 0.09
X 0.31 0.27 0 93.36 5.44 0.62
Y 0.09 0.67 2.41 12.79 83.02 1.02
Z 0.04 4.37 0 0.49 0.45 94.65

(GPKR) in a variant of genetic programing designed to pro-
cess visual information and recognize objects. The pro-
posed mechanism of knowledge reuse is straightforward and
may be implemented by a relatively simple extension of
the canonical scheme of evolutionary algorithm and intro-
duction of an off-shelf GP crossover operator for crossbreed-
ing. The method does not increase the computational effort
of the learning process, and provides statistically significant
performance improvement at the same computational ex-
pense as the basic method (GP).
At the current stage, it is difficult to conclude if the re-
sults obtained here generalize to other variants of GP-based
learning. The conservative answer should be probably nega-
tive: many other GP-based learning methods would benefit
less from this form of knowledge reuse. For instance, GP ex-
pressions operating in the space of attributes in conventional
learning from examples, would probably be not beneficiary
of GPKR, for the reasons stated earlier in Introduction (low
probability of simultaneous usefulness of GP subexpressions
in other learning tasks).
However, this tentative conclusion should not restrain us
from further investigation of the topic. Quite on the con-
trary, it may be a useful hint for building GP representations
that are susceptible to knowledge reuse. In other words, it
would be interesting to pose an inverse problem: instead of
trying to devise a knowledge reuse method for a particular
knowledge representation, try to define a knowledge repre-
sentation that makes the knowledge reuse possible.
The positive results obtained in this study suggest a suc-
cessful match between the abstraction level of knowledge
representation and the level at which GPKR operates. Sup-
posedly, our operators that group and select visual primi-
tives are well suited for identifying common learning sub-
tasks (GP code fragments) and their reuse. In particular,
we hypothesize that, among the reused code fragments, the
most useful are those ones that help the evolving individuals
to detect specific parts of recognized objects; these are most
probably image features that are important for reconstruc-
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tion and repeat across object classes: junctions and ends of
pen strokes. However, this supposition needs more in-depth
analysis of results and will be subject of another study.
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