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Abstract

This book concerns the methodology of machine learning algorithms that ex-
plicitly change the representation of their training data while learning. This
process, known as feature construction or transformation of representation,
`rewrites' learner's input data, getting rid of useless data components, and
combining the useful ones in synergetic way with help of background knowl-
edge. The objective is to improve learner's predictive performance and/or to
enable access to input data that is incompatible with learning algorithm, and
could not be used directly (e.g., raster images).

The new methodology elaborated in this book, termed evolutionary feature
programming (EFP), puts the feature construction task into optimization per-
spective and uses evolutionary computation to e�ectively search the space of
solutions. Each of the evolving individuals represents a speci�c feature extrac-
tion procedure. We design a novel variant of genetic programming to encode
the way the training data undergoes transformation prior to being fed into
learning algorithm. The book provides extensive rationale for this particular
design and genetic encoding of solutions.

Apart from this canonical approach, we propose a methodology for tack-
ling with complexity of EFP. In coevolutionary feature programming (CFP), we
decompose the feature construction task using cooperative coevolution, a vari-
ant of evolutionary computation that allows for semi-independent elaboration
of solution components. We propose and discuss four di�erent decomposition
strategies for breaking up the feature construction process. The practical util-
ity of EFP and CFP is veri�ed in two qualitatively di�erent application areas:
machine learning from examples given in attribute-value form, and visual learn-
ing from raw raster images. Considered real-world case studies concern glass
type identi�cation, diagnosing of diabetes, sonar-based object identi�cation,
3D object recognition in visible spectrum, and vehicle identi�cation in radar
modality. The experimental results indicate that the proposed methodology
is general and proves e�ective in di�erent environments, and that it exhibits
features that are appealing from practical viewpoint (performance, scalability,
generalization, explanatory character, to mention the most important ones).



Chapter 1

Scope and objectives
Every problem is trivial, given an appropriate preprocessor.

(Anonym)

1.1 Scope of the book
This book addresses intelligent systems that learn, i.e., acquire knowledge (ex-
perience) through interaction with environment (training data), and use that
knowledge to improve their performance in subsequent activities. In partic-
ular, we consider algorithms that learn from examples, i.e., actual instances
representing a given learning task. The focus is here not on the learning al-
gorithm per se, but on the algorithms that provide an interface between the
environment and the learning algorithm. In particular, we consider so-called
feature construction methods that transform the representation of the input
data. The learning algorithm, together with the features constructed for it,
form decision/recognition system. We discuss and investigate a speci�c class of
feature construction methods that perform symbolic feature construction, and
propose a methodology that uses evolutionary algorithms to deliver (design,
synthesize) features. The ultimate accomplishment of this work is a coevo-
lutionary variant of the proposed approach, which is able to automatically
decompose the feature construction task, to reduce its complexity and improve
performance.

The topics discussed in this book are of interdisciplinary character and
relate mainly to concepts from machine learning (ML), pattern recognition
(PR), and evolutionary computation (EC). Less directly related domains in-
clude computational biology (evolutionary biology in particular) and cognitive
science. In experiments described in chapter 7 we deal not only with standard
ML problems, but mostly with di�cult real-world tasks concerning interpreta-
tion of visual information, to demonstrate �exibility of the proposed approach.
That makes this work also tightly related to computer vision (CV).

These characteristics place this study within the broad-sense arti�cial in-
telligence (AI). Nevertheless, the methodology elaborated here relies in part
on non-symbolic information processing and inductive reasoning. This makes



Chapter 1. Scope and objectives 9

this work rather far from the so-called `strong AI', which usually involves sym-
bolic deductive reasoning. In this sense, this contribution is closer to decision
support (see, e.g., [151, 152, 51]) than to strong AI.

Though the methodology elaborated here is rather general and has sound
theoretical foundations, one of the ultimate objectives is to develop a practical
approach that works e�ectively in real-world settings. In particular, we are not
necessarily interested in reaching the maximum performance (global optimum)
in the learning process. Rather than that, the average performance that may
be attained in a limited time is here the issue.

1.2 Motivations
The rationale for the research described in this book is threefold and may
be subdivided into (1) arguments in favour of feature construction in general,
(2) arguments in favour of feature construction for visual learning, and (3) ar-
guments in favour of problem decomposition.

(1) Arguments in favour of feature construction. Many popular
machine learning algorithms, especially those based on symbolic paradigms
(e.g., decision rules, decision trees), su�er from inferior predictive performance
when faced with di�cult real-world tasks. This shortcoming may be partially
relieved by transforming the original representation of input data, i.e., feature
construction. This measure may also lead to simpli�cation of the �nal form of
hypothesis discovered by the learning system. On the other hand, the learned
de�nitions of new features, if represented in readable form, may be an extra
source of problem-related knowledge for humans.

(2) Arguments in favour of feature construction for visual learn-
ing. Here, the primary motivation is the lack of general methodology for
designing recognition systems, which is for most real-world tasks tedious, time-
consuming and expensive. Though satisfactory in performance in constrained
situations, the handcrafted solutions are usually limited in scope of applicabil-
ity and have poor adaptation ability in practical applications. The acquired
knowledge is di�cult to generalize and transfer to other applications. As the
complexity of object recognition tasks increases, the above limitations become
severe obstacles for the development of solutions to real-world problems. In
some aspects, this is similar to the way the complexity of software development
process made the developers struggle until the software engineering came into
being.

One can partially alleviate this problem by incorporating learning into
recognition systems. In particular, instead of reinventing the wheel, it makes
sense to use the existing learning paradigms, algorithms and knowledge repre-



10 Chapter 1. Scope and objectives

sentations, like those provided by ML. Unfortunately, most of ML algorithms
accept only compact, low-dimensional representation of input data, so they
are somehow incompatible with high-dimensional and structured pictorial rep-
resentations, and thus cannot be applied directly to visual learning. Feature
construction bridges this gap, providing an appropriate compression of the
input data to meet the limitations of the learning algorithm.

(3) Arguments in favour of problem decomposition. Contemporary
applications of intelligent systems are getting more and more complex, but
the existing approaches do note scale well with complexity of the task (e.g.,
with complexity of concepts to be learned in ML). Dietterich [31] identi�ed
scalability of learning algorithms, as far as both the size of training set and
the size of representation is concerned, as one of the currently most important
research directions in ML. Within CV, designers of recognition systems have
many building blocks at hand (note the popularity of di�erent software tool-
boxes), but miss universal methods that could help at or automatically scale
down the task by its decomposition. In this context, the ability to identify
components of a learning task and their learning subobjectives (subgoals) be-
comes an essential prerequisite for scalability of learning algorithms. Note also
that the result of task decomposition (identi�ed components and their inter-
connection) provides an extra information that may help to understand the
speci�city of particular real-world problem.

1.3 Objectives
The primary objective of this work is to present a novel family of meth-
ods which include an explicit, automatic modi�cation of representation of the
training data into the learning loop. The approach, called hereafter evolu-
tionary feature programming (EFP), belongs to the class of symbolic feature
construction methods, as it encodes feature construction process in an explicit
and readable way. Given an appropriate set of elementary operators, EFP en-
ables the learner to acquire knowledge from training data given in virtually any
form; the real-world applications provided withing this book concern learning
from attribute-value data and visual learning.

As the second primary objective of this book, we formulate a working
hypothesis that the task of feature construction may be subject to an e�ective
decomposition, and we propose a coevolutionary variant of the approach, called
coevolutionary feature programming (CFP). We will show that applying CFP
may lead in some cases to e�ciency improvement, i.e., that such a method is
able to attain similar performance in shorter training time, or attain better
performance in the same training time.
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The speci�c objectives of this contribution are as follows:
1. To present a general framework for evolutionary symbolic feature con-

struction for learning algorithms operating within learning-from-examples
paradigm and working with attribute-value data, called thereafter evo-
lutionary feature programming (EFP). In particular:
(a) To review and systematize feature construction methods (implicit,

explicit, symbolic, non-symbolic).
(b) To discuss the properties of and motivate the representation of so-

lutions used by EFP.
(c) To compare the properties of EFP with other FC methods known

from literature.
2. To extend the proposed framework to its coevolutionary variant (CFP),

in particular:
(a) To de�ne a general notion of problem modularity and identify its

properties.
(b) To identify factors that make the feature construction task decom-

posable.
(c) To propose and discuss di�erent decomposition strategies for the

feature construction task.
3. To verify the proposed learning methods on a real-world task(s), in par-

ticular:
(a) To assess the overall performance (accuracy of classi�cation) of evo-

lutionary and coevolutionary feature construction.
(b) To compare EFP to CFP.
(c) To verify empirically the utility of various decomposition strategies.
(d) To assess the scalability of the approach with respect to the task

complexity.
(e) To verify the readability of the evolved feature extraction proce-

dures.

1.4 Book organization
The subsequent chapter 2 introduces basic concepts of inductive learning from
examples and poses the problem of feature construction. We also provide
distinction between implicit and explicit feature construction and review se-
lected past work concerning feature construction for machine learning and
visual learning. Chapter 3 contains brief introduction to evolutionary compu-
tation, with emphasis on genotype-phenotype mapping. Chapter 4 presents
the basic framework for the proposed approach � evolutionary feature pro-
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gramming. This chapter provides details on representation of solutions, their
evaluation, and rationale for this particular design. We also discuss the pro-
posed representation and compare it to other varieties of genetic programming.
In chapter 5, we identify some di�culties related to feature programming and
hypothesize that the process of feature construction may be subject to decom-
position. We de�ne di�erent classes of problems according to their modularity
and relate them to the interdependency of components (modules). At the end
of this chapter, we present cooperative coevolution, a variant of evolution-
ary computation that is well-suited to handle nearly decomposable problems.
The subsequent chapter 6 presents di�erent ways in which the problem of
feature programming may be decomposed and tackled by cooperative coevolu-
tion. Chapter 7 describes experimental evaluation of the proposed approach,
consisting in its applications to real-world machine learning and computer vi-
sion tasks. Considered datasets concern glass type identi�cation, diagnosing
of diabetes, sonar-based object identi�cation, 3D object recognition in visi-
ble spectrum, and vehicle identi�cation in radar modality. Chapter 8 groups
conclusions and outlines further research directions.

As far as notation is concerned, upper case symbols denote sets, spaces,
and non-scalar mappings. Lower case symbols are reserved for set elements and
scalar functions. Lower case bold symbols denote vectors, and corresponding
lower case non-bold symbols with lower indices stand for vector elements. As
we use no matrix algebra throughout the book, the vector transposition symbol
is usually dropped. Exceptions from these notation rules are clearly indicated.
For brevity, we usually do not distinguish a variable from variable value.

1.5 Acknowledgements
The author would like to thank Roman Sªowi«ski and Jerzy Stefanowski for
many valuable comments, which signi�cantly contributed to the quality of
this book. To a great extent, the experimental part of this work was made
possible thanks to public availability of open-source software libraries ECJ
[102], WEKA [185], OpenCV [2], and IPL [1]. The author would like to express
his gratitude to the designers and moderators of these software projects.

The work on this book has been partially supported by KBN research grant
3 T11C 050 26. The book was prepared using public domain software packages
LATEX and LYX [34].



Chapter 2

Feature construction
2.1 Inductive learning from examples: preliminaries
This book addresses intelligent systems that learn, i.e., acquire knowledge (ex-
perience) through interaction with external data (environment), and use that
knowledge to improve their performance in subsequent activities. The primary
domain of this contribution is, therefore, machine learning (ML; [119, 120, 92]).
Though we focus speci�cally on learning from examples, the most popular
paradigm of ML from practical viewpoint, most of the ideas presented in the
following may be generalized to other ML paradigms (e.g., learning by instruc-
tion, or, especially important from the computer vision perspective, model-
based learning and recognition).

In the framework of learning from examples, description of the learning
problem starts from an (often in�nite) universe Ω of examples (instances, ob-
jects) x ∈ Ω. Each example is described in some, usually domain-speci�c way,
that will be detailed in the following. We assume that representation of all
examples belonging to a speci�c learning problem is uniform.

One next assumes the possibility of formulating some suppositions con-
cerning examples x ∈ Ω. Those suppositions, called hereafter hypotheses, are
expressed in some language that is usually speci�c for particular learning al-
gorithm used. A hypothesis may be viewed as a logical predicate that may be
true or false with respect to a speci�c training example x ∈ Ω, or a function
that maps examples to another space. In this book, the latter viewpoint is
assumed: each hypothesis h is a function with domain in Ω. We also assume
that h's dwell in hypothesis space H. i.e., the set of all possible hypotheses.
The particular hypothesis space is determined by the language the hypotheses
are expressed in (e.g., decision rules, decision trees, potential functions, etc.).

We de�ne the learning problem as �nding a hypothesis h∗ ∈ H that op-
timizes some performance measure fΩ, performance for short, de�ned with
respect to Ω. Though fΩ may incorporate many di�erent criteria (e.g., accu-
racy of classi�cation, complexity of the hypothesis, classi�cation cost, etc.), we
limit our interest to the case when fΩ is scalar. Without loss of generality, we
also assume that fΩ is maximized. Therefore, the learning problem may be
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viewed as a search problem aimed at �nding optimal hypothesis, i.e., hypothesis
h∗ such that:

h∗ = arg max
h∈H

fΩ(h) (2.1)

In supervised learning, the performance measure fΩ is de�ned with respect
to some external information, which is sometimes referred to by a broad term of
concept [121, 25]. In classi�cation problems considered here, this information
has a form of partitioning Ω into a �nite set of decision classes. We model
this by introducing a function d, such that d(x) is the value (label) of decision
class for the example x. In this context, a hypothesis may be de�ned as
a function h : Ω → D−1(d), where D−1 stands for range (codomain). If,
for a given x ∈ Ω, h(x) = d(x), we say that h makes correct decision with
respect to x. In the simplest case, fΩ(h) tests how well h restores d, e.g.,
f(h) = Pr(h(x) = d(x), x ∈ Ω)1.

The approach described in following chapters does not make any demanding
assumptions concerning fΩ, so it may be generalized to unsupervised learning,
i.e., learning problems for which d is not given and f describes more inherent
properties of the training data (e.g., statistical properties). Nevertheless, in
the following we consider supervised learning only. As we limit our interest to
standard ML classi�cation tasks, that implies that d is discrete, the classes in
D−1(d) are unordered, and their number is �nite. Let us denote the number of
decision classes by nd, nd = |D−1(d)|. Problems with nd = 2 are called binary,
otherwise a ML problem is multi-class.

The above formulation of the learning problem is purely theoretical. In
most real-world cases, the learning task2 is given by a limited sample of Ω,
so-called training set T ⊂ Ω. In most cases, |T | ¿ |Ω|. The task of the learner
L (learning algorithm, induction algorithm, inducer) is to produce, given T ,
a classi�er ĥ = L(T )3 that maximizes fΩ. Though classi�er is in fact one of
the hypotheses from H, we will reserve this term to the �nal result of learning.
In practice, the classi�er induced from T is usually applied to new examples
y ∈ Ω \ T . This process will be referred to as classi�er querying.

Training set T is the only task-speci�c information available to the learner.
Thus, even if the learner autonomously generates `arti�cial' examples y ∈ Ω\T ,
d(y) remains unknown. Therefore, if no extra assumptions are made, the above
task is ill-posed: fΩ is not known to the learner and learning is usually guided
by fΩ's estimate fT computed using examples from the training set T . For

1For regression problems, both h and d are continuous and fΩ measures discrepancy
between them.

2The particular instance of such a problem will be called learning task.
3For the sake of brevity, we use the term `classi�er' for both classi�cation and regression

problems.
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brevity, the subscript `T ' is discarded in the following if the training set is
univocally identi�able from the context4.

Formally, because of inavailability of fΩ, Equation 2.1 must be replaced by

ĥ = arg max
h∈H

f(h) (2.2)

The goal of the learner is, therefore, to �nd the hypothesis that is optimal
with respect to f . Figure 2.1 presents the relations between ML concepts
introduced so far.

Learner
L

Ω

Training set T

Classifier
h

Example (x, d(x))

Performance
measure fd(x)

h(x)
f(h)

T h=L(T)

x

Figure 2.1: The diagram showing the relations of basic ML concepts used in this book

In case when fΩ is available to the learner, learning is essentially equiva-
lent to optimization and has deductive character. Replacing fΩ by fT leads to
inductive learning. In inductive learning, some extra information/assumptions
must be made to provide that results obtained for T generalize to Ω. Oth-
erwise, the produced classi�er ĥ is subject to undesired over�tting, yielding
fΩ\T (ĥ) < fT (ĥ). That extra information is usually referred to by a general
term inductive bias. Inductive bias may be de�ned as the set of additional
assumptions su�cient to justify inductive inferences as deductive inferences
[121, p. 43]. Without inductive bias, inductive learning is impossible; Mitchell
[121, p. 42] states: `a learner that makes no a priori assumptions regarding the
identity of the target concept has no rational basis for classifying any unseen
instances'. The inductive learning task is ill-posed if no extra assumptions are
given, as usually there are in�nitely many classi�ers ĥ that yield optimal f ,
i.e., �t perfectly the training data.

4Remarkably, most of commonly used inducers do not refer directly to f when searching
H, as f(h) is a global measure that evaluates the entire hypothesis h with respect to entire Ω.
Rather than that, they rely on some other measures like consistency or information contents,
and use it locally, i.e. for some subsets of examples. For instance, top-down tree inducers
like ID3 [139] or C4.5 [140] build parts of the hypothesis h locally, relying only on examples
that reach a particular tree node. f is more a kind of post-induction measure.
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From computational perspective, this formulation needs further restriction
to become applicable in practice. For most representations of examples and in-
duction algorithms, the learner is not able to �nd the classi�er that is optimal
even with respect to the training set (Equation 2.2). The main reason for this
is the cardinality of the search space H, which grows rapidly with the problem
size. For many inducers, this growth is exponential with respect to description
length (number of attributes describing examples). Secondly, as f measures
the performance of induction algorithm, which is usually quite sophisticated,
the way f(h) depends on h is complex and di�cult (or impossible) to express
in analytical terms. Thus, f usually lacks properties that could help to `struc-
ture' the search in H by, e.g., excluding some search directions based on f 's
properties, like in Branch & Bound method. These two factors make the gen-
eral task of �nding the optimal hypothesis ĥ NP-complete [17]. Therefore, the
exact search methods (i.e., such that guarantee �nding ĥ) for inducing clas-
si�ers are used only occasionally. Rather than that, most practical learning
algorithms L rely on heuristic approaches, and do not guarantee obtaining the
global optimum ĥ, producing suboptimal classi�ers h = L(T ), i.e., such that
f(h) < f(ĥ).

In this book we are interested in the case of parameterized learners, i.e.,
induction algorithms that require setting some parameters for proper working.
In the following, we will assume that those parameters are gathered together
in an entity s and in�uences the classi�er produced by a particular learning
algorithm:

hs = L(T, s) (2.3)
Parameters in s a�ect the induction process, what, in turn, in�uences the

result of induction, i.e., classi�er and the performance measure f . This impact
is depicted in Fig. 2.2. The particular form of s depends on type of inducer
used. In the following, we generally assume that s belongs to some space S,
s ∈ S, though in standard ML setting (without feature construction), s is
usually a vector of (real and/or integer) numbers (s ∈ <q).

Most of popular ML inducers are parameterized. Parameters in s may, for
instance,
• contain pruning procedure parameter(s) for decision tree inducer (see,

e.g., [140]),
• determine minimum rule length, rule coverage, or rule support for deci-

sion rule inducer (see, e.g., [166]),
• describe topology, initial weight matrix, or learning speed for neural net-

work (see, e.g., [54]),
• describe the way the training examples should be transformed before

training (feature construction).
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Figure 2.2: Diagram from Fig. 2.1 updated for a parameterized learner

The last of the aforementioned variants is addressed within this book. We
discuss the automatic ways of adjusting the learner's parameters s for the very
special case when s describes the input data transformation. Therefore, our
learning task takes the following form (compare to 2.2):

hs = arg maxh∈H, s∈Sf(h = L(T, s)) (2.4)

According to this formula, we view the feature construction process as a
search in the derived space being the Cartesian product of hypothesis space
H and parameter space S, i.e., H× S. In the approach proposed in this book
this is technically realized as two intertwined searches taking place in H and
S. Note that this complex search as a whole is still a special case of inductive
learning as de�ned earlier.

2.2 Comparing performances of learners
The above introduction shows that the complete learning task may be formu-
lated as a search problem, speci�ed by the solution space (here: hypothesis
space H or `parameterized' hypothesis space H× S), objective function (here:
estimate of the hypothesis performance f) and constraints. Following this
observation, later in this dissertation we consider the learning and feature con-
struction from the optimization perspective.

Solutions that ful�ll constraints are called feasible, those that do not � in-
feasible. From ML perspective, the constraints are mostly inherent, in the sense
that, usually, their validity does not need to be explicitly controlled, as they
follow directly from the particular hypothesis representation and hypothesis
induction method L. For instance, the decision tree inducer ID3 [139] operates
in the solution/hypothesis space H spanned over all possible decision trees, but
the induction algorithm L itself disables building trees that use any attribute
more than once on path from tree root to any leave. The concepts of feasibility
and infeasibility will be, however, helpful later, in evolutionary context.
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In formal terms, the choice of particular learning method L is irrelevant.
According to Wolpert's `no free lunch' theorem (NFL, [188]), a hunt for an
universal, best-of-all metaheuristics is futile. More formally, let us de�ne a
search/learning algorithm L as an iterative process that, at each step, maps
its current state, de�ned by Wolpert as a set P of points (solutions, hypothe-
ses) in the search space, onto a new state. As introduced in previous section,
a performance measure f (objective function), though possibly de�ned in gen-
eral terms, depends on particular learning task (instance of learning problem).
Let Pr(f |f,P, L) denote the probability of obtaining probability distribution
(histogram) f of solution performances f by the learning algorithm L applied
to state P. NFL states that, given any pair of search algorithms (learners) L1

and L2, ∑

f

Pr(f |f,P, L1) =
∑

f

Pr(f |f,P, L2) (2.5)

This formula says that the average performance of all search/learning algo-
rithms over a set of all possible �tness functions (learning tasks) is the same.
All learning strategies are equally e�cient when compared on a su�ciently
large pool of tasks.

Apparently, this observation makes pointless a great part of endeavours
in ML research, including feature construction. In real world, however, not
all objective functions are equally probable. In the learning-from-examples
framework studied in this contribution, f depends on particular training set T
used for its computation, so this observation translates into `not all learning
tasks are equally probable'. Most real problems possess some characteristics
that make them di�erent from arti�cial problems. A simple example of such
characteristic is prevailing presence of normal distribution in nature.

The practical utility of a search/learning algorithm depends, therefore, on
its ability to detect and bene�t from those characteristics. In this book, two
categories of such characteristics are investigated. Firstly, we propose feature
construction framework that relies on some general background knowledge to
detect `reasonable' regularities in the training data that occur frequently within
real-world tasks (chapter 4). Secondly, we exploit the way feature construction
and hypothesis induction may be decomposed (chapter 5).

