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ABSTRACT

We consider multitask learning of visual concepts within ge-
netic programming (GP) framework. The proposed method
evolves a population of GP individuals, with each of them
composed of several GP trees that process visual primitives
derived from input images. The two main trees are dele-
gated to solving two different visual tasks and are allowed
to share knowledge with each other by calling the remain-
ing GP trees (subfunctions) included in the same individual.
The method is applied to the visual learning task of recog-
nizing simple shapes, using generative approach based on
visual primitives, introduced in [17]. We compare this ap-
proach to a reference method devoid of knowledge sharing,
and conclude that in the worst case cross-task learning per-
forms equally well, and in many cases it leads to significant
performance improvements in one or both solved tasks.

Categories and Subject Descriptors: 1.2.6 [Artificial
Intelligence]: Learning—Concept learning

General Terms: Algorithms

Keywords: Genetic Programming, Representations, Knowl-
edge Sharing, Multitask Learning

1. INTRODUCTION

In [22], Mitchell lists the “transfer of what is learned for
one task to improve learning in other related tasks” among
the most important current research issues in machine learn-
ing (ML). Multitask learning (MTL) may be considered as
a special form of such transfer of knowledge. MTL is usu-
ally defined as an extension of standard single-task learning
(STL), where the learner solves more than one learning task
at a time. For instance, in case of artificial neural networks
(ANN), MTL usually consists in using a layered network
with multiple outputs, which are expected to serve differ-
ent, however related, classification or regression tasks [2].
MTL is motivated mostly by expected improvement in gen-
eralization, reduced training time, intelligibility of the ac-
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quired knowledge [2], accelerated convergence of the learn-
ing process, and potential reduction of amount of training
data needed to learn the concept(s) [4]. Several studies [24,
23, 2, 4] have found MTL effective with respect to some of
these criteria when compared to STL.

To our knowledge, almost all MTL approaches based on
learning-from-examples paradigm assume that the tasks to
be learned share the same structure (data schema). In this
study, we introduce a novel approach based on genetic pro-
gramming (GP, [15]), which is free from this limitation and
learns while sharing knowledge between two loosely related
tasks specified by disjoint training sets. This category of
multitask learning is in the following referred to as cross-
task learning (XTL). By not requiring the tasks to share
the training data, XTL has obviously wider applicability
than MTL. Moreover, thanks to symbolic knowledge repre-
sentation used in our approach (see Section 3), the details
of knowledge sharing (e.g., level of abstraction, extent, etc.)
are left to the decision of the learner and, thus, do not have
to be specified a priori. This is advantageous in comparison
to, e.g., MTL using ANNs, where knowledge sharing has
to be, to some extent, pre-specified by the network archi-
tecture (the way the particular neurons are shared between
the tasks).

Most of traditional ML tasks given in the attribute-value
form cannot benefit from XTL, unless they share some at-
tributes that have similar or identical interpretation. How-
ever, this looks different in computer vision (CV) that is
subject of this paper, as most of visual learning tasks re-
quire some kind of common visual bias. For instance, off-line
recognition of handwritten Latin characters requires similar
knowledge to an analogous task for Kanji characters, as in
both cases the recognition process focuses on shape analysis
of black-and-white images composed of pen strokes.

In this paper we demonstrate an effective XTL method
for visual learning that is build upon our former research
on genetic programming applied to generative visual learn-
ing [17]. After detailing motivations and reviewing related
work in Section 2, and presenting the base generative learn-
ing approach in Section 3, we describe our XTL architecture
in Section 4. Then, in Section 5, we provide experimental
evidence of XTL efficiency on a group of five loosely related
visual learning tasks and analyze the obtained solutions from
the viewpoint of knowledge sharing, also ruling out the al-
ternate explanations for the observed phenomena. Section 6
summarizes the results and groups conclusions.



2. RELATED RESEARCH

Following [2] and [4], we may name several potential ad-
vantages of multitask learning: improved generalization, re-
duced training time, intelligibility of the acquired knowl-
edge, accelerated convergence of the learning process, and
reduction of number of examples required to learn the con-
cept(s). The ability of MTL to fulfill some of these expec-
tations has been demonstrated, mostly experimentally, in
different ML scenarios, most of which used ANNs as the un-
derlying learning paradigm [27, 24, 23].