2.3 Representation of training data
Within an intelligent system that interacts with its environment, the issue
of representation addresses two aspects: input (stimuli) representation and
(internal) knowledge representation. In particular, knowledge representations
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have been intensively studied within AI from its very beginning and resulted
in milestones of that disciplines (rules, frames, etc.). In ML, this dichotomy
boils down to, respectively, representation of the training data and hypothe-
sis representation (referred also to as hypothesis language representation; see,
e.g., chapter 1.3 of [92]). Undoubtedly, the issue of hypothesis representation
attracted most attention so far and lead to studies on di�erent learners and
classi�ers: decision rules, decision trees, neural networks, support vector ma-
chines, to mention the most popular ones. In this book, on the contrary, we
address representation of the training data.

Among di�erent input representations considered in ML, the attribute-value
representation (AV) [121] is by no means the most popular one [98], as most
real-world learning tasks use it. In AV representation, training data is essen-
tially equivalent to relational database: each example x ∈ Ω is described by a
vector of attributes xi (variables, independent variables [53, p. 2]). Formally,
we identify x with the vector of attributes it is described by:

x ≡ [
x1, x2, . . . , xn

]
(2.6)

The number of attributes, denoted in the following by n, is �xed for all
x ∈ Ω. Each attribute value is scalar, i.e., cannot be resolved into components;
by D(xi) we denote the domain of an attribute. Most attributes considered
here are numeric (D(xi) ⊆ <).

Let us emphasize that we reserve the term `attribute' to the primary de-
scription of examples that comes along with the original training data. In
particular, attributes should not be confused with features which may be de-
rived from them and are subject to construction, nor with variables (elements
of parameter vector s) that describe feature construction process.

Even without referring to technical details, it is easy to provide convincing
examples that con�rm the importance of training data representation. For
instance, when each training example x ∈ T is described by two or more scalar
attributes, classi�er's performance depends heavily on its ability to bene�t
from their synergy. Input representation becomes also very important when
applying standard ML inducers to solve recognition/identi�cation problems
in vision or speech; in such a case, one has to close the gap between the
`attributeless' training data, and the AV form accepted usually by the learner.
This is provided through, usually manual, time-consuming and tedious, design
and implementation of application-speci�c feature extraction procedures. The
developed feature extraction procedures provide the required transformation
of the training data.
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The examples given above show when training data representation becomes
an issue of particular importance. This may be the case in one of the following
situations:
1. The number of attributes n in the original representation is large, and

each attribute carries over a rather small quantum of information. Such
a representation is sometimes referred to as `raw' or `attributeless'.

2. The characteristics of the training data does not match the speci�city
(`bias') of hypothesis language used by the inducer.

3. The classi�er employs too simple language for hypothesis representation,
but we cannot replace it with a more sophisticated algorithm due to some
other reasons or its virtues (e.g., good explanatory abilities).

This book is to a great extent motivated by type 1 di�culty, which one usu-
ally encounters when trying to apply ML methods to reasoning/learning from
visual information. In particular, learning from visual information by direct
application of a common ML inducer to raster image is in general impossible.
The enormous number of attributes n (equal to the number of image pixels in
the simplest case), lack of invariance with respect to basic image transforma-
tions (translation, rotation, scaling), and the very limited generalization ability
are the main reasons that make such representation of training data unsuitable
from ML perspective. The desired properties of image representation may be
attained by engaging an appropriate feature construction process, that this
book is devoted to.

The two spirals problem, a famous benchmark especially popular in the
neural network community, is an excellent example of type 2 and type 3
motivations for feature construction. The task is there to discriminate exam-
ples x = [x1, x2] from two decision classes given as points in two-dimensional
Cartesian space Ω = <× < spanned over attributes x1 and x2. The examples
representing the positive and negative class occupy two intertwined spirals that
start from the the origin of the coordinates and revolve around it, with 180◦
di�erence in phase. Figure 2.3(a) presents a simple instance of this problem,
where each spiral makes approximately 11

2 rotation. For standard ML learning
algorithms, these decision classes are di�cult to discriminate. For instance,
the popular decision tree inducer C4.5 [140] builds decision tree composed of
31 nodes (including 16 tree leaves) to perfectly discriminate the 195 examples
shown in Fig. 2.3; the decision class boundaries are shown in Fig. 2.3(b). An
appropriate feature construction, in this case transformation of input data into
polar coordinates, makes the problem trivial.

The two spirals problem is purposedly designed to make inducer reach
limits of its performance. Real-world problems rarely involve so malevolent
decision class boundaries, yet they may be equally troublesome to handle.
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Figure 2.3: (a) Two spirals problem. (b) Decision class boundaries built by C4.5

Note also that such phenomena are not limited to metric attributes only; they
apply also to di�cult interactions between nominal (non-metric) attributes
or between nominal and metric attributes. Undoubtedly, there is a group of
sophisticated learning algorithms that could possibly still attain reasonable
performance on such di�cult domains; arti�cial neural networks and support
vector machines are good examples here. Nevertheless, the price we usually
pay for that is the risk of over�tting and limited explanatory ability. For
instance, sophisticated auxiliary tools need to be applied to (partially) explain
the decision making that takes place in neural networks (see, e.g., [36]). Such
explanatory capability is a sine qua non for many applications (e.g., decision
support for medical diagnosing [62]).

2.4 Feature construction and decision systems
In this book, we do not address any speci�c learning algorithm. Rather than
that, the focus is here on transforming the original training data (the training
set T in learning-from-examples paradigm) prior to learning or during learning.
Formally, we manipulate the vector s of parameters (see Equation 2.3) that
determines that transformation, more precisely, the features being constructed.

The potential bene�ts we expect from feature construction follow from
discussion provided in section 2.3 and may be summarized as follows:
• improved performance f (e.g., classi�cation/recognition accuracy),
• simpli�ed classi�er (improved readability),
• reduced training and/or querying time.
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In this book, we focus mostly on the �rst of objectives listed here, and treat the
remaining ones rather as by-products. This assumption follows from the fact
that the criteria of classi�er's performance, simplicity, and time-e�ectiveness
are correlated to some extent: according to Occam's razor principle, simple
classi�ers usually generalize well; such classi�ers are usually also fast.

It should be emphasized that these expectations �nd strong rationale in
practice. The constantly growing data sets, exhaustive representations (e.g.,
multimedia data), and demanding criteria de�ned by users (both researchers
and decision makers) propel the continuous race among di�erent induction
methods [116]. And, last but not least, if one uses non-relational data repre-
sentation and wants to avoid the costly process of designing and implementing
feature extraction procedures, the automatic feature construction is the only
way.

In the following, by transformation of representation we mean a mapping
G from Ω to a derived representation space ΩG:

G : Ω → ΩG (2.7)

Let G denote the space of all such mappings, G ∈ G. Of course, from
practical viewpoint, not all transformations are interesting; we need means
to discern the `good' G's from the `bad' ones. As we declared earlier that
classi�er's performance (accuracy of classi�cation/recognition) is the primary
objective within this book, in the following we estimate the utility of trans-
formation G as the performance fΩ that a ML inducer attains when trained
on training data transformed by G. Technically, as Ω and fΩ are not known
to the learner, in practice we have to substitute f for fΩ (cf. section 2.1) and
base it on the image of T in ΩG: G(T ) = {G(x) : ∀x ∈ T}. As shown later
in section 4.4.5, this leads to so-called wrapper approach, in which an internal
multiple train-and-test experiment is carried out for that purpose.

Usually, we are not satis�ed with designing representations that are merely
better than the original one (i.e., f(L(G(T ))) > f(L(T ))). Thus, we de�ne
the task of representation transformation as a search for transformation of
representation that maximizes the gain of f :

argmaxG:f(L(G(T )))>f(L(T )) f(L(G(T )))− f(L(T )) (2.8)

Note that this de�nition refers to a speci�c learner L, so it does not de�ne
a generic transformation of representation. This formulation is consistent with
the existence of inductive bias (see section 2.1): a particular transformation of
representation G that works well for a particular learner L1 does not have to
be so useful for another learner L2.
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For some application domains that are within interest of this book the
original training data T cannot be used directly by the AV learner L. This
applies to, among others, visual learning, i.e., learning tasks where the learner
is expected to acquire knowledge from images (usually raster images). In
such a case, L cannot be applied to T and, therefore, f(L(T )) cannot be
computed. Thus, we rede�ne formula 2.8 to search for `good' transformations
of representation, simply maximizing f :

argmaxG f(L(G(T ))) (2.9)

In the following we limit our interest to transformed representation spaces
G that conform the attribute-value setting as speci�ed in section 2.3. This
allows us to apply a wide variety of learners to G(T ). It also implies that the
image G(x) of any example x ∈ Ω is a vector:

G(x) =
[

g1(x) g2(x) . . . gm(x)
]

(2.10)

and G itself is a vector of features (functions) gi:

G ≡ [
g1 g2 . . . gm

]
(2.11)

each of them mapping original examples to scalar features: gi : Ω → <. The
symbol m denotes the number of features.

Therefore, when relying on the AV representation, the term `representation
transformation' may be replaced by a more suitable term feature construction5

(FC). Feature construction may be viewed as a search in the space of feature
de�nitions. In fact, technical realization of gi will be referred to as `feature
extraction procedure' (see chapter 4). Nevertheless, for brevity we refer to
them as `features' as long as there is no risk of misinterpretation. Note that the
meaning of this term is di�erent from its understanding in CV/PR community,
where `feature' usually refers to some qualitative property that an object does
or does not possess (see, e.g., [184, p. 64]). Here, this notion is more general.

The tuple (G, h), i.e., a complete solution composed of feature mapping G
and classi�er h trained using that feature mapping, will be in the following
referred to as decision system (or, in CV terminology, recognition system).
Figure 2.4 depicts both a recognition system and the processing it carries out
for an example/image to be recognized (classi�ed).

Fig. 2.5 shows a simple example of feature construction concerning a binary
classi�cation task with examples described by two numeric attributes x1 and

5In following, terms `feature construction' and 'transformation of representation' will be
used interchangeably.
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Figure 2.4: Recognition system and the process of recognition

x2. Assume that a decision tree inducer has been used to solve this learning
task; the dotted line shows the hypothetical decision boundary that could be
build by that kind of learner. As decision trees test one attribute at a time,
they cannot bene�t properly from the possible synergy of them. The resulting
decision boundary is, therefore, rough and overly complex, and, with high
probability, it does not generalize well to other examples (not shown in the
picture). The dashed line shows the decision boundary implemented by a new
feature g1 that may be constructed by a simple linear aggregation of x1 and
x2, making the whole classi�cation task trivial.

decision boundary built using
the original attributes x1 and x2

decision boundary built after
introducing a new feature g1

x1

x2

g1(x)= ax1+bx2+c

Figure 2.5: An illustrative example of explicit feature construction

Note that, from the viewpoint of information theory, the transformed train-
ing data have the same or lower information contents (measured, for instance,
by entropy) as the original T . As far as discerning of examples is concerned,
things may get only worse in FC: examples that are indiscernible in Ω remain
indiscernible in ΩG, but discernible examples in Ω may become indiscernible
in ΩG. In this sense, information contents of T is preserved under application
of G only if G is one-to-one. This, however, should not be viewed as a draw-
back: for most ML inducers, information contents of the training data does
not matter as much as the particular representation used.
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Alternatively, the feature construction may be viewed in the following way.
The standard approach to learning from examples consists in building (cre-
ating, modifying, parameterizing, etc.) a classi�er to meet the constraints
imposed by the learning set. With respect to this, feature construction may be
perceived to some extent as a `dual' approach, where one modi�es the repre-
sentation of the training data to meet the constraints imposed by the language
in which the hypotheses are represented.

It should be emphasized that only the representation that results from the
feature construction task is required to have AV form. The representation
of original examples is here arbitrary; this makes the proposed methodology
applicable to a broad spectrum of problems and data, including non-vector
representations like images. In particular:
• For ML tasks, the original examples x ∈ Ω are represented by vectors of

AV pairs.
• For CV tasks, the original examples x ∈ Ω are raster images.

2.5 Implicit and explicit feature construction
In this section, we compare the framework of feature construction (FC), as
formulated in section 2.4, with the feature construction methodology presented
in literature. In particular, we introduce the distinction of FC approaches into
two important categories: implicit and explicit FC. The particular FC methods
are reviewed in a separate section 2.6.

2.5.1 Feature construction for machine learning
For feature construction applied to ML tasks, the approaches reported in lit-
erature can be roughly divided into
• attribute/feature selection methods (FS),
• attribute/feature weighting methods (FW),
• feature construction methods (FC).

In FS, the resulting representation is a subspace of the original one, i.e.,
ΩG ⊆ Ω (cf. Eq. 2.7). Moreover, apart from selection of entire attributes,
their domains may undergo reduction as well (see, e.g., [61]). In FC, new
features are de�ned as expressions that refer to the values of attributes xi.
The FW methods may be regarded as generalization of FS (e.g., [75]). Such
transformation methods assign scalar weights to attributes. Weights re�ect
attribute importance and may be utilized in the process of inductive learning.
Unfortunately, the group of inducers that can use attribute weights is rather
limited.
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As FS is conceptually simpler than FC, it is also more popular. Dash
and Liu in [29] present an extensive overview and experimental comparison
of various FS methods. Most FC methods allow de�ning features gi that are
`clones' of the original attributes xi (gi ≡ xi). As, from FS viewpoint, this
action is equivalent to selecting attribute xi, FC is more general than FS and,
in general, makes it possible to attain better performance.

In a sense, FS and FC are inherent to many ML inducers, as features
selection and construction often take place while hypotheses are created. For
instance, decision tree inducers perform FS by building trees that make use of
some attributes and ignore others. Neural networks (NN) and support vector
machines (SVM) [175, 19] do a kind of FC, fusing information carried over by
particular attributes in neurons or kernels. To distinguish it from the explicit
feature construction (EFC) introduced later, this kind of FC will be hereafter
referred to as implicit feature construction (IFC).

The NN and SVM inducers use an intermediate space, that is usually Carte-
sian and often highly dimensional. The mapping G for such inducers has usu-
ally nice mathematical form, but requires large number of parameters (neuron
weights in NNs or kernel parameters in SVM). Such multidimensional repre-
sentation is usually inconvenient for human understanding and unsuitable for
explanatory purposes and knowledge re-usage. Di�erent methods have been
proposed to interpret the acquired knowledge and explain the decision making
of such classi�ers, but none of them has been widely accepted as a standard
tool for such analysis. Moreover, the use of a Cartesian space implies, to some
extent, an assumption of the metric nature of the similarity/dissimilarity be-
tween examples in Ω. This assumption is in most cases invalid, especially when
the problem is di�cult and involves other than metric attributes. And, last
but not least, features constructed within IFC are only a kind of by-product
of inducer's hypothesis search. That search is usually guided by a simple local
heuristic, like gradient descent in case of NNs, or top-down induction with-
out retracts for decision trees. These local search-based induction algorithms
maintain only one working solution (hypothesis), which usually does not allow
to explore the space of possible feature de�nitions thoroughly.

The drawbacks of IFC identi�ed above determine objectives for explicit
feature construction (EFC) algorithms; these are:
• to enable more sophisticated transformations, i.e., to go beyond the con-

straints of transformation resulting from the particular internal knowl-
edge representation used by the inducer (language bias),

• (ii) to make the search in the space of transformations more thorough
and e�ective, and

• (iii) to ease the interpretation of the resulting transformation by humans.
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As opposed to IFC, EFC constitutes a separate step in learning process and
consists in strictly controlled transformation of the original representation
space. Thus, it is no more a mere side e�ect of hypothesis space search, as
in IFC case; rather than that, EFC is the major driving force for the learning
process.

EFC requires some extra knowledge to enable the feature construction, and
that knowledge usually comes in form of operators (building blocks, [47]). The
need for specifying a priori such building blocks may appear as a drawback
of EFC methods. On the other hand, this seems to be a natural way of intro-
ducing some biases into the learning process. Those biases help the induction
process to attain acceptable performance on one hand, and avoid over�tting
on the other.

According to Matheus [108], EFC may be further subdivided into construc-
tive compilation and constructive induction of features. Feature compilation
consists in re-writing the original representation in a new, usually more com-
pact way, so the result is logically equivalent to the original with respect to the
training data T . Constructive induction goes further and takes into account
the inductive nature of learning, inherently coupled with the limited repre-
sentativeness of the training set. Therefore, constructive induction focuses
on building features that potentially improve the predictive accuracy of the
classi�er, i.e., its performance on Ω.

Taxonomy of EFC methods based on the type of control mechanism has
been introduced by Michalski [115]. In particular, in data-driven constructive
induction (DCI) the input data (training examples) guide the feature construc-
tion process. In hypothesis-driven constructive induction (HCI), the form of
induced hypotheses is used to gain an insight into the mutual relationships be-
tween attributes and to decide which attributes could possibly give rise to new
features. In knowledge-driven constructive induction (KCI), some extra knowl-
edge (human expert's guidance) is required to support the feature construction
process.

2.5.2 Feature construction for computer vision
In this section we address visual learning, i.e., learning problems that involve
reasoning from pictorial information. The de�nition of the mapping G in Equa-
tion 2.10 remains here valid, except for the fact that the example x is no more a
�xed-length vector of features, but an image. In the following, and, in particu-
lar, in the applications described in chapter 7, we assume that CV examples are
two-dimensional static raster images. Although this way of representing picto-
rial information is undoubtedly the most popular one, one should be aware of
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existence of other representations (vector graphic, range images, depth maps,
etc.). Nevertheless, the methodology described in this book may be success-
fully tailored to virtually any input representation; elementary operators for
processing such information are the only prerequisite.

The purpose and role of FC when applied to CV task, though apparently
similar, is signi�cantly di�erent from the case of machine learning. Here, the
task is not mere performance improvement through rewriting the original rep-
resentation of input data. Rather than that, FC here bridges the gap between
`raw,' low-level information carried over by the image, and high level repre-
sentation required by the learner. Without feature extraction procedures, a
common learner, AV-based learner in particular, is unable to perform useful
reasoning from image data.

Visual learning is a challenging domain for several reasons. The amount
of data that have to be processed during the training process is usually much
higher than in standard ML applications. This imposes signi�cant constraints
on the e�ectiveness of the hypothesis space search. The FC algorithm has to
compress these data into compact yet informative representation. Finally, the
real-world images are usually noisy and contain plenty of irrelevant components
that have to be sieved out in learning and FC process.

2.6 Related work on explicit feature construction
In this section, we review selected relevant contributions concerning feature
selection and construction. For the sake of clarity, separate subsections are
devoted to feature construction in standard machine learning framework and
to feature construction in visual learning. In review, we emphasize methods
that have been veri�ed on real-world tasks.

2.6.1 Related work on EFC for machine learners
Let us �rst note that some FC-related work has been done long ago within
the statistical context. The factorial analysis proposed by Thurstone [171]
may be used for creating new features by (linearly) aggregating the values of
existing attributes into new attributes. For the same purpose, also the principal
component analysis (PCA) or other methods of multi-dimensional scaling may
be used.

The BACON system [93] is probably one of the �rst representatives of DCI
algorithms. In BACON, new features are built as simple arithmetic expres-
sions involving the original features. The selection of constructive operands
(operators) is based on an analysis of dependencies between attributes within
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selected subsets of training examples. The STAGGER algorithm [156] works
in a somehow similar manner, synthesizing new features in form of simple
logical conditions imposed on the original discrete attributes and discretized
continuous attributes. In [113], similar DCI takes place in so-called inverted
space.

Zupan et al. [191] developed DCI method termed HINT. HINT's advan-
tage is that it does not need constructive operators: HINT not only �nds the
attributes that may de�ne good concepts, but also supplies their de�nition.
HINT can therefore be seen as data-driven operator-free constructive inducer
that constructs a speci�c concept hierarchy. For the ML learner, HINT may
o�er any feature from that hierarchy, or features that depend only on original
attributes.

Lavrac and Flach [94] developed an interesting method for transforming
the Inductive Logic Programming tasks into the AV representation accepted
by most learners. In particular, they overcome a speci�c de�ciency of propo-
sitional learning methods by systematic construction of (�rst-order) features
using a speci�c feature bias.

A renowned representatives of HCI are FRINGE [130] and CITRE [110].
Both these methods use decision trees for representing the induced hypotheses.
The primary motivation is here the observation, that the induced trees often
contain similar or repetitive elementary conditions in tree nodes on di�erent
paths from tree root to leave nodes. FRINGE and CITRE perform analysis of
such paths and de�ne new features that correspond to them. As a result, the
resulting decision trees are usually more compact and potentially generalize
better.

KCI methods are relatively frequent, though they rarely refer to this term
explicitly. In a sense, any ML software environment that enables user-guided
creation of new attributes represents this category of FC. Historically, Lenat's
Automated Mathematician (AM) [95] was one of the �rst developments of
this kind. AM was able to use prede�ned heuristics for building new con-
cepts in form of frames, creating new slots in frames, and assigning val-
ues to slots. Moreover, AM enabled transfer of knowledge to another prob-
lems/applications. Currently, one of the most popular ML algorithm involving
KCI is AQ15 [117]. AQ15 is rule induction algorithm that creates new fea-
tures by applying logical operators (so-called l -rules) and arithmetic operators
(a-rules).

As far as real-world applications are concerned, the FC contributions are
rather scant. This state of art may be attributed to (i) relatively high com-
putational complexity of most FC methods, and (ii) problems that many FC
methods give rise to when applied to continuous attributes. For these rea-
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sons, FC methods are usually veri�ed on small, often arti�cial datasets (e.g.,
the famous MONK1, MONK2 and MONK3 problems [170]). Nevertheless,
some exceptions from this tendency do apply. For instance, Matheus applied
the aforementioned CITRE algorithm to learning tic-tac-toe strategies [109].
Mladenic used a kind of FC for text mining [122]. Wisniewski and Medin
[184] published an interesting study on the impact that expectations have on
FC performed by humans, with empirical veri�cation concerning interpreta-
tion of visual information (childrens' drawings). More detailed overview of FC
methods and their applications may be found in [187].

2.6.2 Related work on EFC for visual learners
Though visual learning (or, learning in CV) is still rather underestimated in
mainstream CV/PR research, much interesting work has been done in past.
As already mentioned, this discipline represents a signi�cantly di�erent view-
point than ML. As a result, FC, and EFC in particular, is not considered here
as a separate and well-de�ned method of learning and representation change.
Therefore, this review concerns such approaches to visual learning, which ex-
hibit some form of EFC, though it is not always EFC in the strict sense.

Attempts to procedural formulation of feature construction for visual learn-
ers may be traced back to early research in cognitive science. In particular,
Ullman's seminal work on visual routines theory of intermediate vision [172]
is probably one of the most famous achievements there. Ullman proposed to
explain the intermediate-level visual reasoning in primates as comprising three
components: base representation, visual routines processor, and higher level
components. The base representation is the result of initial, parallel processing
of the input image; it is build in bottom-up way and is uniform in the sense that
it exhibits spatial parallelism. The higher level components include recognition
(working) memory and task formulation (target/objective function). Finally,
there is a processor that runs the (universal or speci�c) visual routines. The
speci�c visual routines de�ned by Ullman include indexing, marking, ray in-
tersection, bounded activation (coloring), boundary tracking, and curvature
segmentation. The general routines form a basis for deciding which speci�c
routines should be used. This interesting proposal, however, was formulated
on a high level of abstraction and could not be directly applied in real world
CV/PR applications; in particular, it does address known problematic CV is-
sues like image data imprecision, inconsistency and incompleteness. And, what
is especially important from our viewpoint, it did not o�er explanation how
one could learn the visual routines from experience (or, from examples, in
particular).
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Within CV, there are two essentially di�erent recognition paradigms. The
model-based paradigm assumes that the recognition system is equipped with
an explicit database of models of objects that are being recognized. The type
of models used (e.g., graphs, object silhouettes, views, etc.) is application-
-dependent. To recognize an object, its image is transformed into the same
representation and compared to all models in the database by means of an
appropriate similarity measure. The feature-based recognition paradigm, more
close to AV setting used commonly in ML, assumes that some features have
to be extracted from the input image and passed to the (formerly trained)
classi�er. This approach does not rely on any explicit database of models.

The model-based and feature-based recognition paradigms are signi�cantly
di�erent and, as such, vary in the ways FC (or learning, in general) may be
built into them. Within model-based category, Draper et al. [32] propose a
method that learns recognition graphs, i.e., synthesizes data �ows that rep-
resent image processing and interpretation procedures. The method operates
using high level CV concepts, involving complex operands that recognize some
primitives (elementary structures) in images. The authors report interesting
results obtained for the real-world problem of locating building rooftops in
airborne imagery.

Segen [158] proposed visual learning method that learns object models from
exemplary images. The models are represented by graphs and stored in model
database. To recognize a new pattern/image, a special metric measures its
similarity to all models from the database. The proposed approach has been
applied to recognition of hand gestures.

An interesting alternative for learning in model-based approaches has been
proposed by Goldfarb in [48] and subsequent work. The novelty consists in
learning not the models for model database, but the metric (similarity measure)
itself. For this purpose, a variant of edit-distance (Levensthein distance) is
used. In general, the metric is a sum of weights of the shortest sequence of
elementary operations that transforms the recognized image into the model.
The elementary operations involved include primitive insertion and primitive
removal. Unfortunately, this interesting contribution does not report solving
any real-world task.

The syntactic pattern recognition may be also considered as a special case
of model-based recognition, where the models are represented by (usually tree
or graph) grammar(s). Such grammars (or the automata that implement their
parsers) may be learned from the training data [41]. Within this framework,
Tadeusiewicz and Ogiela [167] developed an image understanding approach and
applied it in medical area. As opposed to most pattern recognition systems,
the focus is here on determining semantic contents of the analysed images that
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(1) supports the medical interpretation and (2) enables e�ective indexing of
image database. The proposed approach combines the bottom-up information
processing (image processing and feature extraction) and the top-down process
of hypothesis formulation and veri�cation. Technically, the approach involves
structural pattern recognition (syntactic methods using graph grammars and
attributed context-fee grammars). The authors apply the proposed method to
diagnostic examination of renal pelvis, pancreatic ducts, and the spinal cord.
Interpretation of a particular image consists in parsing its contents by means
the aforementioned grammar. The authors report over 90% accuracy of classi-
�cation when recognizing abnormalities in the considered medical applications.

The appealing features of evolutionary computation (thorough search, low
risk of being trapped in local minima) gave rise to several research endeavours
aimed at using this search heuristics for visual learning. Most work done here
represents the feature-based recognition. In particular, genetic programming
(GP) [76, 78], the evolutionary paradigm for evolving programs that process
data, attracted relatively intense attention within computer vision. Johnson
[68, 69] used a variant of genetic programming for locating hands in images
representing black-and-white human body silhouettes. Teller and Veloso [169]
applied a GP variant to face recognition in grayscale images. The author of
this monograph developed GP-based approach for recognition of handwritten
characters [79]. Subsequent variant of this method used multiobjective evalua-
tion of individuals (based on Pareto-dominance) in the context of the training
data, to provide for better thoroughness of the search [82, 81]. Further perfor-
mance improvements have been obtained when using hybrid metaheuristics, in
particular, combining evolutionary computation with local improvement of so-
lutions (hill climbing) [80]. Schneider et al. [157] used evolutionary strategies
to optimize the parameters of a visual information processing system based
on hierarchical neural network (neocognitron-alike [44]) and applied it to the
COIL100 database and face identi�cation problem.

Rizky, Zmuda, and Tamburino [144] use hybrid evolutionary computation
(GP combined with neural networks) for evolving recognition systems (mostly
feature detectors). The proposed approach is evaluated on the real-world task
of object recognition in radar modality based on one-dimensional signals called
radar signatures (a few thousands of views of six airborne objects). This task
is demanding as the time distribution of the re�ected energy is very sensitive
to small changes in object's pose. The approach evolves three components of
the recognition system: properties (parameters) of feature detectors, structural
form of the transformation, and selection of feature detectors. The obtained
results are encouraging when compared to baseline approaches (nearest neigh-
bour, neural network, and radial basis functions).
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Except for trivial cases, decision making in computer vision inherently in-
volves multiple stages of reasoning. This stimulated interest in AI methods
that support such kind of modularity. In reinforcement learning (RL, [177]),
the learner is allowed to perform some actions, but it receives external feed-
back only after attaining a prede�ned goal, i.e., after a sequence of such actions
comes to an end. This setting corresponds well to the multiple-stage reasoning
from pictorial information, so applications of RL in visual learning are rela-
tively common. Peng and Bhanu [132] use RL for segmentation of in/outdoor
scenes represented by color images. In [133], they use delayed RL for segmen-
tation and feature extraction from similar images. In [15], the same authors
apply biased RL for both image segmentation and recognition.

Apart from reinforcement learning, also more common ML paradigms have
been occasionally used for visual learning. Bloedorn and Michalski in [18]
applied successfully the AQ17 rule induction algorithm involving DCI to tex-
ture identi�cation in raster images. Detection of suspicious materials in X-ray
images of airline passengers' luggage, involving FC and standard ML feature-
based approach, has been reported in [105]. Michalski et al. [118] developed a
ML-based approach that uses rules for description and interpretation of visual
information, and applied it to generic interpretation of outdoor scenes based
on color images and recognition of potentially violent human actions.

In [89], we propose a particular EFC method and apply it to visual feature
synthesis based on microscopic images. The method performs local search in
the space of feature de�nitions. The features are built up from expert-provided
collection of operators that compute local image descriptors and are able to
aggregate features of spatially proximate image fragments. The method uses
region adjacency graph as the primary image representation. The obtained
features are used to support diagnosing of tumors of the central nervous system.

An extensive study of applying standard ML methodology to vision task
has been described by Maloof et al. in [104]. The proposed approach is quite
conventional and employs a �xed-length attribute-value representation and
conventional ML/PR inducers. Despite this rather non-sophisticated appara-
tus, the authors report an impressive recognition performance for the real-world
task of rooftop detection in aerial imagery, thanks to profound analysis of the
task being solved and careful preparation of the training data.

According to some surveys [24], most of the current applications of ML in
CV focus on transforming the internal representations of CV/PR system into
representations that allow the system to perform the task. Research on using
ML for enhancing the perception of an CV/PR system (external representation)
is very limited, as CV/PR research traditionally focuses on data preprocess-
ing and feature extraction, and many well-elaborated algorithms have been
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proposed in this area [24]. On the other hand, within ML community, data
preprocessing and feature extraction are often perceived as domain-dependant
and, therefore, not interesting.

2.7 Symbolic feature construction
In this book, a variant of EFC, which in the following we will refer to as sym-
bolic feature construction, is of special interest. In this class of methods, each
new feature gi ∈ G is a composite function, with the original attributes xi

acting as its arguments, and the components chosen from the collection O of
elementary operators. The operators in O are provided by system designer
and gather background knowledge for FC process. For ML tasks, this collec-
tion may contain elementary arithmetic and logic operations, simple functions
and constants. For CV tasks, O may comprise image-related operations and
procedures.

If no extra constraints are given, there are in�nitely many features that
can be constructed in this way. This is why one usually limits the complexity
of feature de�nitions by (i) constraining the number of operations used and/or
the number of nesting levels, and (ii) bounding the constants to a prede�ned in-
terval. But even with these constraints at hand, the number of possible feature
de�nitions is enormous. Moreover, one needs usually to construct simultane-
ously more than one feature. Thus, the space of possible representations grows
exponentially with the number of features m in the constructed representation,
and with the number of elementary operations |O|. As the characteristics of
the objective/evaluation function is unknown, any attempt to �nd the optimal
representation in this framework is futile, and one has to be satis�ed by heuris-
tically obtained suboptimal solutions. This is why in EFP and CFP proposed
in this book, the metaheuristics of evolutionary computation [120] is applied
for this purpose (see chapter 4).

2.8 Summary
Despite its importance and bene�ts o�ered, so far the research on EFC did
not reach the degree of maturity that is characteristic for other ML branches,
like, for instance, multiple classi�er systems. EFC issues are rather scattered
over various research directions related to ML, PR, and, sometimes, cognitive
science and CV. From ML viewpoint, preprocessing of training data is quite
unfairly treated as an issue of secondary importance that remains in the shadow
of hypothesis induction. As a consequence, neither uniform methodology nor
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common domain's name have been elaborated. The name `constructive in-
duction', quite popular in early 1990's, is now almost completely abandoned.
Alternatively, work on EFC has been sometimes presented under terms `trans-
formation of representation', `representation change', etc. `Feature engineer-
ing', a well-sounding term coined by Fawcett [37], also does not seem to be
widely accepted. The related research in computer vision sometimes refers to
`feature synthesis' or, in a slightly wider sense, `synthesis of recognition sys-
tems' [88]. EFC may be also viewed as a process that aims at building an
attribute-value representation of `attributeless' data, in case when the features
are not `just out there' [184, p. 68]. Incidentally, the common background
of these research directions usually remains unnoticed in literature. Never-
theless, in the following we stick with the probably most adequate and least
controversial term `feature construction'.

The review of methods provided in section 2.6 enables us to systematize
shortly the `zoo' of FC methods. The factors that di�erentiate particular
approaches may be summarized as follows:
1. The method of representation change (implicit, explicit, symbolic).
2. The underlying search mechanism (exact search, heuristic; FC methods

using heuristic search may be further subdivided into those using local
and global search strategy).

3. The evaluation method and measure (�lter, wrapper).
4. The subject of learning/modi�cation (feature presence, feature weights,

feature de�nitions, model database, similarity metric).
Within this provisionary taxonomy, the method proposed in this monograph
may be characterized as explicit symbolic feature construction that uses meta-
heuristic of evolutionary computation driven by wrapper-based objective func-
tion.
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Evolutionary computation
3.1 Algorithm outline
Historically, the evolutionary computation paradigm (EC) has been inspired
by research related to the theory of biological evolution. It originated quite
independently in di�erent disciplines [42, 56, 76]. Formally, the particular EC
approaches, like genetic algorithms (GA), evolutionary programming (EP),
genetic programming (GP), evolution strategies (ES), grammatical evolution
(GE), to mention the most popular ones, are all forms of metaheuristics, i.e.,
a general-purpose computation (search) strategy that is applicable to a wide
variety of search and learning tasks. EC became very popular within last two
decades, and seems to be widely known within ML and CV communities, so this
section contains only general introduction into this topic. More information
on EC may be found in popular textbooks [114, 120, 77].

In past, di�erent computational models have been proposed that incorpo-
rate the principles of `survival of the �ttest' and evolution through successive
slight modi�cations (see [114] for introduction and review). Here, we concen-
trate mostly on genetic algorithms [56] and genetic programming [76]. These
and other varieties of EC have been di�erentiated mostly due to di�erent rep-
resentations of solutions they engaged. Michalewicz in [114, Introduction] uses
the term `genetic algorithm' to evolutionary algorithm with binary represen-
tations, and `evolutionary programming' to approaches that engage di�erent
than binary representations. However, he admits that even with this distinc-
tion at hand, it is di�cult to determine precisely the boundary between these
two approaches and there are many varieties of EC that cannot be univocally
assigned to either of these categories. As it will be shown in chapter 4, the par-
ticular representation of solutions proposed in this book is a hybrid of genetic
algorithm (binary encoding) and genetic programming (evolution of expres-
sions/programs). To avoid possible controversies, we leave this naming issue
open and use a general term `evolutionary computation' in the following.

Evolutionary computation is essentially a randomized iterative parallel lo-
cal search with the possibility of exchanging randomly selected parts (solution
elements) between solutions. As it is shown in Fig. 3.1, except for initializa-
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Figure 3.1: Evolutionary algorithm

tion, each iteration of the algorithm engages following main steps: evaluation
of solutions (Evaluation), selection of valuable solutions to form the next gen-
eration (Selection ('survival')), selection of solutions to be recombined (Parent
selection), mating the selected of solutions (Parent recombination), and mu-
tating randomly chosen solutions (O�spring mutation). More precisely, the
algorithm maintains a �nite, �xed-size set P , population, of working solutions
(individuals) s ∈ P , which come from some search space S. A solution s may
be divided into smaller entities that we will refer to as variables or genes si.
The search proceeds until some termination criteria, usually concerning quality
of evolved solutions, are ful�lled1.

Usually, P is initially populated with random solutions (points in space
S). The terms `individual' and `solution', though used interchangeably in the
literature, are aliases only if we assume that an individual encodes the entire
solution to the problem being solved. This statement is true within EA, but
will be not valid in coevolutionary algorithms described further in chapter 5.

The solutions in s ∈ P undergo evaluation by the �tness function f , and
the surface spanned by f over S is usually referred to as �tness landscape; this
term is adequate only if S is a Cartesian space. In single-objective optimiza-
tion considered here, we assume that �tness function is scalar, maximized, and
has range limited to [0, 1], with 0 and 1 being the evaluations of the worst pos-
sible individual (anti-ideal) and best possible individual (ideal), respectively.

1Note that, formally, stopping condition should be checked prior to �rst loop iteration,
as the initial population may already contain an acceptable solution. With respect to this,
the while...do... loop would be more appropriate here. Nevertheless, for the sake of brevity,
we stick with this simpler notation as it allows us to avoid some code repetitions.
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For most problems, an appropriate mapping has to be provided to convert
the values of application-speci�c objective function (which is often minimized
and/or may take arbitrary positive values) into �tness values. In the approach
described in this book, the objective function is by its nature limited to [0, 1]
interval and maximized, so f is essentially equivalent to it. Thus, there is no
need for paying much attention to that distinction here.

In most cases, evaluation is the only application-dependant component of
the algorithm, and the remaining steps proceed according to general procedures
elaborated in the theory and practice of EC. Computation of f is usually also
the most time-expensive step in computer simulations.

The details on particular selection and recombination techniques used here
are irrelevant at this stage and details on them will be given in the further
part of this monograph. In particular, choosing symbol f to denote �tness
is not coincidental, as in the proposed approach it consists in estimating the
predictive performance of a parameterized learner (cf. section 2.1).

For the sake of clarity, Fig. 3.1 does not present all the details of the
evolutionary cycle. One of the missing elements is the replacement strategy,
i.e., the policy that controls the way the newly created (recombined) solutions
supersede the older ones. In this book, we use the so-called generational EC,
i.e., the created generation of individuals completely replaces the previous one
(this was rather arbitrary choice, as the results would probably not change
much if another strategy would be applied).

Environment
(Requirements

for survival)
Selection Individual Phenotype

Resources

+

-

Fitness

Figure 3.2: Control theory-based model of EA (adapted from [100])

Alternatively, it may be useful to present an evolutionary process in con-
trol theory-related terms (Fig. 3.2). Here, an individual may be viewed as an
entity that maps and combines, according to its chromosome, some compo-
nents/elements/resources speci�ed by the encoding. The result of that map-
ping is individual's phenotype. Then, the discrepancy between individual's
phenotype and requirements for survival posed by its environment determine
its �tness; the greater this discrepancy, the worse the �tness. Fitness value, in
turn, in�uences, through the selection process, the probability of individual's
survival.
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3.2 Genotype-phenotype mapping
One of the central issues of EC is the method of representing2 the solutions
s ∈ S. Alternatively, this may be considered as an encoding problem: how
should the application-related individuals (solutions) be encoded in generic
representation S used by a particular variant of EC, so-called chromosome
(e.g., �xed-length strings over a binary alphabet in case of GA). In evolution-
ary terms, individual's encoding is commonly referred to as genotype, and its
representation in application-speci�c terms as phenotype. These entities dwell
in two separate universes, genotypic search space and phenotypic search space,
respectively.

In this context, the �tness function f : S → [0, 1] that evaluates individuals
s is in fact a compound function:

f(s) = fp(fg(s)), f = fp ◦ fg (3.1)

where fg function implements the mapping from the space of genotypes to
the space of phenotypes. In other words, fg decodes the application-speci�c
solution/individual from generic chromosome. The fp function (phenotypic
�tness) computes the �tness based on the phenotypic representation fg(s) of
the solution s [150]. Formally, they way of de�ning f as superposition of fg and
fp is arbitrary; however, both fg and fp may be clearly and univocally de�ned
for most real-world applications. For instance, for the travelling salesman
problem solved by means of common GA, fg maps a binary string-encoded
solution onto salesman's route, and fp calculates the route length.

Function fg implements the so-called genotype-phenotype mapping. In most
of practical cases, fg is not bijective and f−1

g does not exist. This implies that
genotypic representation is redundant and one phenotype may be represented
by more than one genotype. Some characteristics of fg may signi�cantly in-
�uence the convergence of the evolutionary search [149]. In particular, what
matters here is whether fg preserves the topology of the search space, and if
yes, in what way. In EC literature, this issue is usually referred to as the lo-
cality of representation. Locality may be de�ned as a measure that re�ects to
what extent (or, with what probability) the neighbours in the genotypic space
remain neighbours when mapped to the phenotypic space. One of the simplest
locality measures has been considered in [150]:

dm =
∑

dp(fg(a),fg(b))=dp
min,a,b∈S,a6=b

|dg(a,b)− dg
min| (3.2)

2The representation of EC solutions should not be confused with representation of exam-
ples in ML.
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where dg and dp are the distance metrices in the genotypic and phenotypic
spaces, respectively, and dg

min and dp
min are the minimal non-zero values of

these metrices. The particular form of Equation 3.2 depends obviously on the
dg and dp metrices. dp is usually determined by the particular application of
EA, whereas dg some common metrices may be used (e.g., Hamming distance
for binary representations, Lq norms for real-valued representations, etc.). The
smaller dm, the more local the genotype-phenotype mapping and the more
similar the genotype and phenotype search spaces are. Representations with
relatively small dm are often referred to as having high locality, whereas large
dm values indicate representation characterized by low locality.

High-locality representations are generally recommended, as they roughly
preserve the di�culty of the search problem. Low-locality representations
`mess up' the genotype-phenotype mapping and disturb the correlation be-
tween �tness and distance from the global optimum.

Unfortunatelly, designing a high-locality representation may be di�cult or
impossible for some classes of real-world problems. This applies also to the
approach presented in this monograph. In a sense, this is the price we pay for
using a general-purpose metaheuristics for solving speci�c search tasks.

Let us �nally note that these considerations should be taken with a grain
of salt, as they mostly refer to the global optimum. In real-world learning
problems we do not know the global optimum nor its �tness value. In most
cases, the global optimum is not univocal, i.e., there are many optimal solutions
in the sense of the �tness function. Fortunatelly, from practical viewpoint,
we are not necessarily interested in �nding the global optimum; good local
optimum may be acceptable. Nevertheless, the above issues constitute an
important reference point.
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Evolutionary feature
programming
4.1 Introduction
In this chapter, we consider feature construction methodology that uses evo-
lutionary computation as the underlying search mechanism. In particular, we
propose a method called evolutionary feature programming (EFP) that uses
speci�c variant of genetic programming for feature construction.

As already mentioned in chapter 3, EC is a general metaheuristics that
needs some application-speci�c components and mappings to be set up. In
particular, to make EC work as a search engine for feature construction, two
important questions have to be answered: how to represent feature mappings G
as solutions s ∈ S, and how to evaluate individuals. This chapter gives answers
to these questions and provides rationale for the proposed EFP method. How-
ever, we abstract here from any application-speci�c knowledge (e.g., knowledge
related to computer vision). The particular examples of tailoring the proposed
approach to speci�c applications will be provided in chapter 7.

According to Michalewicz [114, Introduction], the term `evolutionary pro-
gramming' should be reserved to approaches that involve a signi�cant adapta-
tion of standard GA scheme to the speci�city of particular task. The approach
described in this chapter is named `evolutionary feature programming ', though
to a great extent it relies on the standard genetic algorithm with �xed-length
bit-string encoding. Nevertheless, we keep the adjective `programming' to em-
phasize the procedural character of solutions that evolve in this approach.

4.2 Symbolic representation of feature extraction
procedures

In the framework of learning from examples, explicit feature construction deals
with mappings G that transform a given example x into its representation G(x)
in another space:
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G(x) =
[

g1(x), g2(x), . . . , gm(x)
]

(4.1)
where m denotes the number of features in the transformed representation.
The symbol x stands here for a general example, which may take form of, e.g.,
vector of attributes for ML application, a raster image for CV application, or
yet another form (time-domain signals, etc.). In general, m is not directly
related to the dimensionality n of the original representation (if it may be
determined); however, in most real-world studies m < n, as feature construc-
tion method should usually reduce the dimensionality of the representation to
avoid learner's over�tting to the training data. The dimensionality m of the
resulting space has to be �xed for all examples x ∈ Ω to meet the constant
length assumption required by most attribute-value learners.

Each gi represents a real-valued function (gi : Ω → <) that is technically
realized by a feature extraction procedure (FEP) and undergoes changes as the
system learns. In general, the form of gi is arbitrary: gi could be a polynomial,
an arti�cial neuron, or even a lookup table. Here, however, we try to main-
tain also the explanatory function of feature construction and aim at symbolic
feature construction. Therefore, we limit our interest to gi being a (usually
compound) function of the training example x, which may be expressed in
terms of some meaningful symbols. We also assume that those symbols may
be parameterized.

Now, one has to decide how to encode G as an EC individual (solution) s. In
evolutionary terms, s contains the genotype of a solution, whereas G consists
its phenotype. Two qualitatively di�erent methodologies are possible here.
One can �x the general form of each gi ∈ G and encode its parameters only.
Alternatively, one can encode in s the complete information that is required
to restore G. The former of this approaches is obviously less general than
the latter one. The choice of one of them is application-speci�c and depends
on how (to what extent) the working of particular gi is determined by the
parameters. In EFP, to provide a more general approach, we choose the latter
method, where the solution s completely determines the actual working of G.