In this paper, we use tree-like GP expressions for rep-
resenting the knowledge acquired by learners, including the
shared knowledge, implemented by additional GP trees. This
makes our approach related to GP research on modulariza-
tion through subtree encapsulation; to some extent, it may
be considered as GP learning with Automatically Defined
Functions (ADFs) shared between two co-learning tasks. In
our approach, however, the shared subtrees are never fixed,
but evolve though all the evolution process. Apart from the
canonical ADFs, defined by Koza [15, section 6.5.4], more
research on encapsulation [6, 5, 26] and code reuse [16, 3]
has been done within the GP community. Proposed ap-
proaches include sharing of function-defining branches (par-
tial results) between GP individuals in population [28], reuse
of assemblies of parts within the same individual [7], identi-
fying and re-using code fragments based on the frequency of
occurrences in population [8], or explicit expert-driven task
decomposition using layered learning [1, 10] for Robosoccer
tasks. Nevertheless, no research on parallel cross-task learn-
ing is known to us, especially with knowledge sharing taking
place internally within each individual.

The approach presented in this paper learns a computer
vision task, which makes it related also to the domain of
visual learning. Learning in computer vision, traditionally
dominated by neural approaches, is currently receiving more
and more attention from machine learning and from different
paradigms of bio-inspired computing, including evolutionary
computation [25, 21, 19, 9]. It should be however empha-
sized, that in most approaches reported in literature, visual
learning is limited to parameter optimization that usually
concerns only a particular image processing step, such as
image segmentation or feature extraction. Methods that are
able to produce a more or less complete recognition system,
as does the approach presented here, are rather scarce.

The approach to evolve visual routines was first proposed
by Johnson et al. [14]. In [19], we proposed a methodology
that evolved feature extraction procedures encoded either
as genetic programming or linear genetic programming in-
dividuals. The idea of generative GP-based processing of
attributed visual primitives was originally proposed in [18]
and further developed in [17, 11, 29, 13]. In particular,
in [12] we examine the possibility of sequential knowledge
sharing, as opposed to this contribution, where knowledge
sharing takes place between learning processes that proceed
in parallel.

3. GENERATIVE VISUAL LEARNING
USING GENETIC PROGRAMMING

3.1 The Idea of Generative Visual Learning

The proposed approach may be shortly characterized as
generative visual learning, as our evolving learners reproduce
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the input image and are rewarded according to the quality
of that reproduction. That reproduction is partial, i.e., con-
cerns only a particular aspect of the image contents. In this
paper, the aspect of interest is shape, whereas other factors,
like color, texture, shading, are discarded.

The reproduction takes place on a virtual canvas spanned
over the input image. On that canvas, the learner is al-
lowed to perform some elementary drawing actions (DAs for
short). To enable successful reproduction, we use DAs that
are compatible with the image aspect that is to be recon-
structed. As in this paper we recognize polygons, we imple-
ment DA as an insertion of a single section into the canvas.

As an example, let us consider the reconstruction of a tri-
angle. It requires the learner performing at least the follow-
ing steps: (i) detection of conspicuous features — triangle
corners, (ii) pairing of the detected triangle corners, and
(iii) performing DAs that connect the paired corners. How-
ever, within the proposed approach, the learner is not given
a priori information about the concept of corner nor about
the expected number of them — it is supposed to discover
these on its own.

DAs result from processing carried out by the learner (GP
tree) for the visual input it has been provided with. Tech-
nically, the coordinates of sections inserted by DAs into the
canvas are derived from the salient features detected in the
input image. To reduce the amount of data that has to be
processed by the learner and to bias the learning towards the
image aspect of interest, our approach abstracts from raster
representation and relies only on selected salient features in
the input image s. For each locally detected feature, we
build an independent visual primitive (VP for short). The
complete set of VPs derived from s, denoted in the following
by P, enables the learner to perform specific DAs.

The learning algorithm itself does not make any assump-
tions about the type of feature used for VP creation. Rea-
sonable types of VPs include, but are not limited to, edge
fragments, regions, texems, or blobs. However, the type of
detected feature determines the image aspect that is the sub-
ject of analysis. As in this paper we focus on shape, we use
VPs representing prominent local brightness gradients de-
rived from s using a straightforward procedure. Each VP is
described by three scalars called hereafter attributes; these
include two spatial coordinates of the edge fragment and
the orientation of local brightness gradient.

3.2 Embedding Generative Learning
in GP Framework

The proposed method uses an evolutionary algorithm to
maintain a population of generative visual learners outlined
in Section 3.1. Technically, each visual learner L (individual,
solution) is implemented as a genetic programming (GP) ex-
pression that is allowed to perform, among others, an arbi-
trary number of DAs. Each such procedure has the form of a
tree, with nodes representing elementary operators that pro-
cess sets of VPs. The terminal Input nodes fetch the set of
VP primitives P derived from the input image, and the con-
secutive nodes process those sets of VPs, all the way up to
the root node. A particular tree node may group primitives,
perform selection of primitives using constraints imposed
on VP attributes or other properties, add new attributes to
primitives, or perform a DA. Individual’s fitness depends on
DAs it performs in response to visual primitives P derived
from training images s € S.



Table 1: The GP operators.

Type | Operator

x ERC — Ephemeral Random Constant

Q Input() — the VP representation P of the input image s

A Pax, Dy, Do, and custom attributes added by AddAttribute

R FEquals, Equals5Percent, Equals10Percent, Equals20Percent, LessThan, GreaterThan

G Sum, Mean, Product, Median, Min, Maz, Range

R +XRRN), -R,RN), *(R,N), /R,R), sin(R), cos(R), abs(RN), sqrt(R), sgn(RN), In(R), Attribute Value(2,R)

Q SetIntersection(§2,Q2), SetUnion(£2,92), SetMinus(€2,Q2), SetMinusSym(§2,82), SelectorMaz(2,A),
SelectorMin(§2,A), SelectorCompare(2,A,R,R), SelectorCompareAggreg(Q,A,R,G), CreatePair(Q,Q2),
CreatePairD(Q2,Q2), ForEach(Q,Q), ForEachCreatePair(2,Q2,Q2), ForEachCreatePairD(Q,Q,0),
AddAttribute(Q,R), AddAttributeForEach(Q2,R), GroupHierarchyCount(Q,R), GroupHierarchyDistance(Q, R),
GroupProzimity (2, R), GroupOrientationMulti(2, R), Ungroup($?), Draw(Q)

Table 1 presents the complete list of GP operators. We
use strongly-typed GP (cf. [15]), which implies that two
operators may be connected to each other only if their in-
put/output types match. The following types are used: nu-
merical scalars (R for short), sets of VPs (2, potentially
nested), attribute labels (A), binary arithmetic relations
(R), and aggregators (G). Though the detailed explanation
of particular GP operators is beyond the scope of this paper,
in the following we try to sketch their overall characteristic,
dividing them into the following categories:

1) Scalar operators (as in standard GP applied to sym-

bolic regression). Scalar operators accept arguments of type 3

and return a result of type R.

2) Selectors. The role of a selector is to filter out some
of the VPs it receives from its child node(s) according to
some objectives or a condition. Selectors accept at least one
argument of type Q and return a result of type Q. Non-
parametric selectors expect two child nodes of type €2 and
produce an output of type 2. Operators that implement
basic set algebra, like set union, intersection, or difference,
belong to this category. Parametric selectors expect three
child nodes of types €2, A, and R, respectively, and produce
output of type 2. For instance, operator SelectorCompare
applied to child nodes (P, po, LessThan, 0.3) filters out all
VPs from P for which the value of the attribute p, (orien-
tation) is less than 0.3.

3) Iterators. The role of an iterator is to process, one
by one, the VPs it receives from one of its children. For
instance, operator ForEach iterates over all VPs from its
left child and processes each of them using the GP code
specified by its right child. Technically, the way a set of
VPs P is processed by the right child is that its terminal
Input nodes return P instead of fetching VPs from the input
image as it happens normally. The VPs resulting from all
iterations are grouped into one VP and returned.

4) Grouping operators. The role of these operators is to
group primitives into a certain number of sets according to
some objectives or a condition. For instance, GroupHierar-
chyCount uses agglomerative hierarchical clustering, where
Euclidean distance of primitives serves as the distance met-
ric.