4.3 Related representations
Prior to detailed presentation of the proposed approach, we shortly discuss
two closely related ways of representing solutions. These include: genetic
programming and linear genetic programming.

The common feature of genetic programming, linear genetic programming,
and many other kinds of genetic programming-alike approaches is that the in-
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dividuals encode programs (procedures), i.e., entities that are able to process
data. This is the fundamental di�erence in comparison to the more common
evolutionary techniques, where the individuals usually encode a static solu-
tion to the problem, that may be evaluated by the �tness function f without
referring to any external data (like training data T here). This also makes
evolutionary programming conceptually more di�cult, as each solution s cor-
responds to data mapping and its �tness f(s) is usually assessed against some
expectations it should ful�ll with respect to data.

4.3.1 Genetic programming
The major speci�city of Genetic Programming (GP) [76, 77] is the non-linear
encoding of solutions. Each GP individual encodes a LISP-like expression, that
may be conveniently represented as a tree, with inner tree nodes implementing
some application-speci�c operations, and tree leaves usually corresponding to
input data and constants.

This principle may be conveniently explained on the exemplary problem of
symbolic regression, the standard GP benchmark. The task of the evolutionary
process is to discover the symbolic form of an unknown function that is given
by a sample set of points, i.e., pairs (ui, vi) of values of independent (u) and
dependant (v) variables (as in common regression). Inner tree nodes perform
some simple arithmetics (or other user-speci�ed functions), while the terminal
nodes implement scalar constants (usually drawn randomly from prede�ned
interval) and the independent variable u. To asses an individual's �tness, one
computes the value of expression it represents for all the training examples,
feeding the values ui of independent variable u into appropriate tree leaves.
The discrepancy between the desired value vi and the value computed at ex-
pression's root, aggregated over the training sample by means of, e.g., mean
square error, determines individual's �tness. Basic reference instances of sym-
bolic regression problems include simple polynomials, called quartic, quintic,
and sixtic [76].

The speci�c representation of individuals implies need for specialized ge-
netic operators. In GP, the initial generation is populated by initialization
operator that builds the random expression starting from the root, with an
upper limit imposed on the tree depth. The mutation usually consists in pick-
ing tree node at random and replacing it (and its children) with a randomly
generated subtree [76, p. 106]. The crossover operator swaps randomly se-
lected subtrees between the parent individuals. Thus, from the viewpoint of a
single GP individual, mutation does not di�er much from crossover, and some
experimental studies supports this supposition [103]. Note also that, an indi-
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vidual mating coincidentally with itself produces an o�spring that is usually
di�erent from it, whereas such an event provides no evolutionary variation in
standard GA [76].

The standard GP recombination operators are therefore much more ran-
dom than their GA counterparts. For instance, the one-point and two-point
crossover operators, commonly used in GA, swap randomly selected substrings
of parents' encodings, however, those substrings occupy the same loci in par-
ents' chromosomes. In GP crossover, on the contrary, the loci of swapped
expression fragments are completely unrelated. Therefore, the probability of
substantial deterioration of o�spring �tness (in comparison to their parents)
is here much higher than in GA. This phenomenon, usually referred to as de-
structive crossover, lead to some critique of the role of crossover in GP (e.g.,
[5]). Some research has been done on designing `intelligent', less destructive,
crossover operators for GP (see, e.g., [168, 33]).

Despite these controversies, theoretical foundations of GP are quite sound.
The schemata theorem, the cornerstone of evolutionary computation, has been
e�ectively extended to tree-like representations [136]. Moreover, GP has strong
record of successful practical applications, including attaining human-competi-
tive performance and elaborating patentable solutions in many domains, for
instance, in design of analog circuits (see [78] for an exciting review).

4.3.2 Genetic programming for feature construction
The symbolic and functional representation of solutions makes GP well-suited
tool for explicit feature construction. The arguments in favor of GP include
the following:
• GP individual is a natural representation of expression that transforms

the original data (attributes for ML problem, images in CV problems)
into new representations.

• The background knowledge that is required to solve the particular task
may be provided for the evolutionary process in an elegant way, by equip-
ping it in appropriate data transformation operators (tree nodes).

• The constructed features have symbolic, comprehensible de�nitions, what
makes them convenient for explanatory purposes.

On the other hand, applying GP to explicit feature construction may seem a
half-measure: why shouldn't we approach the concept induction problem and
evolve the entire classi�ers? Such an approach would be, in a sense, a variant
of a learning classi�er system as proposed by Holland [57, 47]. However, some
experience we earned in the domain of visual pattern classi�cation using genetic
programming [82, 80, 81, 85, 86, 87] led us to the conclusion that in most real-
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world cases it is rather unreasonable to expect the GP individuals to evolve
to complete, well-performing classi�ers, even for the two-class discrimination
problem. The GP-based feature construction seems to work much better.

Feature construction by means of GP has been subject to several studies in
past. One of the �rst attempts to apply GP to feature construction for machine
learners has been reported in [12]. In [59], an evolutionary approach to mul-
ticategory pattern classi�cation has been proposed and a GP-based classi�er
has been applied to the problem of remotely sensed satellite data. Interesting
results produced within GP-based feature construction for biochemical data
mining have been also reported in [141].

4.3.3 Linear genetic programming
Linear Genetic Programming (LGP) has been originally proposed by Banzha�
[10]. Essentially, LGP is a variant of GP with simpli�ed, linear representation
of individual's code. The representation used in LGP is a hybrid of that of
GA and GP, and combines their advantages. The individual's chromosome
represents a sequential program composed of (possibly parameterized) basic
and given a priori operations. This feature makes LGP similar to GP. On
the other hand, as opposed to GP, where tree-like expressions are maintained,
LGP encodes such procedures in a form of a �xed-length sequence that, on
the genotype level, is essentially equivalent to GA representation. LGP encod-
ing is, therefore, more positional, i.e., the evolutionary process tends to bind
some meaning to particular code fragments. As a consequence, the standard
crossover operator used in LGP exchanges mutually corresponding code frag-
ments. LGP is thus in general more resistant to destructive crossovers than
regular GP [10].

Another important concept of LGP is the way the intermediate results
are passed from one operation to another. In GP, this is determined by the
structure of the expression tree. In LGP, on the contrary, the virtual machine
that interprets an LGP program is equipped with extra registers. The registers
serve as storage for program's input data, intermediate results, and program's
output (response).

LGP proved successful in the experimental evaluation on a family of di�er-
ent classi�cation and regression tasks [20]. Another motivation for developing
LGP was the possibility of fast individual's compilation into the machine code,
which obviously may result in signi�cant speedup of �tness computation [127].

For completeness, let us notice the existence of other than GP and LGP
programming-like EC paradigms. These include Grammatical Evolution [153,
129] (a variant of GP with strong control of individuals' syntax), Linear-Tree
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GP [72] (a hybrid of GP and LGP), and Gene Expression Programming [38]
(individuals represented as �xed-length strings on genotype level, but have tree
representation on phenotype level). More general program representations, like
graphs, have been also considered [169].

4.4 The proposed approach
The overall architecture of evolutionary feature programming (EFP) is pre-
sented in Fig. 4.1. It may be shortly characterized as a genetically-driven
search in the space of explicit, symbolic feature de�nitions, aimed at maximiz-
ing the expected predictive accuracy of the entire decision (recognition) sys-
tem. The search is driven by a training set-based �tness function f , and uses
an LGP-inspired representation to encode the feature de�nitions. This com-
pound function involves interpretation of LGP-like encoding of feature extrac-
tion procedures (genotype-phenotype mapping fg) followed by the evaluation
of the resulting feature extraction procedures in the context of the training
data (phenotypic �tness fp). Thus, here:

fg : S → G, fp : G → < (4.2)
Learning takes place on two levels: on the upper level the evolutionary

search learns (generates and evaluates) solutions s that encode feature extrac-
tion mappings G, i.e., G ≡ fg(s) 1. On the lower level, the learner built into
the �tness function learns (induces and veri�es) hypotheses given a particu-
lar representation. In other words, the working of the entire approach involves
two loops that provide feedback for corresponding search algorithms: the outer
learning loop involves the evaluation cycle and is closed by the �tness function
f , whereas the inner learning loop involves hypothesis generation and testing
within the �tness function.

4.4.1 Representation of solutions
Representation of individuals used in EFP is mostly inspired by LGP but does
not strictly conform the LGP as proposed by Banzha� [10]. This choice is
motivated by some features of this representation, grouped at the end of this
section.

On the phenotype level, a solution s encodes one or more feature extrac-
tion procedure(s) (FEP; feature de�nition, or feature for short). Each FEP is

1This holds for EFP, but not for the coevolutionary variant of this approach presented in
chapter 6.
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Figure 4.1: The outline of evolutionary feature programming (compare to Fig. 3.1)

conceptually equivalent to mapping G de�ned in Equation 2.10, and is able
to yield one or more scalar values gi(x) given input example x. In general,
depending on the type of application, x may take di�erent forms; for appli-
cations considered in this book, it is a vector of scalar feature values for ML
problems, or a raster image (bitmap) for CV/PR problems.

Each FEP is a �xed-length sequence of l elementary steps, or, for short,
instructions Oi. Instructions are executed sequentially; EFP in its current
version does not provide for branching of control �ow or iterative computations
(loops). Such sophisticated constructs have been introduced in some related
approaches [169]; here, to avoid the possible over�tting to the training data,
we try to keep FEPs simpler.

The instructions Oi are built using elementary operators oi from the set
of elementary operations O, oi ∈ O. Instructions and operators should not
be identi�ed with each other: an instruction Oj is a speci�c instantiation of
elementary operator oi. Their indices are not related: o's indices enumerate
operations in O, while O's index denotes its placement within FEP. In other
words, an operator is a function that may be called for some set of argu-
ments, whereas an instruction is a particular call to such a function, which is
technically encoded as a fragment of FEP code in individual's chromosome.
Operators will be in the following identi�ed with unique ids called opcodes.
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The set O constitutes knowledge base for the feature construction algo-
rithm and is usually domain-dependant. For instance, for ML applications, O
may contain basic arithmetic operations, arithmetic and logic relations, and
simple functions. For CV/PR applications, operators from O may be e�ec-
tively calls to image processing functions, feature extraction functions, and
other data processing. For other application domains, O may contain appro-
priate domain-speci�c operators. Obviously, the more knowledge is provided
in O and the more application-oriented it is, the better. Nevertheless, our goal
is to prove that the proposed approach works well even if O contains only gen-
eral domain-related knowledge, and not necessarily application-related knowl-
edge. For instance, we expect to obtain satisfactory results in di�erent CV
applications using general image processing and computer vision knowledge
(procedures) implemented by operators from O.

A speci�c instruction Oi within particular FEP is composed of two com-
ponents: an opcode that determines the elementary operation oi ∈ O to be
used, and arguments, which are usually references to registers and tell where
to fetch input data from and store the result. Registers may be thought of as
temporary variables (working memory) that are used by elementary operations
as input and output arguments. Registers are typed : for ML applications, we
normally use only numeric registers (rj , j = 1 . . . nr). Each numeric register
stores scalar values (intermediate results and �nal feature values). CV/PR ap-
plications require also image registers (r′j , j = 1 . . . n′r) that store input image
and processed images (image registers have the same dimensions as the input
image x). Quite obviously, writing to a register erases its previous contents.

The number of numeric registers nr determines the number of scalar fea-
tures gi computed by FEP. Commonly, we impose lower bounds on nr and
n′r based on the maximum arity of operators from O. Note however, that the
absolute minimum is nr = n′r = 1, as no constraints are imposed on the way
the instructions exchange data with registers. For instance, a operation that
requires two input arguments may fetch them both from the same register,
and even store the result in the same register. This would, however, seriously
limit the computational ability of FEPs, thus in real-world studies we usually
set nr = n′r = 2, . . . , 6. Some preliminary experiments have also indicated the
usefulness of such setting. Though greater values of nr and n′r are possible,
one should note that the more registers, the less e�ective is the passing of
intermediate results between consecutive instructions, it is less likely that a
result produced by instruction Oi will be used by any instruction Oj , j > i.
To overcome this, FEP has to be longer, what, in turn, increases the processing
time. This is prohibitive in the feature construction phase, as each individual's
evaluation involves |T |-times execution of the FEP it encodes (section 4.4.5).
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A FEP may be therefore represented as a directed graph, with nodes cor-
responding to elementary operators and arcs representing data �ow. Fig. 4.2
shows an exemplary graph implementing single FEP, with extra nodes (marked
by squares) that denote the initial and �nal register contents (the intermediate
register contents is not explicitly depicted here). It may be easily observed
that the proposed representation is �exible and not constrained by strict syn-
tactic rules: FEP is allowed to ignore input data (here: contents of register
r1), create dead-ends (O2), and it is not obliged to produce novel features in
all registers (an arrow connecting the initial and �nal states of r2 means that
its contents remains intact during FEP execution, so feature g2 is equivalent
to attribute x2). Note that, as register contents may be used more than once
by the consecutive instructions, tree representation is in general not su�cient
to visualize FEP processing, though any such graph may be converted into
tree by repeating some code fragments (subexpressions). From another per-
spective, each FEP may be viewed as a compound function made of nested
calls of elementary operators oi. However, a FEP of length l is not equiva-
lent to Ol(Ol−1(. . . O1() . . .)), as the presence of registers makes the passing
of intermediate results much more sophisticated.

Initial register 
contents

Final register 
contents

x1

x2 O1 O2

x3

O3 O4
g2

g3

g1r1

r2

r3

r1

r2

r3

Figure 4.2: A graph representation of an exemplary feature extraction procedure

Instructions de�ned in this way may be characterized as global, as they
compute their output value based on the entire contents of selected input
registers. However, for CV/PR applications, the practical applicability of a
recognition system based on global features would be very limited. For such
applications, local features are required. Therefore, in its CV/PR variant, the
FEP representation allows each image-related instruction to be executed in
local mode. The mask �ag, a single bit hidden inside the opcode, decides
whether the operation should be global (work on the entire image register) or
local (limited to the mask).

To support this extension, each image register maintains a rectangular
mask. The mask, when used by a local instruction, limits the processing to
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its interior. Global operations ignore masks and operate on the entire image.
Mask placement and dimensions, stored as upper left and lower right corner, are
initialized prior to FEP's execution, but may be also changed by instructions.

Given the phenotype representation of a solution s, we are able now to
summarize the genotype-phenotype mapping fg in Fig. 4.3. On the genotype
level, a FEP is encoded as a �xed-length sequence of bits, with consecutive
chunks (substrings) of bits encoding successive instructions. On the phenotype
level, for each instruction Oi, particular elements of its encoding withing EC
solution s correspond to separate variables si in the formulation of evolutionary
search. In EC terminology, these elements are referred to as genes.

opcode flag arg1 arg2 arg3 opcode flag arg1 arg2 arg3
… …

x1

x2 Oi

x3

Oi+1
g2

g3

g1r1

r2

r3

fgfg

Genotypic representation – solution s (fixed-length bit string)

Phenotypic representation – feature 
extraction procedure  G

ith instruction i+1th instruction 

sk sk+1 sk+2 sk+3 sk+4 sk+5sk-1… …

Figure 4.3: Details on genotype-phenotype mapping

The upper limit on the number of instruction arguments has been set to
three; as each operator has to produce some result, this implies that the max-
imum input arity of an elementary operator oi ∈ O is two. Interpretation of
genes representing arguments depends on the particular elementary operator.
If an operator requires only one input argument, the output argument is stored
in the second gene, and the third gene is ignored. Thanks to this, the repre-
sentation used here is positional in the sense that each instruction component
is encoded by a �xed-length bit sequence, and, as a result, each instruction
has �xed length. The positional representation implies convenient properties
discussed earlier.

Technically, all instruction elements (genes) are binary-encoded integer
numbers (see discussion at the end of section 4.4.4). For each gene, its up-
per limit is determined by corresponding parameter setting (the lower limit is
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always 0). For instance, the number of registers nr imposes the upper limit on
the values of variables si encoding arguments (arg1, arg2, arg3), and the num-
ber of elementary operations |O| determines the range for the gene representing
opcode to [0, |O|−1]. However, the number of distinct values of particular gene
si (alleles in EC terminology) does not necessarily have to be a power of two,
what is inconsistent with binary encoding. To resolve this incompatibility, a
`modulo mapping' is used during FEP interpretation. The fg mapping maps
the corresponding gene by computing the actual gene value modulo its upper
limit+1. For instance, with |O| = 70 elementary operations, the minimal pos-
sible number of bits for encoding the opcode is 7 (26 = 64 < 70 < 128 = 27).
Therefore, the opcode 10010002 = 7210 will be e�ectively translated into op-
code 2, as 72mod 70 = 2.

Except for trivial cases, real-world tasks usually require FEPs that refer
to some constants. Constants are important as, among others, they parame-
terize instructions and provide �xed components in arithmetic expressions. In
EFP, constants are encoded in individual's chromosome and evolve together
with it. In particular, FEP may use constants in two ways. Both methods
assume that one bit in binary encoding of each argument (arg1 . . . arg3 in
Fig. 4.3) determines its actual function. In the �rst method, if this bit is
set, the argument is interpreted as register number; otherwise, the remaining
bits of argument encoding are interpreted as constant integer number. In the
latter case, depending on application, the resulting constant may be directly
passed to the phenotype or undergo scaling to provide more appropriate range
of values.

This method is straightforward but su�ers from limited precision and/or
range of encoded constants, as each argument is encoded on one byte, i.e., 8
bits. With one bit acting as register-constant �ag, 7 bits are left for constant
encoding. This provides only 128 distinct values, what may be not enough
to provide both su�cient range and precision. Thus, another, more indirect
method of constant encoding may be optionally used [186]. Similarly to the
�rst method, the choice between register reference and constant value is made
according to the state of appropriate �ag in argument encoding. However, if
the state of the �ag indicates constant, the constant value is fetched from an
extra part of chromosome (`tail') that each individual is equipped with, which
is exclusively dedicated to constant storage.

4.4.2 Properties of FEP representation
In this section, we summarize some properties of the FEP representation from
the perspective of evolutionary computation and computer vision.



52 Chapter 4. Evolutionary feature programming

From evolutionary computation perspective, the FEP representation may
be quali�ed as positional. Apart from the virtues listed in 4.3.3, this feature
makes some types of problem decomposition easy and elegant (chapter 6).
The proposed representation is also complete and robust, in the sense that
all solutions are feasible. Strictly speaking, any bit string of length being a
multiple of 32 = 4 × 8 has valid phenotypic representation as a FEP. Thanks
to this, we do not have to test the solutions for feasibility and using repair
algorithms to mend infeasible solutions (see, e.g., [114, section 15.3]), what
could be quite time-consuming.

The genotypic representation of solutions is essentially equivalent to stan-
dard Genetic Algorithm (GA). As a result, we are able to use the common
genetic operators (mutation and crossover) to process the individuals. This
allows us to rely on widely accepted EC standards and avoid possible contro-
versies concerning the particular type of genetic operators (see section 4.4.4
for more details on mutation and crossover of FEPs).

FEP representation maintains validity of the schemata theorem [56]. Short
bit substrings correspond to conceptually independent elements of solution's
phenotype (e.g., single instruction or a sequence of instructions). Therefore,
short FEP subprograms/subprocedures are less likely to be disrupted by the
genetic operators than the long ones. Thus, if such a building block contributes
positively to the overall performance of the solution, it has more chance to
propagate its o�spring to the next generations.

The modulo mapping introduced in gene interpretation causes that fg is
not bijective and two di�erent bit strings may represent the same FEP. This
obviously makes some modi�cations of the genetic material ine�ective, leading,
among others, to neutral mutations � changes in the genotype that do not af-
fect individual's �tness. This may be apparently disadvantageous, but, as the
experiments show, has a marginal e�ect on the convergence of the evolution-
ary search and may be easily compensated by increasing the mutation rate.
Moreover, such encoding is somehow consistent with the working of natural
evolution, where most of the genetic material seems to be redundant. Such
dead code fragments are usually referred to as introns. It has been shown in
past, that introns may have a positive impact on the e�ectiveness of search,
as they enable to perform a background search concerning some aspects of
the task, without in�uencing the individual's �tness. More than that, some
successful work has been done on explicit introduction of introns into genetic
code [126, 111].

Within an instruction, its opcode determines the types of its arguments,
and the arguments, as being stored in registers, are always accessible. For
instance, if the opcode refers to pixel-wise image subtraction, the consecutive
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genes are interpreted as references to three image registers (two input images,
one output image); if the opcode refers to image thresholding, the consecutive
genes are interpreted as references to image register (input image), numeric
register (threshold), and image register (output image). Therefore, there is no
need for extra means that usually have to be undertaken in standard GP. In
GP, when genetic operators modify solutions, they have to control the type
compatibility: the type of values returned by node of expression tree has to be
compatible with its parent's input type. This methodology, known as strong
typing [77], implies extra computational overhead. As there is no need for such
control here, the FEP representation may be characterized by weak typing.

From computer vision perspective, the proposed approach represents the
category of feature-based recognition, as opposed to model-based algorithms
that recognize objects measuring its similarity to models from database. The
recognition process is also image-driven (bottom-up, or, more generally, data-
driven or example-driven), as opposed to some model-based approaches which
implement model-driven (top-down) operating.

The proposed representation models the processing of visual information in
a stepwise manner. This feature is consistent with neurobiology and cognitive
science research, which indicates that primates' visual perception is organized
and works in a modular way [106, 49, chapter 2][125]. Many stages of process-
ing and the ability to perform local operations enable grouping, an essential
property of any non-trivial vision system [43]. The presence of image regis-
ters helps the system ful�ll the principle of least commitment [106]. This rule
states that algorithms, especially those that process imperfect (noisy, incom-
plete, imprecise) information, should avoid making crisp decisions as long as
possible, since it is very di�cult (if not impossible) to recover from a wrong
crisp decisions made at the early stages of processing. This is particularly true
in CV/PR systems, where there are several stages at which decisions are being
made.

4.4.3 Execution of feature extraction procedure
Section 4.4.1 presented the encoding of feature extraction procedures, which
may be viewed as genotype-phenotype mapping fg in evolutionary terms.
Given the description of FEP encoding, we may explain now its execution,
i.e., processing of a single training instance. This process, together with evalu-
ation, constitute the second component of the �tness function, the phenotypic
�tness fp.

The processing of an example x by FEP G encoded by individual s proceeds
in three steps (Fig. 4.4):
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Figure 4.4: Execution of FEP s for a single training example (image) x

1. Initialization: The registers ri, r′i are set to values derived from the
example x.

2. Execution: The operations Oi encoded by s are carried out one by
one; each of them fetches and/or writes some data (intermediate results)
from/to registers.