5) Attribute constructors. An attribute constructor de-
fines and assigns a new attribute to the VP it processes.
The definition of a new attribute is given by the GP code
contained in the right child subtree and is based on the val-
ues of existing VP attributes. To compute the value of
a new attribute, attribute constructor passes a VP (oper-
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Figure 1: The primitive hierarchy built by the
learner from VPs, imposed on the image (a) and
shown in an abstract form (b); VP attributes were
not shown for clarity.

)

ator AddAttribute) or the sub-primitives of a VP (operator
AddAtributeToEach) through that subtree. Attribute con-
structors accept one argument of type 2 and one of type R,
and return a result of type €. The detailed definitions of all
operators may be found in [11, 29].

Given these elementary operators, a learner L, when ap-
plied to an input image s, builds gradually a hierarchy of
VPs derived from s. Each application of selector, iterator,
or grouping operator creates a new set of VPs that includes
other elements of the hierarchy. In the end, the root node
returns a nested hierarchy of sets of VPs, built atop of P,
which reflects the processing performed by learner L for s.
Some of the elements of the hierarchy may be tagged by new
attributes created by attribute constructors.

Figure 1 illustrates an example of VP hierarchy built by
a learner in response to input image/stimulus s. In the left
part of the figure, the short edge fragments labeled by single
lower-case letters represent the original VPs derived from
the input image s, which together build up P. In the right
part of Fig. 1, the VP hierarchy is shown in an abstract way,
without referring to the actual placement of particular VPs
in the input image. Note that the hierarchy does not have
to contain all VPs from P, and that a particular VP from P
may occur in multiple branches of the hierarchy.

To reconstruct the essential features of the input image s,
the learner is allowed to perform drawing actions (DAs) that
boil down to drawing sections on the output canvas. To im-
plement that within the GP framework, an extra GP opera-
tor called Draw is included in the set of operators presented
in Table 1. It expects as an argument one VP set T and



Figure 2: An exemplary XTL-individual that is able
to process examples of two different tasks. See de-
scription in the text for details.

returns it unchanged, drawing on the canvas sections con-
necting each pair of VPs from T

The obtained canvas is then evaluated with respect to
its similarity to the input image s that gave rise to it, and
the quantified similarity becomes individual’s fitness. De-
tailed description of this evaluation process is presented in
experimental part.

4. KNOWLEDGE SHARING
ARCHITECTURE

The learner described in Section 3.2 consists of one tree
and processes a single learning task. To extend our approach
to cross-task learning (XTL), we define an XTL-learner or
XTL-individual as an individual that consists of several GP-
trees and is able to process examples from two different
tasks. Although the processing flows are different in both
trees, they are allowed to partially overlap and enabling so
the knowledge sharing.

Our XTL architecture relies heavily on the GP tree rep-
resentation and follows the paradigm of structural program-
ming. A GP-tree can be treated as a function, which, when
called for a certain set of VPs (passed to it by means of ter-
minal Input nodes), returns a hierarchy of VPs at the root
node. Each XTL-individual consists of two main trees (T1
and T») and some number of subtrees (F;) serving as sub-
functions that can be called for certain arguments by main
trees. For this purpose, a special node Call(Q2, N) was in-
troduced. Call(P, i) returns the result of subfunction F; for
the argument P.

When the control flow reaches a Call node, an appropri-
ate subfunction tree is executed with arguments passed by
the Call node. Technically, the subfunctions’ Input nodes
return P instead of fetching VPs from the input image as
it happens for the main trees. Thus, a subfunction can be
called many times by the main trees with different argu-
ments. In particular, it can be executed in a loop (e.g., by
a ForEach node).

An exemplary XTL-individual is shown in Fig. 2. It con-
sists of four trees: 71 and T» are the main trees; F; and
F> are the shared trees — subfunctions. Solid arrows repre-
sent argument dependency whereas dashed ones show which
subfunction is called by a certain Call node. P, and P» are
the sets of VPs to process. DA; and DA; are the resulting
drawing actions. Note that some argument dependencies
were removed from the diagram for the clarity; Node repre-
sents any GP operator.

It is important to point out that Call nodes may, but not
necessarily have to, be used by an individual in the process
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Figure 3: The examples of shapes of data sets
from five different tasks: (S) sections; (W) wedges;
(T) triangles; (Y) letters Y; (L) leaned triangles.

of evolution. Knowledge sharing occurs only if a subfunction
is called by both main trees. The process of evolution may
optionally take advantage of it.