3. Exploitation: The scalar values found (computed) in the numeric reg-
isters rj , j = 1 . . . nr after program execution are interpreted as features
gj(x) that form the feature vector G(x). In particular, if one FEP is
being used, the contents of scalar registers fully determines G(x) (i.e.,
m = nr)2.

Execution and exploitation are straightforward and do not need more expla-
nation. More details have to be provided on initialization.

For ML tasks, initialization consists in assigning values derived from the
original attributes xi to numerical registers ri. In particular, the continuous
attributes are standardized (i.e., scaled so as to get mean µ = 0 and standard
deviation σ = 1 in the training set), and the nominal attributes are number-
coded (i.e., their values are encoded by consecutive natural numbers starting
from 0). If no extra preprocessing is applied to the training data T , this implies
that the number of numeric registers has to be at least equal to the number of
original attributes describing x, i.e., nr ≥ n. As this requirement is in con�ict

2This holds for evolutionary feature programming, but not for the coevolutionary variant
of this approach presented in chapter 6.
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with the expected and empirically observed deterioration of FEP's utility (see
4.4.1), some preliminary attribute selection is recommended here to keep nr at
a reasonably small value [186].

The numbercoding of nominal attributes may be sometimes a little bit
deceptive for the learner, as it suggests an ordered domain where there is no
order in fact. Formally, it is better justi�ed to use here `1-of-k' coding or Gray
codes, as it is usually done for neural networks [54]. The downside of such
encodings is the, in some cases enormous, increase of learner's inputs required
(here: number of numeric registers nr). Moreover, our former experience with
similar feature construction approaches has shown that the possible impact of
this simpli�cation to the learning process may be neglected [83]. Thus, the
numbercoding is used here.

For CV tasks, both numeric and image registers have to be prepared for
FEP execution. The simplest way, i.e., copying the input image x into all the
image registers, is correct yet not optimal from practical viewpoint. It seems
more reasonable to advance the learning process already in its beginning, by
providing it in di�erent `views' of the training data. This e�ect may be easily
obtained by di�erentiating the initial contents of image registers. Therefore,
each of the n′r image registers r′j is initialized by an image resulting from global
processing of x by an image �lter. All �lters used for this purpose are unary
image operations (Image→Image) from the set O (see Table 7.3). The choice
of �lters is determined by a separate fragment of FEP encoding, which, for
clarity, was not shown in Fig. 4.3. For each register, its mask is centered on
the most distinctive fragment of the image resulting from this preprocessing;
in practice, it is the brightest point in the processed image. Initially, the
mask is rectangular, and its dimension is determined by a parameter. In the
experiments described further, the initial mask dimensions are 5× 5 pixels).

The numeric registers ri are also initialized according to some information
derived from the input image x. In particular, the center coordinates of the
mask of ith image register determine the contents of numeric registers r2i−1

(horizontal coordinate) and r2i (vertical coordinate). This proceeding is obvi-
ously limited by the number of available numeric registers nr; in general, only
the coordinates of �rst bnr/2c image registers may be stored in this way.

Another motivation for making the register initialization rather sophisti-
cated comes from time complexity considerations. The technical implemen-
tation of the approach (section 7.4.1) maintains a cache memory for initial
register contents and for all the training examples. Image preprocessing tak-
ing place in initialization phase is in fact carried out only once, prior to the
evolutionary run, for all training examples and all registers, and its results
are stored in the cache. When a FEP is then about to be run on a particular
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training image x, the appropriate part of cache is copied to registers, what may
be done quickly even for relatively large images. This technical trick saves a
signi�cant fraction of computation time.

4.4.4 Locality of FEP representation
In this section, we take closer look at FEP representation and its locality.
For this purpose we perform a qualitative analysis of impact the genetic mod-
i�cations have on similarities and dissimilarities of solution phenotypes. In
particular, we limit our considerations here to the crossover operator.

As we use common GA recombination operators to manipulate FEP rep-
resentation, the probability of genetic change is distributed evenly across the
chromosome of solution s. All stages of information processing are therefore
equally likely subject to genetic change. This is a substantially di�erent e�ect
than the behavior observed in GP, where initial processing stages (tree leaves
and nodes close to them) are more likely to be modi�ed than the �nal steps
(tree nodes close to the root and the root itself). Nevertheless, the in�uence
of mutation does depend on instruction placement in FEP code. Some frag-
ments of FEP code are potentially `dead', i.e., the instruction results stored
in registers are overridden by another instructions. The closer Oi to the end
of FEP code, the less likely its result may be overridden by subsequent oper-
ations, and, therefore, the more in�uential it is. Thus, the mutations taking
place close to the end of FEP code are more in�uential on the average than
the mutations a�ecting the initial FEP fragments.

Within a single instruction Oi, mutation a�ects the FEP procedure in
di�erent way depending on its locus. For convenience, we will focus here on a
single instruction Oi; let us denote by Oi and O′

i the instruction before and after
applying the genetic operator, respectively. With respect to the representation
components listed in 4.4.1, a single bit mutation may:
1. change the opcode,
2. change the register the instruction refers to,
3. change the constant arguments used by the instruction,
4. change the mode of operation (local vs. global).

Mutations of type 1 are potentially the strongest ones in terms of their in-
�uence on solution's phenotype and the way the FEP processes the training
data. They may lead to two qualitatively di�erent e�ects. The in�uence of
such mutation is minor if it does not change the category (image � scalar)
of the operation nor its arity; for instance, when an unary image processing
operation is mutated into another unary image processing operation. A major
change occurs when O′

i is qualitatively di�erent from Oi, e.g., when a unary
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image processing operation is replaced by binary image processing operation,
or when an image processing operation is replaced by scalar operation or vice
versa.

Mutations of type 2 result in change of the register the operation refers
to as an argument. Such mutations are less profound than those of type 1.
Appearances to the contrary, their e�ects are stronger for the scalar operations
than for the image ones, as the numeric registers usually contain di�erent
values. The image registers are initialized with the input image preprocessed
by di�erent unary image processing procedures. The contents of the image
registers are in most cases similar in visual terms, and applying mutation on
argument of image operation has usually minor e�ect.

Mutations on constants (type 3) have the smallest in�uence on the work-
ing of FEP procedure. The particular impact on the working of FEP procedure
depends here on operation-speci�c argument interpretation. For most opera-
tions, that impact is minor and may consist, for instance, in change of image
binarization threshold or change of mask width and/or height.

Mutations on operation mode (type 4) may obviously change signi�cantly
the working of a FEP code. The particular e�ect of this type of mutation
depends on the actual mask placement.

The assumed representation implies that interpretation of some chromo-
some fragments is conditional, i.e., it depends on another chromosome frag-
ments. For many operations, some elements of Oi (genes) are ignored; for
instance, the mode of an operation (global/local) is ignored for scalar opera-
tions. This, together with the phenomenon of neutral changes (section 4.4.2)
implies that, when performing experiments on real-world data, the mutation
ratio (probability) has to be set to rather high values to provide a su�ciently
thorough search in the solution space.

In the overall picture, the FEP representation cannot be univocally clas-
si�ed as having high or low locality (cf. section 3.2; [150]). In general terms,
its locality is probably comparable to that of common genetic programming,
where application of the standard mutation operator may also lead to quali-
tative changes (subtree replacement) or quantitative changes (replacement of
constant value in leaf). Analogously, the locality of FEP representation may
be characterized as hybrid, as some variables (e.g., those related to constants)
exhibit high locality, whereas others, with the opcode as the most prominent
example, demonstrate low locality.

For strong advocates of high-locality representations, we emphasize that
lack of high locality is unavoidable for such representations like FEP. This is an
inherent feature of any knowledge-intensive representation, i.e., representations
that heavily relate to background knowledge. With growing complexity of
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problems that we attempt to solve by means of EC and, in particular, by
means of di�erent varieties of genetic programming, it becomes very di�cult
to design high-locality representations. Nevertheless, as long as evolutionary
process is not deprived of the possibility of local search, this situation should
not be perceived as disadvantageous. For FEPs, though some actions of genetic
operators change fundamentally the working of the FEP procedure, causing
warping/switching of �tness landscapes (mutations of type 1, 4 and some of the
mutations of type 2), there are still some possibilities of local search (mutations
of type 3 and some mutations of type 2).

One could even hypothesize that some degree of low locality is here prob-
ably advantageous. The way from the genotype to the �nal evaluation is here
very long and involves FEP decoding, its execution on the body of training
data, and multiple classi�er induction and testing (see section 4.4.5). There-
fore, the chromosome has to undergo substantial changes to impact the �tness.
This also indicates, that the �tness landscape is here probably �lled with many
�at plateaux, which are extremely inconvenient for pure local search. In this
case, far-reaching mutations resulting from low-locality representation may be
bene�cial.

4.4.5 Evaluation
The primary objective of the learning process is to provide good predictive ac-
curacy of the recognition system. From the explanatory perspective of knowl-
edge discovery, the second important goal is to promote simple (readable)
solutions. For the sake of simplicity, this second objective is not explicitly
taken into account in the approach proposed here, for two reasons. Firstly,
taking into account both objectives requires either their aggregation or solving
multi-objective (bi-objective) problem. Aggregation of objectives usually in-
volves parameter setting and often deteriorates the thoroughness of the search.
Multi-objective approach, on the other hand, would signi�cantly complicate
the entire approach [155, 174], and address topics that are beyond scope of
this book. And secondly, there are other means that enable control of the
complexity of the evolved solutions: the parameter l that determines the FEP
length, and the numbers of registers (nr and n′r).

Therefore, the �tness function f used here relies only on the predictive per-
formance. Thorough evaluation of FEP requires its assessment in the context
of the entire training set T . The FEP(s) G encoded in solution s is/are run
for all examples x ∈ T and produces feature vectors {G(x), x ∈ T}. These
vectors, together with decision class labels, constitute the temporary dataset
with examples given in attribute-value form:
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T ′ = {(G(x), d(x)), x ∈ T} (4.3)
In the following, we refer to T ′ as derived dataset.
We want f to promote transformations G that provide better predictive

performance. In feature selection and construction, f usually measures the de-
cision class separability, information contents, coherence, statistical properties,
or consistency provided by G; the term �lter approach has been coined to de-
note such methods. Alternatively, in so-called wrapper approach one estimates
the accuracy of classi�cation that may be attained using G, by carrying out an
internal multiple train-and-test experiment. The practical superiority of the
wrapper approach over �lter approach has been shown in many di�erent con-
texts [29]. This superiority is not surprising if one realizes that wrapper uses
evaluation measure that is somehow `compatible' with the inducer. Moreover,
wrappers do not make demanding assumptions concerning f 's monotonicity
and the types of variables (e.g., most consistency measures accept only nomi-
nal variables)3.

For the aforementioned reasons, EFP relies on wrapper approach. Let
η(U, h) denote the accuracy of classi�cation (recognition ratio) that the clas-
si�er h yields for the set of examples U ⊂ Ω, i.e.,

η(U, h) =
1
|U | |{x ∈ U : h(x) = d(x)}| (4.4)

The derived training set T ′ is randomly partitioned into ncv folds Ti of
possibly equal size:

ncv⋃

i=1

Ti = T ′, Ti ∩ Tj = ∅, i 6= j, −1 ≤ |Ti| − |Tj | ≤ 1 (4.5)

Precisely, though it is not shown for clarity in the above formula, this
partitioning is made with class distribution in mind. The shares of decision
classes in folds should be as close as possible to those in the entire T ′; this
leads to so-called strati�ed cross-validation and provides that Ti's are more
representative to T .

Given this partitioning of T ′, a multiple train-and-test experiment is car-
ried out using an inductive learner L and the resulting average accuracy of
classi�cation becomes the �tness of evaluated solution s and its phenotypic
representation G:

3Strictly speaking, it is the inducer used by the wrapper approach that determines the re-
quirements concerning training data (e.g., some decision rule inducers do not accept numeric
attributes).
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f(s) = f(G) =
1
|T ′|

ncv∑

i=1

η(Ti, L(
ncv⋃

j=1,j 6=i

Tj)) (4.6)

Let us note that the wrapper methodology implies a kind of classi�er bias.
More formally, given two learners L and L′, L 6= L′, the corresponding f values
are usually di�erent for the same s. A representation (mapping) G evaluated
in this way usually provides good results with the same classi�er; however, for
a di�erent classi�er good results are less likely.

The above measure is an estimate of predictive accuracy; the actual test-
set recognition ratio may be di�erent from f(s). In most cases, over�tting
occurs, i.e., f(s) is less than the test-set recognition ratio. Fortunately, from
the evolutionary perspective, the absolute value of this measure is not as crucial
as it appears to be � the mutual relations between �tness values of di�erent
individuals are more important4. For this reason, the random partitioning of
T ′ into folds is made static, i.e., it does not change during the evolutionary
run. Technically, this partitioning is carried out prior to the evolutionary run
and kept �xed.

Note also that f is discrete and can take on only |T ′| + 1 values from the
interval [0, 1]. Thus, when the training set is small, the probability of getting
equal evaluations for even substantially di�erent solutions is quite high. This
weakens the evolutionary pressure, i.e., f 's ability to discriminate good solu-
tions from the better ones. This observation is another argument for using
large training sets, apart from the obvious statement that a big (and repre-
sentative) training set increases learner's chance to produce well-generalizing
classi�er. This is, however, in con�ict with the computational cost, as the more
data, the longer the learning process, and, consequently, the longer computa-
tion of f . This tradeo� is unfortunate but unavoidable; some extra measures
that may be taken to avoid it have been elaborated elsewhere [82], but are not
used here.

Solution evaluation involves here the inductive learning, i.e., an adaptive
process. This makes the proposed approach, and all the approaches based on
wrapper-like �tness assessment, belong to the category of so-called Baldwinian
learning [9, 114, section 15.3]. Baldwin e�ect takes place whenever the chro-
mosome does not determine directly the working of the phenotype, but o�ers
some space for solution's adaptation. Baldwin e�ect is clearly observable in
nature, where organisms learn through interaction with environment during
their lifetime. In the approach proposed here, this adaption a�ects only the

4This is in particular true if selection schemes other than �tness-proportional selection
are used.
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solution's �tness; the traits acquired during learning that takes place within f
do not propagate back to the solution being evaluated. Therefore, the learning
here is Baldwinian but not Lamarckian. Jean-Baptiste Lamarck (1744-1829)
hypothesized that the acquired traits can be inherited. This theory, currently
rather abandoned, is referred to as `Lamarckism' or `Lamarckianism' (see, e.g.,
[182, 131] for more details).

4.5 Motivations for EC and related work
Evolutionary computation has several virtues which make it appealing. It is
a general template of universal search procedure that needs relatively little
task-speci�c tailoring to make it work within a speci�c application. The evo-
lutionary search is usually characterized by low risk of being trapped in local
minima. It has sound rationale in both computational biology and theory
(schemata theorem), and has proven e�ective in a wide spectrum of bench-
marks and real-world applications. In particular, it has found a signi�cant
number of applications in image processing and analysis. It has been found
e�ective for its ability to perform global parallel search in high-dimensional
spaces and to resist the local optima problem. However, in most approaches
the adaptation is limited to parameter optimization; here, we take a further
step and synthesize entire feature extraction procedures (FEPs).

Within the proposed framework, the evolutionary algorithm is used mostly
because the exact search methods are inappropriate here. The solution space
G, containing all features that may be expressed as FEPs, cannot be e�ectively
searched by means of exact methods for the following reasons.
• Search space cardinality. The number of possible feature de�nitions

(FEPs) is prohibitively large. Even for a single FEP working on a single
register (nr = 1), the number of possible realizations amounts to l|O|,
where l denotes FEP length and |O| � the number of operators. This
complexity increases if one considers instruction arguments, multiple reg-
isters, and other elements of FEP representation.

• Properties of the objective function f . We cannot make any as-
sumptions concerning �tness function f that would simplify the search.
The representation of solutions has low locality, and cannot be made
more local if we want to retain the elegant way of providing background
knowledge by means of the elementary operations from O. Note also
that, in case of feature construction, proving any properties of f is much
more di�cult than in case of feature selection, where, e.g., some meth-
ods pro�t from f 's monotonicity (G1 ⊆ G2 ⇒ f(G1) ≤ f(G2), [29]).
Search techniques that would reduce the time complexity by analogously
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exploiting some properties of the objective function f (e.g., Branch and
Bound), are therefore not applicable here.

For these two reasons, only exhaustive search guarantees �nding the global
optimum (with respect to f), but such search algorithm would have exponen-
tial time complexity of order at least l|O|. Heuristic or metaheuristic search
is, therefore, the only plausible method that can be used to approach the fea-
ture construction task posed as above, and that can yield reasonably good
suboptimal solutions in polynomial time. This is consistent with the rather
practical attitude chosen here, where we assume that well-performing subopti-
mal recognition systems are usually satisfactory. In fact, solutions found during
the heuristic search may even be globally optimal; however, as we usually do
not know the application-speci�c upper bound of recognition performance, we
cannot discern such solutions from the suboptimal ones.

For these and other reasons, EC is used for di�erent machine learning-
related purposes for a long time [47, 120]. When used for induction, its major
virtue from ML viewpoint is better thoroughness of hypothesis space search
when compared to conventional inducers, which usually perform a kind of
greedy or steep search [30, p. 255]. EC, as ametaheuristics, o�ers also di�erent
ways of implementing the same ML technique; the outstanding manifestation
of this are the famous `Michigan' [58] and `Pittsburgh' [164] approaches for
GA-based rule induction [114, chapter 12].

In such and similar approaches, EC operates in the space of hypotheses
H; in EFP, evolutionary computation is used for the search in the space of
feature de�nitions G. The evolutionary computation has been also applied
to search such spaces, serving the purpose of transformation of training
data. Most of the work done, however, concerned feature selection. There
are several reports on applying evolutionary computation to feature selection
[173, 190, 142]. Superiority of global selection methods, EC in particular, over
local approaches, has been shown experimentally already in early 90's [59, 8].
Another important virtue of EC-based feature construction and selection con-
sists in the fact, that the the EC-based search may be guided by any objective
function, as opposed to conventional feature selection methods, which usually
accept only limited set of measures (like entropy, coherence, etc.).



Chapter 5

Decomposition of search
problems
5.1 Introduction and motivations
The ability to decompose a complex problem into subproblems is one of the
essential features of intelligence. In particular, the convergence of algorithms
solving search problems may be improved through an appropriate decomposi-
tion. As it will be shown by computational experiments described in chapter 7,
a speci�c way of decomposition of a feature construction problem may reduce
the search time, meant as the time required to reach the global optimum or the
suboptimal solution of satisfactory quality (`good' solutions in the following).
As a result, better solutions are attainable with the same resources at hand.
Problem decomposition usually restricts also the search space; from machine
learning viewpoint, this may help avoiding over�tting.

These potential bene�ts are the major motivations for the work presented
in this chapter. In particular, we introduce the decomposition in a formal way,
and consider the features that a search problem ought to have to enable the
aforementioned gains. We also present the related work on problem decompo-
sition, except for cooperative coevolution, described in section 6.2.

5.2 Related work on problem decomposition
Problem decomposition is one of central research issues in AI and related dis-
ciplines. The process of problem decomposition has been referred to as:
• function decomposition (design of digital circuits),
• subgoal induction (reinforcement learning, inductive logic programming),
• perceptual chunking (cognitive science),
• determination of building blocks (evolutionary computation),
• automatic de�nition of functions (genetic programming),
• cooperative problem solving (multi-agent systems),
• ensembles of classi�ers, products/mixtures of experts (machine learning,

pattern recognition).
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In the following, we review selected contributions from di�erent AI-related
disciplines to present the broad interest in this topic and prove its essential
role in research on intelligent systems. However, the EC-related approaches to
problem decomposition will be subject to a separate review in section 5.4.

One of the �rst formal attempts to problem decomposition comes from the
design of digital circuits. Ashenhurst [6] proposed a function decomposition
method that develops a switching circuit by constructing a nested hierarchy of
tabulated Boolean functions. Both the hierarchy and the functions themselves
are discovered by the decomposition method and are not given in advance.
From the viewpoint of feature construction, the outputs of such functions can
be regarded as new features not present in the original problem statement (set
of original attributes) [191].

In cognitive science and related disciplines, research has been done on
building computational analogs of human problem solving. For in-
stance, the CHREST+ model [90] has been developed to investigate how a
memory of perceptual chunks can be used in problem solving with diagrams.
CHREST+ learns a so-called discrimination network of perceptual chunks by
scanning input image by an `simulated eye'. In [91] an experiment is described,
where several human subjects have been asked to solve a series of tasks con-
sisting in computing unknown quantities in electric circuits using AVOW dia-
grams (Amps Volts Ohms Watts). The tasks have been posed in such a way
that their solving required decomposition (e.g., parallel and serial resistance
connections). CHREST+ has been run on the same data and the results have
been compared.

A good neuronal analog of problem decomposition is the cascade-corre-
lation neural network [35]. In this neural architecture, the network's topol-
ogy changes dynamically during training, with the consecutive hidden layers
being added to the network to compensate for the errors committed by the
previous layers. In terms of problem decomposition, such hidden layers may
be viewed as semi-independent modules that contribute to the overall solution
by cooperative work on error correction.

Introduction of building blocks and rules for their interconnecting usually
imposes some constraints on solution speci�cation. This is why, in some AI
paradigms, attempts have been made to provide for modularity without formal
introduction of building blocks. This applies in particular to neural networks.
In [96], Levy and Pollack consider the RAAM (Recursive Auto-Associative
Memory) model of neural network. In particular, they rede�ne the roles of
building blocks and rules for their interconnecting. Finally, they come to the
conclusion that `treating the building blocks and compositional rules of a sys-
tem as two separate components may be an inherently limiting approach' [96,
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p. 4], and they encourage research that aims at eliminating the traditional
dichotomy of rules and building blocks.

The issue of problem decomposition has been also addressed in machine
learning. In particular, a great deal of work has been done in the area of
compound classi�ers, also referred to asmetaclassi�ers, composite classi�ers,
ensembles of classi�ers, or products/mixtures of experts in pattern recognition.
In most cases, the underlying idea consists in building learning systems that
employ many classi�ers (so-called base classi�ers). Depending on the variant
of the approach, base classi�ers may be homogenous or heterogeneous. Two
basic groups of approaches may be identi�ed in this area:
• The base classi�ers work on the same learning task but are heteroge-

neous, or they are trained in the way that provides their diversi�cation.
When queried, base classi�ers yield decisions that are in the following ag-
gregated (usually by voting) into metaclassi�er's overall response. The
approaches developed are known as bagging, boosting, stacked gener-
alization, etc. (see, e.g., [21]). Both practice (see, e.g., [28, 27]) and
formal premises [112] show the usefulness of such methods of problem
decomposition.