Obviously, the XTL architecture described here can be
generalized to n > 2 tasks and to a more sophisticated call
hierarchy. In this paper, we limit our discussion to two tasks,
two subfunctions, and a single-level call hierarchy, i.e., sub-
functions are not allowed to call subfunctions.

5. THE EXPERIMENT

The objective of the experiment is to demonstrate the per-
formance of XTL on a set of different visual learning tasks
and to verify the hypothesized superiority of evolved XTL-
solutions to solutions evolved in a control experiment with-
out knowledge sharing.

5.1 The Task, Data, and Settings

The goal of the five considered learning tasks was to ac-
quire the concepts of the following shapes: sections (S),
wedges (W), triangles (T), Y-letters (Y), and leaned trian-
gles (L). The data set of each task was composed of 10 gray-
scale raster (640x480) images consisting of shapes of differ-
ent dimensions, positions, and orientations.

The task to acquire the concept of a certain basic shape
seems simple for humans, but, in fact, it is not so straightfor-
ward. The learners have only bare VPs at their disposal and
no a priori information about, e.g., their collinear alignment
or spacial proximity. The most obvious way to reconstruct
the original images is to select VPs corresponding to polygon
vertices, however it is not so easy, because the vertices are
not marked in any way. There is also no obvious method to
determine the junctions in such shapes as letter Y or leaned
triangle.

Selected examples of each data set are shown in Fig. 3. It
is important to note that although all the shapes in Fig. 3 are
presented together on one canvas, each input image (training
example) presented to the learner contains one shape only.



Figure 4: A simple geometric figure (a) and a cor-
responding VP representation (b).

In the preprocessing phase that transforms an input im-
age s into its VP representation P, candidate VPs are ex-
tracted from s based on local brightness gradients. Then,
the obtained candidate locations are sorted with respect to
decreasing brightness gradient, and at most 80% of the most
prominent of them are included into the primitive represen-
tation. Also, to filter out the less prominent candidates
and reduce the final number of VPs, a lower limit dy.:n, on
the mutual proximity of VPs is imposed. The VP candi-
dates are processed sequentially with respect to decreasing
magnitude, and a new primitive p may be added to P only
if there is no other primitive already in P closer than dpin,
i.e., there is no p’ € P such that ||p,p’|| < dmin.

The resulting image representation P is usually several
orders of magnitude more compact than the original image s.
On the other hand, the essential sketch of the input image s
is well preserved. Figure 4b shows the VP representation P
derived from the object from Fig. 4a. Each short segment
depicts a single VP, with its (x,y) coordinates located in the
middle of the segment and the orientation depicted by slant.

Let s’ be the canvas (see end of Section 3.2) an individ-
ual L produces in response to the visual primitives P de-
rived from the training image s. The fitness of L is based on
the difference between s and s’ and takes into account two
factors: true positives (amount of correctly restored edges)
and false positives (amount of excessively drawn segments).
However, these two objectives are clearly conflicting and it
is hard to weight them explicitly. Therefore, we decided to
drive the search of solution space using two-objective fit-
ness based on the difference between an input image s and
response (canvas) s’ produced by individual L:

f(5>3/) = (f+(3a5/)7f_(575/)) . (1)

The measures of true positives fT and false positives f~
are defined as follows:

zs(z,y)>0 min (S(I, y)? S/(.%‘, y))
2y (2, Y) ’

D0y max(0,5'(z,y) — s(z,y))
MbMP - Zz,y S(xvy) '

where s(z,y) is the value of pixel (z,y) in image s; My is
the maximum possible brightness; and M), is the number
of pixels in the image. In our experiment M, = 255 and
M, = 640 x 480.

It is easy to notice that the theoretically worst possible
individual (the anti-ideal, producing a negative of the origi-
nal image) has fitness (0,0) and the ideal, reconstructing the
original image perfectly, has fitness (1,1).

The fitness of an individual L for a set of images S aver-
ages f(s,s’) over all s € S:

(s, = (2)

f_(575/):1— (3)
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Figure 5: (a) The original image s (the gray dashed
triangle) and its VP representation (black sections).
(b) The optimal output image s* drawn manually.
(c) The superposition of the ideal output image s’
(equivalent to the original image s) and s”.
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For individuals implementing the XTL architecture where
two data sets S1 and S3 are considered at the same time,

the overall fitness of an individual L is defined as

(5159 = (5 (750 + 77(52) 5 (4 (50 + £ (52) )

Thanks to the two-objective fitness, there is no need for
introducing any arbitrarily chosen weight in order to decide
what is worse: misplaced or missing sections in the indi-
vidual’s output. The second advantage of the two-objective
approach is that it helps to diversify the population, as non-
dominated solutions include both the individuals with low
amount of drawing (having usually high f~) and the indi-
viduals that draw too much (having usually high f*).

On the other hand, to perform verification on the test
set, we need a single best individual of an evolutionary run
(best-of-run individual). For this purpose, we come up with
a single-objective method for selecting the best individual
from a set of non-dominated solutions obtained at the end
of evolution. Such selection could be done by comparing out-
put images s” of the non-dominated individuals with ideal’s
output, i.e., with s, as the ideal individual by definition re-
stores the input image s perfectly. This would make sense
if the input set of VPs contained all information required
for perfect restoration of s. In practice, this assumption is
not satisfied due to unavoidable loss of information during
VP extraction from the input image s. Therefore, instead of
referring to the ideal drawing s produced by a hypothetical
ideal individual that may not exist, we rely here on the op-
timal output image s*. s* is prepared manually in a way
that makes its perfect reproduction possible (given the loss
of information that takes place in the preprocessing). Tech-
nically, s* is the simplest accurate restoration of s that can
be drawn using sections that bridge exclusively the VPs ex-
tracted from s — see Fig. 5 for illustration. Given s*, we
define an error e(s) of an individual L on s by measuring
the pixel-wise distance of its output image s’ from s*:

e(s) =Y |y —s @] /D s (xy). (@)
x,y z,Y

The error of an individual L for the data set S averages

e(s) over s € S: e(S) = e(s)/|S|. Obviously, the greater

e(.S), the worse individual L. In particular, e(S) = 0 implies

) |



Table 2: Comparison of results of XTL and control experiments.

[5::[ Lw [ Ly [ Ls | LT | wy [ ws [ wrT Sy ST T-Y

XTL 51 .830+.16 | .757+.21 | .736+.21 | .684+.13 | .719+.20 | .653+.16 | .758+.26 | .141+.12 | .180+.14 | .662+.36

So .680+.22 .810+.15 .194+4.20 .541+.25 .811+.21 .178+.16 .788+.23 T87+.14 677421 .905+.23
control | S 834+.14 | .834+.14 | .834+.14 | .834+.14 | .807+.16 | .807+.16 | .807+.16 | .173+.10 | .173+.10 | .723+.26

Sa 807+.16 | .824+.18 | .173+.10 | .723+.26 | .824=+.18 | .173+.10 | .723+.26 | .824+.18 | .723+.26 | .824+.18
t-test Sy = = = < = < = = = =
(=0.1) Sa < = = < = = = = = =
t-test S1 = < < < < < = = = =
(@=0.2)] S < = = < = = = = = =

that L produces optimal output images for all s € S, i.e.,
/ *
s'=s".

The best individual for a certain data set S is the indi-
vidual from the last generation of an evolutionary run that
has the lowest error e(S). In the XTL experiments, where
each XTL-individual is evaluated on two data sets S; and
S2 corresponding to two different tasks, the final error of
an individual L is averaged over both tasks:

e(S1,52) = (e(51) + ¢(S2)) /2 ()

For each run, we use a generational evolutionary algorithm
with 5000 individuals evolving for 500 generations. Since
the fitness of individuals is two-objective, we perform se-
lection based on Pareto-ranking: after the evaluation phase,
the individuals are ranked using the dominance relation from
the best (rank r = 1) to the worst. The selection operator
randomly selects an individual from rank r with the proba-
bility of A/2"7!, where X is set to 0.5. The subsequent gen-
erations are created by crossing-over, mutating or copying
the selected individuals; the probability of crossing-over is
0.9; the probability of mutation — 0.1. The maximum depth
of GP tree is 6. The cross-over and mutation operations
can be repeated up to 5 times if the resulting individuals
do not meet this constraint; after 5 such failures, the par-
ent individuals are passed as the result of selection. Except
for the fitness function implemented for efficiency in C++,
the algorithm is written in Java with the help of ECJ pack-
age [20]. For evolutionary parameters not mentioned here
explicitly, ECJ’s defaults have been used.