• The learning task to be solved is decomposed prior to learning. This de-
composition usually consists in disassembling the original multiple-class
learning problem into binary (two-class) subproblems. The base classi-
�ers are therefore trained on essentially di�erent problems and disjoint
training sets. When queried, a decision rule has to be used to interpret
the outputs of base classi�ers and produce the �nal decision [64, 63].

Multi-agent systems, quite popular in mainstream AI in the recent decade,
may be also somehow related to the task of problem decomposition [189]. Their
ability to interact by passing messages (sometimes referred to as social ability
[189, p. 4]), makes it possible to deploy them to di�erent subcomponents of
the task to be solved, and implement therefore the cooperative problem solving
or so-called distributed AI [66, p. 20].

Some variants of EC have been also considered in the domain of multiagent
systems. For instance, in [123], EC-based multi-agent system for �ltering and
discovery in WWW documents has been presented. Nevertheless, the link
between multi-agent systems and the topics studied in this book is rather
weak. The methodology of agent systems has been primarily developed in the
framework of strong AI, and the cooperative problem solving was only one of
many research issues there. Therefore, the issue of learning and adaptation of
non-symbolic entities is not well represented within multi-agent systems.
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5.3 Problem decomposition
Feature construction (FC) task, as formulated in section 2.4, is a di�cult task.
Its di�culty arises, �rst of all, from the unknown characteristics of the objective
function f . More precisely, f 's analytical form is very complex, as it depends
on the training set T , the particular feature de�nitions G, and the inductive
learner L used within the wrapper. The �tness landscape of f is characterized
by numerous local optima, �tness saddles, and plateaux.

Despite this complexity, some characteristics of f (and of the learning task)
may be considered and utilized. In the following we show that FC task exhibits
modularity, which makes it good candidate for decomposition. By decompos-
ing the feature construction process, we would like to improve the quality of
induced decision/recognition system (G,h), composed of a trained classi�er
h and a feature mapping G that produces features used by h. The practical
bene�ts we expect from problem decomposition include:
• faster convergence of the learning process, i.e., the possibility of obtaining

better decision systems at the same computational expense, or compa-
rable decision systems in shorter computation time,

• better scalability of the learning algorithm with respect to the size of
the problem (e.g., with respect to number of decision classes, number of
evolved features),

• better understanding of obtained solutions (feature mappings G).
Apart from this pragmatic rationale, another motivation comes from an ob-
servation that FC task exhibits a kind of inherent modularity, as, when using
attribute-value (AV) representation, one usually needs more than one feature to
provide satisfactory separation of decision classes. And, last but not least, one
may consider using the obtained partial solutions (modules) for other learning
tasks, enabling a kind of continuous learning and/or knowledge re-usage.

In the following, we discuss the possibility of decomposing the feature con-
struction task as formulated in Equation 2.4, i.e., as an intertwined search in
the space of hypotheses H and the space of parameters S that determine the
working of the learner:

hs = arg max
h∈H, s∈S

f(h = L(T, s)) (5.1)

Within the proposed framework of feature construction (EFP, see chapter
4), the search in H is performed only by a ML inducer within wrapper-like
�tness function (sec. 4.4.5). Following this design, in the following we do
not consider decomposition of hypotheses h ∈ H, and focus on decomposing
solutions (FEPs) s ∈ S. Thus, in our approach described in chapter 6, the
search in the hypothesis space H does not undergo explicit decomposition,
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except for the case when such decomposition is a side-e�ect of the problem
decomposition that takes place in S. This assumption will somehow in�uence
the following discussion on problem decomposition.

By decomposable we mean problems for which there is a way of composing
solutions s ∈ S from other, mutually disjoint, entities, called hereafter modules
si. This implies the existence of a composition mapping C, which, given k
modules si, i = 1 . . . k, composes them into the overall solution. The learning
task related to a module si will be refereed to as subproblem or subtask, and
the way in which a module si is being incorporated into s � its role.

Note that we do not require C to be bijective, i.e., we do not assume the
existence of an inverse mapping C−1 that decomposes the solutions into mod-
ules, though such a function usually exists. Thus, technically, we do need
to know how to disassembly a solution into modules; the existence of com-
position method C is su�cient. Nevertheless, to give chance for the search
algorithm to reach any solution s ∈ S, C should be an onto-function, i.e.,
∀s ∈ S, ∃v = [s1, . . . , sk] : C(v) = s. Note that the category of decomposable
problems is rather broad.

From evolutionary viewpoint, three essentially di�erent categories of de-
compositions may be identi�ed with respect to the stage of solution evaluation
at which C is applied:
• genotypic decompositions, which take place prior to application of fg; for

such decompositions, composition mapping C takes the following form:

G = fg(s) = fg(C(s1, . . . , sk)) (5.2)

• phenotypic decompositions, which take place after application of fg; for
such decompositions, composition mapping C takes the following form:

G = C(fg(s1), . . . , fg(sk)) (5.3)

• o�-line decompositions, which construct recognition systems from mod-
ules being other (base) recognition systems:

(G,h) = C((G1, h1), . . . , (Gk, hk)) (5.4)

This concept will be useful when introducing di�erent types of decompositions
of EFP in chapter 6. For simplicity, we use the same symbol C to denote
all types of composition mappings, as the type is clearly determined by C's
arguments. As o�-line decompositions take place after training has been com-
pleted, they are not in the focus of this book and will not be considered in the
following.
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For high-locality representations (see section 3.2), the distinction between
genotypic and phenotypic decompositions is rather pointless. In extreme case,
when fg is bijective, there is no signi�cant di�erence between these categories.
However, for low- and medium-locality representations, which are in focus of
this book, this distinction is relevant.

The particular form of C depends heavily on the de�nition of modules si.
A taxonomy of decomposable problems could be build, based on the following
decomposition properties:
• Arity: Is the number of modules k to be given prior to search and does

it remain �xed during search?
• Roles: Are the roles of modules determined prior to search?
• Symmetry: Are the roles of modules �xed? (i.e., does the position of a

module in the C's argument list on the right-hand side of Equation 5.2
matter?)

• Irreducibility: Are the modules irreducible, i.e., does removal of any
module make the solution infeasible? (compare [11, 178, p. 15]).

Here, we limit our interest to methods for which the answers to all the above
questions are positive. Thus, we assume that the composition mapping C is
given prior to the learning (search) process and does not undergo changes (as
opposed to approaches that elaborate it autonomously by, for instance, gradual
hierarchy building [178]). Most of the decompositions of feature construction
task considered in the following are also symmetric and irreducible.

As already mentioned in section 2.1, we assume that each solution s has a
form of a vector of variables sj , s = [ s1, s2, . . . , su ]. In this framework,
problem decomposition may be most naturally realized by partitioning the
variables s is made of. Thus, we identify a module si with a subset (sub-
vector) of original variables sj , and assume that the modules are mutually
disjoint and complete, i.e.,

⋃
i=1...k si = s. The fact that a variable sj is part of

si will be shortly denoted as sj ∈ si. Module size, i.e., the number of variables
it contains, will be denoted by |si|.

5.3.1 Dependency of variables
After designing/choosing a composition mapping C, one can make an attempt
to specify an independent subobjective fi for each module si. If the subob-
jectives fi are mutually independent, they may guide independent searches
for particular modules and they guarantee attaining the same quality of solu-
tions as without decomposition, yet usually with the overall complexity of the
problem signi�cantly reduced. In such a case, the considered problem may be
termed as separable [178, p. 129].
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However, most non-trivial search problems are not separable, as it is not
always possible to de�ne subobjectives. In other words, partitioning of solu-
tions does not automatically imply decomposition of the objective function f .
This is the case when (1) the particular modules are interdependent and the
objective function cannot be decomposed, or (2) there is not enough knowledge
available to the human expert to specify subobjectives. Such problems that
cannot be decomposed in a trivial way are in focus of this book.

In this subsection, inspired by work of Watson [178], we investigate the
separability of learning/optimization problems. We temporarily simplify our
setting and consider single-variable modules, i.e., si = [si]. The terms and
conclusions of this subsection will be subsequently generalized to multiple-
variable modules.

Let us �rst emphasize, that the dependency and interdependency of vari-
ables, introduced formally below, should not be confused with dependency of
variables in statistical terms (usually quanti�ed by means of correlation coef-
�cient or χ2 statistics). Two important di�erences hold here:
1. The statistical dependency refers to relationship that takes place between

variables. Here, on the contrary, to de�ne the relations of variables si and
sj , we will refer to another variable that depends on both of them, namely
the objective/�tness function f . Therefore, the notions introduced later
should be formally de�ned with respect to f , but reference to f will be
dropped in most cases for the sake of clarity.

2. Statistics o�ers measures which describe the relations between variables
quantitatively. Here, we focus on qualitative description of inter-variable
phenomena and model them as relations. The term from evolutionary
that is of interest here is epistasis, usually de�ned as the suppression of
a gene by the e�ect of an unrelated gene [97].

Let us consider a solution s in an u-dimensional solution space S spanned over
continuous, ordinal, or nominal variables si:

s =
[

s1, s2, . . . , su

]T
, s ∈ S (5.5)

Let s|ia denote solution s with the value of i-th variable si substituted by a:

s|ia =
[

s1, . . . , si−1, a, si+1, . . . , su

]T (5.6)

When applying the |i operator, we will sometimes call the una�ected vari-
ables from s (i.e., sj , j 6= i) the context. Let us introduce symbol ∆si(a, b)
to denote the di�erence between values the objective function f assigns to
solutions s|ia and s|ib (also referred to as marginal gradient):

∆si(a, b) ≡ f(s|ia)− f(s|ib) (5.7)
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Independency. We call the ith variable independent from the remaining
variables with respect to f , if and only if, for any pair of the values a, b that
si may take, the di�erence of �tness between two solutions obtained from the
same solution s by substituting si by two values a and b is constant, no matter
what s is:

∀a, b ∈ D(si) : ∆si(a, b) = const(a, b), ∀s ∈ S (5.8)
where notation const(a, b) means a constant is speci�c for the particular pair
(a, b). In case of Cartesian spaces S, this means that the cross-sections of �tness
landscape parallel to the axis of si are equivalent up to a constant. Variables
si and sj are (mutually) independent if the condition 5.8 holds for i and j.
In evolutionary terms, this corresponds to lack of epistasis (see [178]). For
two-variable problems, mutual independence implies planar �tness landscape.
It should be emphasized that this de�nition is in general not equivalent to
variable independency in probabilistic sense.

Weak dependency. Variable si weakly depends on the remaining variables
with respect to f , if and only if the di�erence ∆si used in Equation 5.8 ceases
to be constant for given a and b, however, the changes of s do not a�ect the
sign of ∆si:

∀a, b ∈ D(si) : ∆si(a, b) > 0, ∀s ∈ S ∨
∨∆si(a, b) < 0, ∀s ∈ S ∨ (5.9)
∨∆si(a, b) = 0, ∀s ∈ S

Thus, in weak dependency, the rate of f 's changes may vary for di�erent
contexts composed of the remaining variables sj ,j 6= i, but it is not allowed
to change its direction (gradient). As a consequence, �tness landscape with
all variables weakly dependent or independent is free of any �tness saddles,
i.e., saddles that are non-orthogonal with respect to the axes of two or more
variables. Fitness saddles pose a serious challenge for problem decomposition,
as, to cross a �tness saddle, a search algorithm has to change the values of
two or more variables in a single search step. If these variables are located
in disjoint modules, such a simultaneous change is unlikely, or impossible,
depending on the particular decomposition approach and search algorithm.

A simple example of objective function that incorporates weakly indepen-
dent variables is the sphere function, f(s) =

∑u
i=1 s2

i , or, f(s1, s2) = s2
1 + s2

2 in
two-dimensional case.

Dependency. Variable si depends on the remaining variables with respect
to f if and only if weak dependency (Equation 5.9) ceases to hold, i.e.,

∃ a, b ∈ D(si) : ∃s, r ∈ S : ∆si(a, b)∆ri(a, b) ≤ 0 (5.10)
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Such a case may be referred to as weak epistasis [178]. That means that
the changes in the context, i.e., the values of remaining variables sj ,j 6= i, may
reverse gradient sign along the axis of si. In evolutionary terms, this means
that the marginal local search on si, i.e., a search that modi�es only values of
si, may be `confused' by the in�uence of the remaining variables. However, the
marginal searches on the other variables do not have to be mutually a�ected
by si in the same way: the dependency does not have to be symmetric. For
a simple illustration, see the case of two discrete variables presented in Table
5.1. Here, s2 (si, variable of interest) depends on s1 (context), as changes of s1

reverse gradient sign along s2. However, the opposite does not hold (changes
of s2 do not reverse gradient sign along s1).

Dependency may be viewed as the result of di�erent magnitudes with which
particular variables in�uence the objective function f . In the example pre-
sented in Table 5.1, modi�cations of s1 change the value of f by 2 on the
average, whereas modi�cations of s2 change the value of f by 1 on the average.
By changing the degree in which f depends on the variables, one could eas-
ily transform this exemplary problem into problem with mutual dependency1.
Such transformation cannot be attained by a simple scaling of f 's values.

Table 5.1: A simple example of problem with dependent variables

s1 s2 f(s1, s2)

0 0 0
0 1 1
1 0 3
1 1 2

Full dependency. One can imagine an extreme case, in which, for some
values a, b of our variable of interest si, any change of value of the remain-
ing variables sj , j 6= i reverses the sign of marginal gradient along the axis
of ai. Appearances to the contrary, such a case is quite plausible, even for
real-worldproblems, especially for discrete binary variables. To denote such a

1The e�ect of changing one of dependent subcomponents is sometimes described as de-
forming or warping the �tness landscapes associated with each of the other interdependent
subcomponents [74]. Note that, for very di�cult learning/optimization problems with heav-
ily dependent variables, a change of particular variable may virtually replace/switch the
�tness landscape for the other component(s). For such cases, switching �tness landscapes
would be even more appropriate term, especially when discrete variables are considered.
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situation, let us de�ne the full dependency with respect to f as follows:

∃a, b ∈ D(si), a 6= b : ∀s, r, s 6= r, ∆si : (a, b)∆ri(a, b) < 0 (5.11)

If we assume that Table 5.1 lists all feasible solutions for our exemplary
problem, s2 fully depends on s1. Another simple example of fully dependent
variables is the binary exclusive-or (EXOR, XOR) problem with the objective
function given as follows:

f(s) =
{

0, s1 = s2

1, otherwise
, si ∈ {0, 1}, i = {1, 2} (5.12)

In this problem, any change of variable s1changes the sign of gradient on
variable s2, and vice versa. The same property will hold for k > 2 dimensional
exclusive-or problem (compare the i� problem in [178]).

Interdependency. For a two-variable problem, the variables s1 and s2 are
interdependent if Equation 5.10 is reciprocal, i.e., it holds for both variables.
In the evolution theory, this notion is usually referred to as di�cult epistasis
[178]. For instance, variables s1 and s2 in example presented in Table 5.1 are
not interdependent, as s1 does not depend on s2. On the contrary, variables
in problem EXOR (5.12) are interdependent. Another example of interdepen-
dency in continuous domain is the minimization of function f(s1, s2) = |s1−s2|.

5.3.2 Dependency of modules
In previous section, for sake of simplicity, we focused on single variables (or,
single-variable modules si = [si]). Now, we can generalize the terms introduced
there to multi-variable modules. Let si denote a variable that is part of module
si. Given a pair of modules si = [. . . , si, . . .] and sj = [. . . , sj , . . .] ,
• si is independent from sj , if none of the variables si depends on any

variable sj ,
• si and sj are independent, if all pairs of variables (si, sj) are mutually

independent,
• si depends on sj , if any of the variables si depends on any variable sj ,
• si and sj are interdependent, if any pair of variables (si, sj) is interde-

pendent.
Again, all these notions are formally de�ned with respect to f , though it is not
denoted here for brevity.

Note that these de�nitions leave much space for relationships of intermedi-
ate strength. For instance, for a pair of modules si and sj , si being dependant
on sj , one could measure the degree of dependency depending on, for instance,
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the number of dependent variable pairs. In the simplest case, such degree could
be de�ned as

|{(si, sj) : si depends on sj}|
|si||sj | (5.13)

The potential existence of modules of di�erent degree of dependency is one
of the premises of the approach described in chapter 6.

5.3.3 Nearly decomposable problems
The notions of independency, dependency, and interdependency are useful tools
to describe di�culties that may be encountered during search/learning, and to
test the possibility of decomposing di�erent learning tasks. With these tools
at hand, two extreme settings for problem decomposition may be identi�ed.

1. With all variables independent, the search may be performed in
each dimension independently and the problem is separable. To �nd the best
values s+

j for variables in module sj , it is enough to perform a simple local
search in the subspace related to this module only, using literally any �xed
context (values) of variables in remaining modules. We refer to such a search
as marginal search/learning, to distinguish it from the search that takes place
in the original search space S. The global solution s+ may be then constructed
o�-line by composing the marginal solutions s+

i :

s+ = C(s+
1 , . . . , s+

k ) (5.14)

In particular, if the algorithm used in marginal searches is exact (i.e., it
guarantees �nding the global optimum), s+ = s∗. Provided we can �nd the
optimal value for each module using this procedure, the global optimality of the
resulting overall solution is guaranteed. This case is very desirable, however,
not common in real-world applications.

2. The presence of interdependent variables in problem formulation
makes it complex. If si depends on sj , there is no value of sj that could
serve as a �xed context for the marginal search in subspace related to si, with
the property that it would not lead to discarding some valuable solutions for
si. In extreme case, full interdependency disables any bene�ts from problem
decomposition, as literally any change of any variable reverses the gradient for
other variables. Problems with all variables interdependent are inseparable;
a local marginal search in such a case fails to �nd the marginal optimal solution
s∗i , and the heuristic marginal searches usually lead to result deterioration, i.e.,

f(C(s+
1 , . . . , s+

n )) < f(s+) (5.15)
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where s+ denotes the best solution found in global search, and s+
j denotes the

best marginal solution found for jth module.
In graphical interpretation, interdependent variables cause presence of �t-

ness saddles. For a local search, to improve the current solution, i.e., to move
from the current local optimum to another (desirably better) local optimum,
more than one variable/module has to change. In a sense, fully interdependent
variables correspond to irreducible complexity [11] in computational biology:
change of any system's components makes the system cease to function (here:
deteriorates �tness).

The consequences of the above distinction are critical for exact search al-
gorithms that guarantee �nding global optimum. However, as mentioned in
section 4.5, in this contribution we represent a practical attitude and aim at
reasonably good local optima. For such problems, decomposition may be still
useful, even if there is some degree of dependency between modules. Such
problems with intermediate dependency (de�ned, e.g., as in Equation 5.13),
are referred to as nearly decomposable [161, 179] or exhibiting modular de-
pendency [178]. It has been hypothesized, that most of the non-separable
real-world problems belong to this category. This is one of central motivations
of the approach presented in chapter 6.

In nearly decomposable problems, interdependency is weakened in one or
more of the following ways:
1. Only some of the modules are interdependent (cf. Eq. 5.13). This lowers

the number of dimensions that are `entangled' in interdependency.
2. The undesired gradient reversal takes place only for some variable val-

ues (or value intervals, etc.). This case may be characterized as a kind
of local interdependency. Unless good local optima are not maliciously
surrounded by �tness saddles, marginal searches proceed almost inde-
pendently.

The approach described in chapter 6 bene�ts from the nearly decomposable
nature of feature construction task.

5.4 EC-based approaches to problem decomposition
In this section, we provide an overview of selected EC research endeavours
related to problem decomposability, variable dependency, nearly decomposable
problems, and other issues discussed in this chapter. Within EC community,
problem decomposition and, in particular, providing modular design of the
problem, are widely recognized as one of the major prerequisites for scalability
of evolutionary search [99]. Due to exponential computational complexity of
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most real-world problems and benchmarks, many varieties of EC do not scale
well with the size of the problem.

The NK landscapes introduced by Kau�man [73] were probably one of
the �rst and are one of the most often cited decomposability-related research
tools. NK landscapes, optimization tasks given by �tness function de�ned
over �xed-length Boolean strings, enable analysing di�erent features of genetic
representations. They o�er an convenient tool for analysing computational
complexity of the search for di�erent representation (especially with respect
to their locality). Kau�man showed that, if the epistatic in�uences for �tness
contributions of NK landscapes are linearly `localized,' the optimal �tness can
be found in polynomial time. If, however, the epistatic in�uences are from
arbitrarily chosen positions of the string, the problem becomes NP-complete.

The automatically de�ned functions (ADFs) proposed by Koza [76] within
the paradigm of genetic programming are undoubtedly one of the most com-
monly known manifestations of the EC research on problem decomposition.
In this approach, the useful solution components are being encapsulated into
�xed building blocks that do not undergo further changes. The utility of this
methodology has been proved in many experiments; it became so popular that
it often constitutes a built-in feature of EC software packages (see, e.g., [102]).

Reeves and Wright [143] presented some formal considerations concerning
epistasis and, interestingly, relate the genetic algorithm to experimental design.
They also analysed the impact that the limited size of population (and, there-
fore, its limited representativeness of the universe) has on the computation of
epistasis factors. However, this analysis was limited to �tness functions that
are linear with respect to the values of the bits of individual chromosomes.

The concept of a module (see section 5.3) exhibits some similarity to build-
ing block (BB), which is usually de�ned as a substructure of the chromosome
that allows it to match a schema [52]. The fundamental di�erence consists in
the fact, that building blocks are rather theoretical entities used to describe
the dynamics of an evolutionary process, while modules are external, de�ned
usually a priori, structures. Nevertheless, some work has been done in past,
concerning explicit introduction of BBs into the evolutionary process. De Jong
and Oates [70] proposed to coevolve BBs and their assemblies. Thanks to that,
they enable building of hierarchical constructs. Harik [52] introduced explicit
gene linkage to promote building blocks. Technically, this consists in intertwin-
ing a kind of dynamic gene rearrangement with evolutionary search. Juillé [71]
proposed a kind of look-ahead search that identi�es e�ective combinations of
building blocks.

In their work on emerging modularity [100], Lipson, Pollack, and Suh
present an interesting experiment, in which individuals are represented as
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ternary matrices A, with value 0 denoting lack of connection between modules,
and +1 and −1 denote, respectively, positive and negative dependency (feed-
back) between components corresponding to row and column. An individual's
phenotype is built by multiplying such a matrix with vector E representing in-
dividual's environment. In that multiplication, elements of A select (positively
or negatively) or de-select (zero) particular components from the environment.
In this setting, modularity shows up as grouping of nonzero elements close to
the main A diagonal. In some cases, the modularity may emerge as the result
of the variability of the environment in which the individuals function. That
result has been, however, obtained using a speci�c and rather controversial
modularity (coupling) measure (cf. [46]).