The results of some preliminary experiments have shown
that sometimes good (first-rank) solutions are forgotten in
the process of evolution, i.e., they disappear in successive
generations. Due to this fact, elitism was introduced. In
each generation, from each set of first-rank individuals that
have equal fitness,* one individual is drawn at random and
it is unconditionally copied to the subsequent generation.

For the considered five shape classes, all 10 possible com-
binations of two tasks (task pairs) were examined: L-W,
L-Y, L-S, L-T, W-Y, W-S, W-T, S-Y, S-T, and T-Y. In or-
der to verify the impact of our XTL implementation, five
appropriate control experiments were designed and carried
out (S, W, T, Y, L). The control experiments were designed
fairly to give them the same chance as the XTL experiments.
The control individuals have analogous structure and may
use at least the same number of nodes as the XTL individu-

Tt is very common that in a generation numerous (e.g., 50)
individuals have exactly the same fitness, because the same
output image may be produced by different individuals.

als. More precisely, each individual in a control experiment
consists of one main tree and 2 subfunctions. Thus, there is
no knowledge sharing in control experiments.

As one XTL experiment corresponds to a pair of control
experiments, 10+ 5 = 15 experiments were performed. Each
of them was repeated 9 times for different random number
generator seeds. In total, 270 evolutionary runs lasted ca. 56
hours on five PCs, each with Pentium 4 3.0 GHz.

5.2 The Results

For each experiment, the best-of-run individual was tested
on a testing set containing 100 images. Table 2 presents
the average errors e(S1) and e(S2) for appropriate test sets
S1 and Sz for the best-of-run individuals in each experiment.
For example, .178+.16 in column W-S and row XTL S5 is
the average error for the test set Sz (sections in this case) for
best-of-run XTL-individuals evolved in the experiment with
wedges-sections task (W-S). In this and all following tables,
the numbers following the ‘+’ sign are standard deviations.

Bold font in Table 2 marks the experiments where XTL
was superior to control experiments in absolute numbers,
without considering statistical significance. The two bottom
rows of the table show the results of two-sample pooled Stu-
dent’s t-tests for averages. ‘=’ denotes inconclusive result;
‘<’ means that the hypothesis stating that XTL-individual’s
error is lower than the error made by the control-individual
is true at the significance level aw. XTL-individuals outper-
formed control-individuals in 15 out of 20 tasks (the bold
ones). Statistically, at the significance level 0.1 this state-
ment is true for 3 out of 10 task pairs. This trend is even
more visible when the significance level « is weakened to 0.2.
Then, in 6 out of 10 task pairs the XTL-individuals turn out
to be superior to control individuals.

It is important to point out that in neither case control-
individuals are significantly better than XTL-individuals.
Also, although only in one case (L-T) the improvement is
significant for both tasks (L and T), generally, an improve-
ment for one task is enough to consider XTL useful. These
results in favor of XTL have been obtained despite the fact
that the control experiment had more chance of evolving
more sophisticated and potentially more powerful GP in-
dividuals. With two evolutionary runs using separate sub-
functions, it had a chance to use 50% more code (3+3 =6
trees vs. 4 trees in XTL-individuals).

5.3 Detailed Analysis of Knowledge Sharing
In order to perform in-depth investigation of these en-

couraging results, in this section we focus on W-S (wedges-

sections) task pair and XTL architecture. For this task pair,
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Table 3: Results for the extended W-S experiment.

XTL control t-test (=0.05)
wedges .7224.18 .823+.21 <
sections | .192+.17 | .210%.17 =

XTL was found better on one of two tasks. Similar results
were obtained for 4 other task pairs (L-W, L-Y, L-S, W-Y),
thus the W-S task pair may be claimed a typical one.

For statistical analysis, the experiment for W-S with the
same settings as specified in Section 5.1 was carried out
for 45 different random number generator seeds. The re-
sults, presented in Table 3, confirm the observations from
Table 2. Superiority of XTL for wedges is very strong as
the ¢-test probability is 0.0073, which allows us to conclude
that this task is the beneficiary when sharing knowledge with
the section task. From the statistical viewpoint, the result
for the section task is the same as in the control experi-
ment, thus we can conclude that there is no need to trade
off between the two tasks.