A special case of problem decomposition is enabled within coevolution,
mostly in its cooperative variant [163, 137, 138]. This methodology, fundamen-
tal for this contribution, it is introduced separately in the next chapter. Sere-
dynski, Zomaya, and Bouvry [159] apply cooperative coevolution (CC, chapter
6), to multivariable function optimization. CC is applied to several benchmark
functions (sphere model, Rosenbrock's function, Rastrigin's function, Schwe-
fel's function, Ackley's function, and Griewank's function). Results con�rm
the expected behavior of CC: for multimodal functions with di�cult interac-
tions between variables (Rosenbrock, Shwefel, Ackley, and Griewank functions)
the CC approach outperforms standard GA and the Loosely Coupled Genetic
Algorithm (LCGA) in a statistically signi�cant way. When the function is
unimodal (sphere) or the interactions between variables are limited to summa-
tion and, thus, the problem may be trivially decomposed (Rastrigin), CC does
not beat LCGA, though it is still better than standard GA. However, LCGA
requires manual design of the so-called graph of interaction.

To take coevolution one step further and enable it to build hierarchical
cooperation structures, Watson [178] considers so-called compositional evolu-
tion and symbiotic encapsulation. The approach, called Symbiogenetic Evolu-
tionary Adaptation Model (SEAM), starts from initializing the population of
solutions and solution components with many di�erent small entities. Pairs of
entities are then picked at random to see if they might form a stable symbiotic
join. If the overall �tness of either entity alone could be, dependent on envi-
ronmental contexts, greater than the �tness of the entity with the proposed
symbiotic partner then the composition is deemed unstable and the original
entities are returned to the ecosystem. Otherwise the composition is deemed
stable and the two entities always cooccur together in future. The process of
building and selecting compositions of entities is repeated, eventually building
larger and larger composite entities.



Chapter 6

Coevolutionary feature
programming
6.1 Introduction
In this chapter we motivate and present a methodology for decomposing the
task of Evolutionary Feature Programming as presented in chapter 4. In par-
ticular, we provide rationale for the working hypothesis that the problem of ex-
plicit feature construction is nearly decomposable (see section 5.3) and propose
several di�erent ways of decomposing the EFP. To perform learning/search
in the resulting decomposed subspaces, we apply the cooperative coevolution
(CC). This leads to qualitatively new approach, which is in the following re-
ferred to as coevolutionary feature programming (CFP).

The potential bene�ts we expect from problem decomposition have been
already listed at the beginning of chapter 5. Those include: faster convergence
of the learning process, better scalability of learning with respect to the size of
the problem, and better understanding of obtained solutions. These features
of coevolution will be subsequently veri�ed within computational experiments
described in chapter 7.

6.2 Cooperative coevolution
In general terms, coevolution may be regarded as a case of evolutionary com-
putation where evaluation of individuals is in�uenced by other evolving indi-
viduals [70, p. 2]. This de�nition, though very broad, points to the essential
feature of coevolution, i.e., the inter-individual interaction taking place during
evaluation. This makes coevolution very special when compared to standard
EC, where individuals interact only with the environment embodied by the
�tness function f . The particular form of in�uence depends on the variant of
coevolution. Axelrod's work on Prisoner's Dilemma [7] is probably the �rst
contribution introducing coevolutionary computation.

What most coevolutionary methods have in common and what makes them
di�erent from standard EC is the partitioning of the population of individuals
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into disjoint collections, called subpopulations Pi (species or demes in evolu-
tionary theory). For brevity, in the following we refer to them as populations.
Historically, two major varieties of coevolution have been developed: competi-
tive coevolution and cooperative coevolution. In the former variant, individuals
from populations compete against each other. In the evaluation phase, tourna-
ments (contests) are being organized, in which pairs or groups of individuals
from populations compete in an application-dependant contest. The result
of each contest is usually binary or three-state (when ties are accepted); in
continuous variant, individuals receive score re�ecting the `degree of winning'.
The result of the contest(s) is essentially the only feedback that evolutionary
process receives from the external world. There is no external �tness func-
tion in the common sense of this term; rather than that, the results of several
contests determine individual's �tness. A class of such problems is sometimes
referred to as adversarial problems [145, p. 2].

The competitive coevolution scheme usually imposes a kind of asymmetry
on the task setting. This is why it is common here to call populations `preda-
tors' and `preys', `parasites' and `hosts', `problem generators' and `problem
solvers', `teachers' and `learners', or `candidates' and `tests' [23]. Encouraging
results have been obtained when applying competitive coevolution to learn-
ing game playing strategies [146, 40], in particular, in the domain of so-called
di�erential games [160]. In [4], genetically-evolved neural networks, receiv-
ing full board state as an input, have been used for playing Othello game.
Among more practical domains, Rosin et al. applied competitive coevolution
to research on antiviral drug resistance [147]. Ficici and Pollack [39] used a
Pareto-coevolutionary approach for density classi�cation (the so-called major-
ity function). In their approach, the set of learners co-evolves with the set
of teachers, and the relation of Pareto-domination among the set of learners
refers to learner's performance on particular tasks posed by teachers. Spector
[165] proposed autoconstructive evolution, a framework for evolutionary com-
putation in which the machinery of reproduction and diversi�cation evolves
within the individuals of an evolving population of problems solvers. Ed-
monds [33] and Teller [168] suggested analogous approaches that aimed at
coevolving the genetic operators. In research on these variants, interesting yet
sometimes troublesome phenomena (dynamics patterns) have been identi�ed,
including so-called arms-race (Red Queen paradox), disengagement (mediocre
stable states), and cycling.

As such, the competitive variant of coevolution does not provide for prob-
lem decomposition. On the contrary, the cooperative coevolution (CC) [55, 163,
137, 138], sometimes referred also to as symbiotic [145, p.8] or parasitic [55]
coevolution, is a variant of evolutionary computation that o�ers some means
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to decompose a complex problem. CC has been extensively studied on arti-
�cial problems that are more or less deceptive from the viewpoint of variable
interdependency. The common test problems veri�ed in computational exper-
iments include Royal Road function, revised Royal Road, concatenated trap
functions, and hyperplane de�ned functions.

Cooperative coevolution requires a modular representation of the prob-
lem (corresponding to the mapping C), such that individuals from particu-
lar populations encode disjoint parts of the solution. Therefore, population
Pi, i = 1 . . . np, is here delegated to work on the ith fragment of the whole
solution. A piece of solution that a population is working on corresponds to
the module si de�ned in chapter 5; thus, one population may be delegated to
work on one or more variables sj . The assembly of solution from modules is
application/problem-dependant and implemented composition mapping C (cf.
Eq. 5.2).

In the following we assume that the problem being solved is inseparable (see
section 5.3.3), and so the individuals cannot be evaluated separately (separa-
ble problems may be solved by engaging independent searches in corresponding
subspaces, so they do not require any special handling). Thus, it is the evalu-
ation that binds this `evolution of coadapted subcomponents' [138] and forces
the evolutionary processes in populations to cooperate here.

For the purpose of evaluation, for each population, so-called representative
individual or, shortly, representative is maintained (see Fig. 6.1). The repre-
sentative of ith population Pi is denoted by ri in the following, and the working
vector of current representatives of all populations by R = [r1, . . . , rnp ]. When
an individual p ∈ Pi is to be evaluated, it is combined with representatives rj

of the remaining populations Pj , j 6= i, to form a complete solution s that can
be evaluated. The �tness f(s) resulting from this evaluation is assigned to p,
but it does not a�ect any individuals nor representatives from the remaining
populations. In this context, both individuals p and representatives ri imple-
ment modules si introduced in chapter 5 (see page 67), and the number of
modules k takes on the role of the number of populations np (k = np).

As a result, the evolutionary search in a population is driven by the context
build up by the representatives of remaining populations, which are usually
updated after each generation. The choice of representatives ri is, therefore,
critical for the convergence of the evolution process. Although many di�er-
ent variants are possible here, it has been shown that so-called CCA-1 scheme
works best [183]. In the �rst generation, a representative of ith population is
an individual drawn randomly from it. In the following generations, represen-
tative ri of ith population is the best individual with respect to the previous
generation (see Algorithm 1). Note therefore, that the working best solution



80 Chapter 6. Coevolutionary feature programming

Solution 
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Figure 6.1: Combining an individual p and representatives rj of remaining popula-
tions for the purpose of evaluation

s+ is in general not equivalent to the (hypothetical) solution that could be
build from representatives ri of all populations, i.e., s+ 6= C(r1, . . . , rnp).

The major advantage of CC is that it provides the possibility of breaking up
a complex problem into subproblems without specifying explicitly the objectives
for them. This makes CC especially appealing to a broad class of practical
problems, where it is possible to design a decomposition into subproblems,
however, the objective functions for the particular subproblems are not known.
The way the individuals from populations cooperate emerges as the evolution
proceeds.

In the following, we discuss the important features of CC (Algorithm 1).
First of all, if we adapt the viewpoint of a particular population Pi, CC re-
sembles to a great extent the standard EA; as a matter of fact, EA may be
treated as special case of CC with np = 1. If we assume that the represen-
tatives rj , j 6= i of the remaining populations are inherent components of the
�tness function f , individuals are evaluated by f , undergo selection and re-
combination as in common EA. The only di�erence consists in the mutual
in�uence of evaluated individuals and �tness function, which in fact means
that current evaluations of individuals a�ect the working of the �tness func-
tion in future. Therefore, from the viewpoint of particular population, �tness
function changes as evolution proceeds. This phenomenon may be illustrated
in the following cycle.
1. Fitness function assigns �tness to an individual p ∈ Pi.
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Algorithm 1 The cooperative coevolution algorithm.
Given: Fitness function f
Returns: Suboptimal best solution found in search s+

for each population Pi

Populate Pi with randomly created individuals
ri ← randomly chosen individual from Pi

end for
s+ ← randomly selected solution
while not(termination criteria)

for each population Pi

for each individual p ∈ Pi

Build solution s by composing p with representatives rj of Pj , j 6= i:
s ← C(r1, . . . , ri−1,p, ri+1, . . . , rnp)

Evaluate s and assign its �tness to p: f(p) ← f(s)
if f(s) > f(s+) then s+ ← s

end for
end for
for each population Pi

Selection: select mating candidates from Pi with respect to f
Set Pi ← ∅
Recombination: mate parents and populate Pi with their o�spring
Mutate selected individuals from Pi

Representative's update: ri ← arg maxp∈Pi f(p)
end for

end while
return s+

2. This evaluation may in�uence the choice of the representative ri of Pi

(in particular, p may become ri in the next generation).
3. The choice of ri in�uences the working of �tness function in remaining

populations Pj , j 6= i; this has an impact on the choice of their represen-
tatives rj .

4. The choice of representatives rj , j 6= i a�ects, in turn, the in�uence of
the �tness function on the population Pi.

This illustration helps us also to avoid some misconception concerning CC. No-
tice that, appearances to the contrary, coevolution is not equivalent to search
driven by dynamic (changing with time) objective function. Apparently, from
the viewpoint of a particular population, as the evaluation of the same indi-
vidual may vary from generation to generation, the objective function indeed
changes with time. Note however, that these changes are result of evolutionary
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processes going on in remaining populations. Therefore, this setting is sym-
metric, i.e., the population in�uences in turn the evolutionary search in the
remaining populations. This is the fundamental di�erence between coevolution
and evolution with objective function changing with time: in the latter case,
objective function changes due to some external rules but cannot be in�uenced
by the evaluations.

Another important observation is that only one part (module) of the work-
ing best solution s+ may be improved in a single generation of the algorithm,
where generation is equivalent to one iteration of the outer `while(not termina-
tion criteria)' loop in Algorithm 1. As a result, the track of s+ in the solution
space is composed of sections that are parallel to axes of variables (as opposed
to EA, where this track is arbitrary). Thus, CC has in general lower search
mobility than standard EA.

If no other means are applied, CC does not reduce the dimensionality nor
cardinality of the search space. Rather than that, CC implies speci�c partition-
ing of the search space. Conventional methods, like Branch and Bound [26] or
constraint propagation, constrained programming, and constrained logic pro-
gramming [45, 60] (widely known within CV community; see [176]), impose
some constraints on selected variables. In coevolution, on the contrary, each
population/module works in a separate subset of problem dimensions (vari-
ables si).

CC does not consider explicit contributions that each component/module
is making to the solution as a whole, i.e., it makes no attempt to estimate to
what extent an individual from population Pi improves the current solution.
However, implicitly, di�erent �tness values assigned to particular individuals
in the same population impose some selective pressure.�Thus, e�ectively, con-
tributions do exist in CC. This is the way CC solves (or rather avoids) the
so-called credit assignment problem, which can be traced back to early at-
tempts by Samuel [154] to apply machine learning to the game of checkers.
Samuel observed that, given a set of rules for playing a game, we can evaluate
the �tness of the rule set as a whole by letting it play actual games against
alternative rule sets or human opponents while keeping track of how often it
wins. However, it is far from obvious how much credit a single rule within the
rule set should receive given a win, or how much blame the rule should accept
given a loss.

Notice that, informally, cooperation takes place even in regular evolution-
ary algorithm. When the genetic material is exchanged as a result of crossover
between di�erent species (subsets of individuals) in the population, one can
view this process as cooperation that takes place within the population. Alter-
natively, Watson [178] interestingly states that the regular genetic algorithm
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may be viewed as coevolution where the schemata coevolve. However, this
process is out of control, and, �rst of all, the problem decomposition is not
fully supported there.

Appearances to the contrary, competitive and cooperative varieties of co-
evolution are much more alike than they seem to be. The only signi�cant
di�erence may be characterized as follows. In competitive coevolution, there
is an inherent assymmetry in the evaluation process: predator's success equals
prey's failure, and vice versa, and the contest result a�ects both of them, i.e.,
all competitors (evaluated entities). In CC, the fact that an individual from
a population obtained good evaluation does not deteriorate evaluation of any
other individuals from the remaining populations; precisely, it does not a�ect
anything except from that individual1.

Note also that some far analogies may be drawn between coevolution and
parallel [distributed] genetic algorithm [135, 128]. Some of the varieties of
parallel genetic algorithms involve the presence of multiple (sub)populations.
However, these two models are not equivalent, as parallel genetic algorithm
usually does not involve any explicit cooperation/competition between popu-
lations.

6.3 The canonical form of coevolutionary feature
programming

The underlying idea of coevolutionary feature programming (CFP) consists
in decomposing the task of evolutionary feature programming by means of
cooperative coevolution. Thus, the overall architecture of EFP (cf. Fig. 4.1) is
preserved in CFP, however, the search engine (`Genetic Algorithm' in Fig. 4.1)
is replaced by the CC algorithm (Algorithm 1).

Similarly to EFP, each solution s corresponds to (encodes) feature space
mapping G, and its evaluation by means of �tness function f consists in cross-
validation on the training data (wrapper approach). The best solution s+

found in search or, precisely, feature mapping G+ de�ned by it, together with
the trained classi�er h, constitute the resulting decision/recognition system
(G+, h). However, this time particular individuals p in populations corre-
spond only to some components of the mapping G. The particular varieties of
CFP, presented in the following, di�er in the way the complete G's (FEPs)
are assembled by the composition mapping C from individuals p taken from
populations.

1Recently, Bucci [22] questioned the terms `competitive' and `cooperative' and proposed
to use alternatively the words `interactionist' and `compositional', respectively.
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6.4 Decompositions of feature construction task
According to formula 5.2, problem decomposition consists in designing a map-
ping C that allows for assembling the complete solution from some modules.
For most problems, the total number of possible problem decompositions (C
mappings) is very large. However, only some of them enable the genotype-
phenotype mapping to preserve the modularity. Quite obviously, we are inter-
ested in C's which increase the chance of �nding FEPs that outperform FEPs
obtained using EFP. To design such decompositions, we use the background
knowledge about the nature of explicit feature construction task and the way
the solutions are evaluated.

In the following, we describe four qualitatively di�erent decompositions.
The �rst one is genotypic, and the remaining ones are phenotypic (cf. Equa-
tions 5.2 and 5.3). Their description is ordered with respect to the stage of
solution evaluation at which they take place. In CC-related terms, they corre-
spond to di�erent abstraction levels on which the cooperation takes place.

6.4.1 Decomposition on instruction level
In instruction-level decomposition, each population is delegated to work on a
speci�c continuous fragment of FEP. Populations cooperate here, trying to
design FEP code chunks that form together a well-discriminating feature map-
ping G. Formally, a module si is here a continuous (uninterrupted) fragment
(subsequence) of FEP code, i.e.,

si =
[

Oj , Oj+1, . . . , Oj+li−1

]
(6.1)

where li denotes the length of FEP code chunk assigned to module si. The
compositional mapping C is a straightforward concatenation of modules pre-
serving the order of instructions as given by indices. Formula 6.2 describes the
process of solution evaluation for this decomposition method:

f(s) = fp(G(C(s1, . . . , snp))) (6.2)

For clarity, this process is presented here in phenotypic terms. However, as
the subsequences of FEP instructions corresponds one-to-one to subsequences
of bit strings in the genotype, this way of decomposition should be considered
as a genotypic.

For simplicity, we consider only instruction-level decompositions that use
modules of equal size, i.e., |si| = |sj |, ∀i, j = 1, . . . , k, where k is the number
of modules (k = np). Moreover, it seems reasonable to assume that FEP
instructions are indivisible, in the sense that module boundaries cannot tear
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instructions apart, though this assumption is not necessary. For this type of
decomposition, the number of evolved features m is determined by the number
of numeric registers nr, m = nr and does not depend on the number of modules.
Note also that, as this type of decomposition is genotypic, it may signi�cantly
a�ect the purely evolutionary aspects of the search/learning; for instance, the
more populations, the shorter individual's chromosome, and the less e�ective
the crossover.

6.4.2 Decomposition on feature level
In case of nontrivial real-world ML and CV applications, there is need of in-
ducing multiple features. Even for binary learning tasks, one scalar feature
is usually not enough to discriminate decision classes if they are entangled in
decision space in a sophisticated way. The importance of possible inter-feature
interactions is obvious and observable almost in every real-world application
(see section 2.3 and, for instance [29, 30, p. 252]).

The constructed features should discriminate the decision classes as well
as possible on one hand, and be mutually non-redundant on the other. In
more general terms, what we hope for is synergy. Synergy in general refers to
`working together of two or more elements to produce an e�ect greater than
the sum of their individual e�ects' [97]. However, the word `sum' should not be
taken literally here, as the upper limit 1.0 on the �tness function f cannot be
exceeded. Rather than that, the individual performances of particular features
should serve as reference here.

Formally, features are mutually redundant if their combined e�ect is smaller
than or equal to the individual contributions. For two features g1 and g2, this
means:

f([g1, g2]) ≤ max(f(g1), f(g2))

where f([g1, g2]) denotes the �tness obtained using features g1 and g2 simul-
taneously, and f(g1) and f(g2) denote the �tness obtained using respectively
feature g1and g2 alone.

Such redundancy may be usually detected using, for instance, statistical
tools, like correlation (continuous features) or χ2 (nominal features). However,
the statistical apparatus fails if the dependencies are di�cult (e.g., complex
non-linear functional dependency), a�ected by noise, or when the sample (here:
training set T ) size is not big enough to provide statistical evidence.

The synergy of features takes place when the features considered together
provide better value of the objective function than any of them could attain
individually:

f([g1, g2]) > max(f(g1), f(g2))
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This is clearly the desirable case. Apparently, to stimulate synergy, one
could construct several di�erent features independently, but the chance that
such features would complement each other is scant. More probably, the re-
sulting features, as being drawn by similar traits in the training data, would
be highly correlated. To bene�t from feature synergy, the processes that elab-
orate particular features have to exchange some information. This shows that
explicit feature construction task, when decomposed on feature level, is not
separable.

EFP enables simultaneous computation of multiple features within one
FEP; this is controlled by the number of scalar registers nr. However, as
already discussed in section 4.4.1, large number of registers call for longer
FEPs; that, in turn, increases prohibitively the search/learning time. Thus,
we introduce decomposition on feature level, which consists in delegating each
population Pi to work on a separate FEP; each individual p encodes here,
therefore, a complete FEP. Populations cooperate, trying to design FEPs that
complement each other. For each module si, we �rst decode it and obtain
the FEP Gi = fg(si), and then run it independently on the training data
to produce the derived training data sets T ′i . These steps proceed for each
module separately. The fusion of information takes place after all the modules
si produce their T ′i s: the composition mapping C performs here a join (in a
database sense) of the feature vectors Gi(x) produced by particular modules
si for all examples x ∈ T (cf. Equation 4.3):

T ′ = {(C(G1(x), . . . , Gnp(x)), d(x)), x ∈ T} (6.3)

Formula 6.4 describes the process of solution evaluation for feature-level
decomposition:

f(s) = fp(C(G(s1), . . . , G(snp))) (6.4)
The number of evolved features m is here a multiple of the number of

populations np. If the values computed in all nr numeric registers for all
populations are interpreted as features, m = nP nr.

6.4.3 Decomposition on class level
Many real-world learning problems are characterized by the presence of mul-
tiple (nd > 2) decision classes. To classify correctly an unknown example, the
learner has to discriminate it from examples representing all the remaining
decision classes. Such multi-class learning tasks exhibit inherent modularity
due to the presence of multiple decision classes, and are, therefore, a suitable
candidates for problem decomposition.
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Instead of solving multi-class task as one learning task, one can decompose
it into binary base tasks, and delegate an independent base learner to solve
each of them. The base learners produce so-called base classi�ers. Usually,
one obtains decomposition by applying one-versus-all approach (each base
classi�er discriminates one decision class from the remaining ones) or pair-
wise approach (each base classi�er discriminates between a pair of decision
classes; [65]). Though other decomposition schemes are conceptually possible,
these two have been extensively studied in past and have been shortly re-
viewed in section 5.2. Given nd-class learning task and binary base classi�ers
(dichotomisers), they require nd and nd(nd−1)/2 base classi�ers, respectively.

Combining such multiple-classi�er approach with feature construction may
be viewed as class-level decomposition of feature construction task. This is
obviously separable case that does not require cooperation. A feature con-
struction process is ran separately for each ith base learning task, producing
a base decision system (Gi, hi). The composition takes place o�-line here, af-
ter the learning processes related to particular subproblems (decision classes)
produce (Gi, hi), and consists in assembling them into one decision system
(G,h):

(G,h) = C((G1, h1), . . . , (Gk, hk)) (6.5)
Within the real-world case studies described in the following, we use the

one-vs.-all decomposition (k = nd) and simple aggregation rule that produces
univocal class assignment to ith decision class if the base classi�er hi (and only
this one) yields positive response. Other response patterns (no base classi�er
responding or more than one base classi�er responding) are interpreted as `no-
decision', and are considered as errors.

6.4.4 Decomposition on decision level
The last decomposition method considered here, decomposition on decision
level, relates to the concept of compound classi�ers. This way of decomposition
resembles the class-level decomposition to some extent; in particular, it is
also o�-line and each module corresponds to a complete recognition system
(Gi, hi). However, this time each base recognition system (Gi, hi) solves the
entire learning task (recognizes all decision classes). The o�-line composition
mapping C combines them into the overall recognition system (G,h). Decisions
made by base systems are aggregated by a simple voting to yield the overall
decision. The primary objective of this type of decomposition is boosting the
recognition ratio.