As calling subfunctions by main trees is optional, the ques-
tion arises whether the code of subfunctions is really utilized.
Two kinds of analysis were carried out in order to answer
this question. Firstly, the trees of best individuals were ana-
lyzed syntactically in order to find out whether the subfunc-
tions are called at all. It turned out that, when using XTL,
66.7% and 68.9% of individuals that evolved for the wedges
and sections task respectively, had at least one Call node
in the main tree. For the control experiment, these figures
were 57.8% and 73.3%, respectively. Thus, in majority of
cases, the subfunctions were called by the main trees in both
the XTL and control experiments. Since the main trees are
not forced to use subfunctions in our approach, this result
suggests that their use is generally profitable. Let us also
notice that the average usages of subfunctions are compa-
rable for XTL and control experiments. Thus, the alter-
native explanation of XTL superiority, claiming that XTL-
individuals perform better as they use more code, may be
rejected.

Secondly, we performed also a semantic analysis in or-
der to check if subfunctions are semantically relevant, i.e.,
if subfunction code influences the processing of the individ-
ual. To examine this, two experiments were carried out.
In the first one, each subfunction in the best individual was
substituted with a single Empty node that returns an empty
set of VPs, no matter what its argument is. In the sec-
ond experiment, subfunctions were substituted with a single
Identity node that simply returns its argument (does no pro-
cessing). Then, the errors on the testing set of the original
individuals and the modified ones were compared in terms
of the error function e(). Any difference in the value of e()
was interpreted as the indicator of influence of the subfunc-
tion code on the processing taking place in the main trees.
Otherwise, the subfunction code was considered trivial or
dead.

The experiment with Empty nodes showed that the sub-
functions were semantically relevant in all cases. For the ex-
periment with Identity nodes, the subfunctions were seman-
tically relevant in 98% of cases.

In our approach, the main trees are not forced to use sub-
functions and the actual knowledge sharing occurs only if
both main trees of an individual call the same subfunction at
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Table 4: Comparison of XTL-individuals that use
and do not use knowledge sharing (KS).

% Task W Task S
use KS 53% 0.693+0.18 0.146+0.12
don’t use KS 47% 0.755+0.18 0.2454+0.20
t-test (a = 0.05) = <

least once. Thus, our XTL-individuals are not forced to im-
plement any knowledge sharing. It seems, however, that in
more than half of the evolutionary runs the learning process
found sharing profitable. Precisely, in 53% of cases XTL-
individuals actually implement knowledge sharing (i.e., both
main trees call at least one and the same subfunction). If
knowledge sharing was not profitable, the process of evolu-
tion would get rid of it.

We also compared how the performance of XTL-individuals
that use knowledge sharing (53%) differs from the perfor-
mance of XTL-individuals that do not use it (47%). The re-
sults are presented in Table 4. Statistically, individuals that
use knowledge sharing are better on the sections task and
equally good on the wedges task.

A very interesting result can be obtained when considering
only XTL-individuals whose main trees share both subfunc-
tions. An average error for such individuals is 0.563+0.14
and 0.088+0.03 for wedges and sections, respectively. It is
much better than for the XTL-individuals that use main
trees that share at least one subfunction (see Table 4). Un-
fortunately, only 4 out of 45 computed best-of-run individu-
als belong to this category and statistical analysis would be
doubtful. It seems that such individuals evolve rarely, but
as soon as they appear, they outperform any others.

XTL is profitable also in terms of computational effort,
as it takes less computing time than the control approach
(13.8 min for each XTL evolutionary run vs. 17.4 min for
two corresponding control evolutionary runs).

6. CONCLUSIONS

We presented a method for evolving individuals which
learn simultaneously from two loosely related visual tasks
and are allowed to share knowledge needed for that pur-
pose. For many pairs of learning tasks, the XTL-enabled
learners are superior to XTL-disabled learners in terms of
test-set performance. On the other hand, for pairs of tasks
for which knowledge sharing does not seem to be useful,
the possibility of using XTL does not seem to affect neg-
atively the learners’ performance. As the detailed analysis
ruled out the alternative explanations of XTL superiority,
the discovery and usage of common background knowledge
must be the factor that accounts for this result.
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