This setting implies reducibility: with su�ciently many modules (voters),
any module may be removed without signi�cant deterioration of the recognition
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performance. The decompositions used in this approach are also symmetric:
if all modules attempt to solve the entire task, their roles are interchangeable
(provided that the aggregating decision rule is symmetric too).

Separability of decision-level decomposition is di�cult to assess. Appar-
ently, the situation is here similar to feature-level decomposition. As each base
decision system attempts to solve the entire learning task, the objective func-
tion for each module is known, the marginal search may be thus performed,
and the decomposition should be claimed separable. On the other hand, if no
other means are applied, base decision systems are identical or very similar,
as they optimize virtually the same objective, so they yield no synergy when
combined. At �rst sight, this situation calls for cooperation.

An analogous observation made with respect to feature-level decomposition
inclined us to label it as non-separable. Nevertheless here, on decision level,
situation is qualitatively di�erent. On feature level, the synthesized features
cooperate and span together a common feature space. The location of each
example in that space matters, as it may in�uence the resulting �tness. On
decision level, on the contrary, each module produces features that are used
for separate learning process and the cooperation takes place in the space of
decisions. As the base decision systems cooperate by majority-vote decision
rule, it is much more likely that an erroneous decision made by a particular
base decision system (Gi, hi) will not a�ect the overall system performance. In
other words, the minor module's performance may be concealed by the other
modules. This inclines us to hypothesize that the cooperation is di�cult on
this level, and label this type of decomposition as separable.

6.5 Summary
For clari�cation, Fig. 6.2 presents a graphical illustration of the four decompo-
sition methods described in this chapter. Each elliptical marker placed in the
�gure denotes the stage of information processing that the particular decompo-
sition method takes place at. Table 6.1 presents the comparison of important
features of decompositions considered in this chapter. The order of decom-
position methods listed in the table corresponds intuitively to the decreasing
epistasis, with instruction-level decomposition exhibiting the strongest epis-
tasis, and the decision level � the weakest one. In each of the consecutive
decomposition methods, the solution composition performed by C takes place
on higher abstraction levels (compare Eqs. 6.2, 6.4, 6.5). Note that this is
nicely con�rmed by the formal properties of those decompositions, i.e., sepa-
rability, reducibility, and symmetry. Instruction-level decomposition does not
have any of these properties, what makes it the tightest one among decompo-
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Figure 6.2: Decompositions of EFC task (compare to Fig. 4.1)

sition levels considered here. On the other hand, decision-level decomposition
is reducible, symmetric, and separable2, what makes it the loosest one.

Table 6.1: Comparison of various decompositions of EFC task (m � number of con-
structed features, N/D � not univocally determined)

Decomposition
level

Type Separable Reducible Symmetric Data �ow m

instruction genotypic No No No sequential nr

feature phenotypic No No Yes parallel nP nr

class phenotypic Yes No No parallel N/D
decision phenotypic Yes Yes Yes parallel N/D

In Table 6.1, we introduce data �ow, another feature of decomposition
methods that has not been discussed earlier in this chapter. This property
relates to the data �ow within the decision/recognition system. Problem de-
composition on instruction level splits data processing in consecutive chunks
that work sequentially. Other decomposition levels, on the contrary, identify
modules with separate data �ows, which perform processing in parallel.

2Though the last property may be questioned here; see discussion in section 6.4.4.
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Though other levels of decomposition are thinkable3, these four variants of
decomposition seem to exploit all qualitatively di�erent design levels of EFP.
Hybrid approaches are also possible and should be especially useful for sepa-
rable decompositions. For instance, the class-level decomposition is separable,
so for ith subproblem its own, local, objective function fi may be de�ned. The
resulting subproblem may be subsequently solved using any decompositions
de�ned on lower abstraction level, i.e., feature-level or instruction level. The
other reasonable idea seem to be to apply both class-level and decision-level
decomposition to boost the predictive performance. The concept of hybrid de-
composition may be further generalized to a kind of hierarchical decomposition;
Watson's work on SEAM [178] pursues a similar idea.

3For instance, decomposition related to partitioning of the training data.
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Real-world applications
7.1 Introduction
In this book we emphasize the practical aspect of proposed approaches. There-
fore, our interest is not limited to applying the evolutionary feature program-
ming to academic benchmarks, which are often arti�cial and have signi�cantly
di�erent properties than real-world data. In this chapter, we describe sev-
eral applications of the proposed methodology to several di�erent real-world
machine learning (ML) and computer vision (CV) tasks, to test it in various
operating conditions. The main focus is here on CV applications, as fea-
ture construction is there a necessary component of the recognition system,
as opposed to ML, where feature construction is an optional tool aimed at
performance improvement.

7.2 The common outline of experiment design
The experiments that follow have been carried out according to the same
scheme that concords the standard setting of ML studies. This concerns,
among others, the partitioning of the data into training set T and testing
set W , W ∩ T = ∅. For some problems considered here, this partitioning is
provided with the original dataset; otherwise, we carry it out autonomously.
Details on this issue will be provided later in this chapter.

Most experiments presented here proceed in two stages depicted in Fig. 7.1:
1. The training phase, which consists of two steps:

(a) Given the training data T , parameter settings, and the background
knowledge in the form of elementary operations from O, the evolu-
tionary feature programming (EFP or CFP) performs feature con-
struction. The result of this step is the best feature mapping G
(solution) found during evolutionary search.

(b) Given G and T , a classi�er h is induced using G(T ) as training data.
The recognition system (G,h) is the �nal result of training phase.

2. In the testing phase, the recognition system (G,h) produced in (1) is
veri�ed on the testing set W .
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Figure 7.1: The outline of experimental environment

Note that the classi�er h induced in 1b is in general di�erent from the classi-
�ers built during individual's evaluation phase (wrapper), as it uses the entire
training set T . Classi�ers used for computing f within wrapper approach dur-
ing evolutionary run learn, in each of nf folds, using only nf−1

nf
fraction of the

training data.
As already speci�ed in section 4.4.5, EFP and CFP use the wrapper ap-

proach to estimate the utility f of a particular set of features. Unfortu-
nately, the wrapper approach, widely recognized as very accurate, is quite
time-consuming. As ncv-fold cross-validation involves ncv-times classi�er in-
duction and ncv-times classi�er querying, we need to use an inducer that is
fast in both of these aspects.

In the following experiments, the popular tree induction algorithm C4.5
[140] is used for that purpose. Precisely, we use the last public release of C4.5
implemented in WEKA under the name J4.8 [185]. C4.5 has low computational
complexity of learning and linear (with respect to tree depth) complexity of
querying. Another advantage of this inducer is that its bias/variance trade-
o� may be easily controlled by the pruning con�dence level. In following
experiments, we use C4.5's default settings: pruning con�dence level: 0.25,
node evaluation measure: gain ratio, subsetting: o�. The cross-validation
runs with ncv = 3 folds.

Note that C4.5-based wrapper tends to be insensitive to the presence of
low quality features, as it has an internal ability of attribute selection. More
formally, given a set (vector) of relatively good features G, and a poorly dis-
criminating feature g, the C4.5-based wrapper will usually not be able to detect
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if G has been extended by g or not. Precisely, two cases are possible: either
g's low quality causes it being ignored in tree induction process and, thus,
f(G) = f(G∪ g), or g is used in deep tree nodes and does not a�ect much the
predictive ability (f(G) ∼= f(G ∪ g)). As a result, a partially inferior solution
is not penalized as long as its better part does the job well when compared to
other solutions in the same generation of evolutionary run.

This property of f as an evaluation measure is disadvantageous for some
feature selection methods. For instance, a simple variant of so-called forward
search, i.e., incremental adding of locally improving features (see, e.g., [101] for
review), would include some super�uous features (unless some extra means are
engaged). However, this is not an obstacle for EC-based search techniques. In
evolutionary terms, low-quality features may be considered as (genetic) dead
code; such inactive chromosome fragments have proven useful in many studies
[126, 111]. Similarly, the proposed approach may bene�t from temporary ig-
noring poorly performing features. In this way, the method assigns some credit
to partially good solution or, strictly speaking, to the o�spring it produces in
the next generations. This allows the search to cross the valleys of local min-
ima of the �tness landscape. The preliminary experiments with EFP/CFP
con�rmed this hypothesis, showing that C4.5 seems to be good compromise
between time complexity and credibility of performance estimation.

The feature construction is the time-critical phase of EFP. After the evo-
lutionary run is over, we use the best solution found s ∈ S and the best
transformation G it represents for training the classi�er for the �nal recogni-
tion system. As this is done only once (see Fig. 7.1), we use for some of the
�nal recognition systems presented in the following the sophisticated, yet more
time-consuming in training, support vector machine (SVM) classi�er [175, 19].
In particular, we rely here on SVM trained by means of the sequential minimal
optimization algorithm [134] implemented in WEKA library [185]. The SVM
classi�er uses polynomial kernels of degree 3 and is trained with complexity
parameter set to 10.

7.3 Feature construction for machine learners
7.3.1 Problem and data
The ML experiment concerned selected real-world benchmark datasets (prob-
lems) listed in Table 7.1: Glass (glass type identi�cation based on its physi-
cal and chemical properties), Pima (diagnosing of diabetes [162]), and Sonar
(discriminating of rock and metal based on characteristics of re�ected radar
wave [50]), obtained from the UC Irvine repository of ML databases [16]. The
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datasets di�er in number of features, decision classes, and examples. All of
them contain exclusively numeric attributes. As the amount of available data
is very limited in two of these problems (Glass and Sonar), we devote the en-
tire database to training, what implies W = ∅. Therefore, there is no test-set
evaluation within ML part of this study � phase 2 in the common experimental
outline (section 7.2) is skipped. Nevertheless, as the �tness values obtained at
the end of the runs by the best solutions result from cross-validation experi-
ment, they may be used as good estimates of predictive accuracy.

Table 7.1: Data sets used in experimental evaluation

Problem Glass Pima Sonar
Description Glass

identi�cation
Diagnosing of

diabetes
Object

identi�cation
# of attributes n 9 8 60

# of dec. classes nd 6 2 2
Majority class 35% 65% 53%

# of examples |T | 214 768 208

7.3.2 Experiment setup
The primary objective for this group of experiments is to compare the EFP
with its cooperative variant, CFP. For CFP, the cooperation takes place on
instruction level. To provide fair comparison of the results obtained by
means of EFP and CFP, we enforce the same total number of individuals for
both types of runs. For instance, if 600 individuals evolve in EFP run, then the
CFP runs with 2 populations 300 individuals each, or with 3 populations 200
individuals each. We also provide for the same total chromosome (FEP code)
length in EFP and CFP runs. Therefore, in CFP runs, the greater the number
of populations np, the shorter the fragment of FEP code a single population
works on.

The original attribute values (xi's) have been standardized. The method
parameters are set as follows: max. number of generations: 100, total number
of individuals: 600 (Glass, Pima) or 1000 (Sonar), mutation operator: bit �ip,
probability of single bit mutation: 0.001, crossover operator: one-point with
probability 0.1, selection operator: tournament (tournament size: 7), FEP
length l: 10, encoded constants: 4, classi�er used for feature set evaluation:
decision tree inducer C4.5, number of cross-validation folds nf : 3. To test
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the approach within simplest possible setting, the number of registers (evolved
features) nr has been set to 2. The image registers are obviously not used in
these experiments (nr′ = 0). The constants in the initial population(s) are
randomly drawn from Gaussian distribution with µ = 0 and σ = 1.

The set of elementary operations O includes basic arithmetic (+,−, ∗, /)
and simple nonlinear unary functions (sin and cos). The division operator `/'
works in protected mode, i.e., division by zero yields zero. The experiments
was carried out in a event-driven computational environment LetrixII [186], on
12 homogeneous PCs, each equipped with 1.8 GHz Intel Pentium processor.
A single evolutionary run took approximately 2 hours on the average.

7.3.3 The results
Table 7.2 presents the results of experimental evaluation. For each parameter
setting (table row), 20 independent evolutionary runs starting with di�erent
initial populations have been carried out to provide for statistical signi�cance.
The presented �gures aggregate results over these 20 runs. In this and following
tables presenting di�erent comparisons, boldface indicates superior results.

For each of the three real-world problems, �rst table row shows the results
of single-population evolutionary run (EFP), whereas the remaining two table
rows present the results of corresponding cooperative coevolution runs (CFP)
with 2 and 3 populations. For each experiment, table presents the average
�tness of solutions reached in the last generation (`Average') and the �tness
the best solution found during the entire evolutionary run (`Best'). These
values are equivalent to the accuracy of classi�cation attained by particular
recognition system(s) within nf -fold cross-validation experiment on training
data. For reference, the performance of the C4.5 classi�er using the original
representation (attributes xi), and ran in the same nf -fold cross-validation
framework, is given in the last table column (`Raw'). The Pima dataset was
computationally most demanding due to the large number of examples (768),
so we limited the evolutionary runs to 50 generations for this case.

7.3.4 Conclusions
The results presented in Table 7.2 show, that the EFP and CFP are able to
construct features that outperform the original representation as far as the
accuracy of classi�cation is concerned. This observation applies mostly to the
best representations (solutions) evolved; the average performance of evolved
individuals does not exceed the performance of C4.5 decision tree induced for
the original representation (attributes xi). Note, however, that this encourag-
ing result has been obtained for classi�ers working with m = 2 features only,
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Table 7.2: The performances (accuracy of classi�cation) of the evolved learners (su-
perior results in bold)

Accuracy (�tness)
Problem Method #of

generations
Total # of
individuals

np Average Best Raw

EFP 100 600 1 0.6239 0.6831
Glass CFP 100 600 2 0.6852 0.7183 0.6963

CFP 100 600 3 0.6845 0.7183
EFP 50 600 1 0.7139 0.7539

Pima CFP 50 600 2 0.7321 0.7441 0.7323
CFP 50 600 3 0.7220 0.7441
EFP 100 1000 1 0.7058 0.7837

Sonar CFP 100 1000 2 0.6986 0.7692 0.7631
CFP 100 1000 3 0.6680 0.7933

as only nr = 2 registers have been set up for FEPs. Greater improvements
could be probably observed if more features were constructed.

In two of the considered problems (Glass and Sonar), applying CFP re-
sults in performance improvement of the best solutions found, compared to
features constructed using EFP. In both these cases (71.83% vs. 68.31% for
Glass, 79.33% vs. 78.37% for Sonar), the observed di�erences are statistically
signi�cant with respect to t-test at 0.05 con�dence level. Thus, there is some
evidence for potential usefulness of CFP as a search method, though it does
not guarantee attaining better performance on each problem.

7.4 Feature construction for visual learners
In this section we present the outcomes of an extensive computational exper-
iment, in which we apply the EFP approach described in chapter 4 and its
cooperative variant CFP presented in chapter 6 to two computer vision prob-
lems concerning recognition of real-world 3-dimensional objects. This task is
conceptually much more di�cult than feature construction for ML tasks de-
scribed in section 7.3, mostly for the following reasons:
• The training data is given in low-level, raw form of raster images.
• The evolved FEPs have to reduce the amount of information contained in

input image by several orders of magnitude to yield compact attribute-
value representation (small set of features), yet capture the task-related
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characteristics of recognized objects.
• Decision classes do not form compact clusters in feature space, because

di�erent views of the same 3D object may be very dissimilar. In such
case, discovering commonalities between di�erent views of the same 3D
object may be extremely di�cult.

• The training images exhibit various de�ciencies that are common for CV,
including incompleteness (resulting from, e.g., occlusion), noise (related
to image acquisition method and its conditions), and imprecision (spatial
quantization and signal intensity quantization).

These di�culties make the feature construction task in visual domain more
challenging. On the other hand, they cause the feature construction to be
necessary component of feature-based visual learner. This is fundamentally
di�erent when compared to most ML tasks, where training data is given a pri-
ori in convenient attribute-value form and feature construction is an optional
process that leads to potential performance improvement.

To provide experimental evidence for the generality of the proposed ap-
proach, we verify it on two di�erent tasks. First of them is the recognition
of common household objects, a popular benchmark used in computer vision
community. It concerns visible part of the electromagnetic spectrum and re-
lates to so-called passive sensing, as usually no dedicated lighting is required
to acquire the images or, more precisely, lighting is not an essential component
of the vision system. On the contrary, the second considered application con-
cerns the non-visual modality of radar imaging and represents active sensing,
as the source of radiation (radar wave transmitter) is obligatory. Therefore, the
considered problems are entirely di�erent; the only features they have in com-
mon are (a) recognition of 3D objects from di�erent viewpoints, and (b) using
middle-size one-channel raster images.

For the proposed methods (EFP and CFP), the only source of background
vision knowledge is the set of elementary operators O provided by human ex-
pert (see Fig. 7.1). This set could be tailored independently to each visual
learning task presented here. However, to demonstrate generality of our ap-
proach, we use the same set O for both CV tasks and make it contain only
general-purpose image processing and feature extraction operations. There-
fore, both applications share the same vision-related background knowledge
and do not refer to any application-speci�c domain knowledge. For instance,
though the concept of scattering point is usually applied in analysis of radar
images (see, e.g., [13]), there is no ready-to-use operation in O that could
detect such features in the image.

The set O contains approximately 70 elementary operations listed in Table
7.3. Technically, operations refer to functions implemented in Intel Image Pro-
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cessing library [1] and OpenCV library [2]. They embrace image processing,
feature extraction, mask-related operations, and arithmetic and logic opera-
tions.

Table 7.3: Elementary operations used in the visual learning experiments (k and l
denote the number of the input and output arguments, respectively)

Category Operations
Image → Image

Convolution �lters (for win-
dow sizes 3× 3 and 5× 5)

Prewitt, Sobel, Laplacian, Gaussian, Highpass,
Lowpass, Sharpening

Other �lters Median �lter, Min �lter, Thresholding,
Normalized cross-correlation

Image transforms 2D Fast Fourier Transform
Morphological operations Erosion, Dilatation, Opening, Closing
Image arithmetic (pixelwise) Absolute di�erence, Addition, Subtraction,

Multiplication
Image logic operations (pix-
elwise)

And, Or, Xor

Imagek → <l

Image norms Dot product, L1 (city-block distance), L2

(Euclidean distance)
Feature extraction opera-
tions

Spatial 2D moments (up to 3rd order), Central
2D moments (up to 3rd order), Normalized
central 2D moments (up to 3rd order), Mass
center, Location of the brightest pixel, Location
of the darkest pixel, Number of non-zero pixels
Sum/Average/Standard deviation of pixel
intensities

<k → <l

Scalar arithmetic +, −, ×,% (protected division)
Scalar functions Max, Min, Abs, Sgn, If (conditional expression)

Sin, Cos, Tan, Exp, Log
Other
Mask-related operations Set rectangular mask, Set mask upper left

corner, Set mask lower right corner, Shift mask
in speci�c direction, Get mask height, Get mask
width, Get mask mid X, Get mask mid Y
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The results of experiments presented in the following may be roughly di-
vided into two categories. The study experiments focus on the dynamics
of evolutionary search, its sensitivity to di�erent parameter setting, and the
convergence of evolutionary process. The performance experiments aim at
maximizing the overall recognition ratio and concentrate more on the predic-
tive (related to the test set W ) properties of evolved recognition systems. Quite
obviously, the latter experiments are usually much more time-consuming.

7.4.1 Technical implementation
To provide for experimental testbed we developed software environment named
CVGP (Computer Vision by Genetic Programming). CVGP, written in Java
and C, is a universal platform for experimenting with explicit feature con-
struction in both machine learning and computer vision. To conform with the
existing standards and bene�t from the ready-to-use background knowledge,
it integrates several existing libraries:
• Soft-computing libraries written in Java:

� machine learning library WEKA [185],
� evolutionary computation library ECJ [102].

• Image processing libraries written in C and machine code:
� Intel Image Processing Library (IPL) [1],
� Open Computer Vision Library (OpenCV) [2].

Figure 7.2 shows the overall software architecture of the system. Java Na-
tive Interface has been used to integrate modules and libraries written in Java
with those written in C. Thanks to this choice of components, the most time-
consuming procedures of FEP evaluation are e�ciently carried out in well
optimized libraries written in C and machine code, whereas the less compu-
tationally demanding ML and EC computation takes place in Java. The IPL
and OpenCV libraries function as repository of background knowledge.

Though originally designed to serve explicit feature construction in CV,
CVGP may be also applied to ML problems; in such a case, WEKA and
ECJ are su�cient to run an experiment. On the other hand, CVGP may be
easily combined with other libraries to use background knowledge and input
representation relate to other domains (sound, video, etc.).

7.4.2 Recognition of common household objects
7.4.2.1 Problem and data
To test the approach in passive sensing, we use the COIL20 database [124],
a popular CV benchmark. COIL20 contains a total of 1440 grayscale (one-
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CVGP

Recognition system

FEP interpreter (virtual machine)

Evolutionary Computation 
in Java library (ECJ)

Machine Learning 
Library (WEKA)

Java ↔ C interface (JNI)

Java

C/C++

Machine code

Used in learning only

Used both in learning 
and testing of the
synthesized recognition
system Intel Computer Vision

Library (OpenCV)
Intel Image Processing 

Library (IPL)

Figure 7.2: Software implementation of CVGP. Dashed-line components implement
background knowledge

channel) images of 20 household objects taken at di�erent aspects (72 images of
each object taken at 5◦ aspect interval). Figure 7.3 depicts the representatives
of all decision classes with marked class labels.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 7.3: Exemplary images from COIL20 database (one representative per class)

We use the processed version of COIL20. Each image in this collection
was obtained from the unprocessed image by cropping its contents to minimal
bounding rectangle (MBR) embracing the object, and scaling it to 128×128
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pixels (see [124] for details). To speedup the computation, we downsample the
original images to 64×64 pixels. The downsampled images are directly used
by the learning system; they do not undergo any other processing.

Appearances to the contrary, recognition of processed images may be more
di�cult than the unprocessed ones, as (i) the actual size di�erences between
particular objects are lost in scaling, and (ii) the use of MBR cropping may
cause an object to have apparently di�erent sizes for di�erent aspects (see
Fig. 7.4). Due to (i), inter-class di�erences of size-related features are possibly
reduced. Due to (ii), the intra-class variance of some features is larger than
for the unprocessed data.

Cup, 55◦ Cup, 180◦ Car3, 180◦ Car3, 260◦

Figure 7.4: Apparent size changes resulting from MBR cropping for two selected
objects from the COIL20 database

The COIL20 database comes with a prede�ned partitioning of data into
training set T and testing set W . In particular, for each object class, the
training set T contains every �fth image from the entire collection (15 images
per class, every 24◦), and the testing set W gathers all the 57 remaining images
of that object. Such partitioning provides that the training data represents well
the entire learning task.

7.4.2.2 Parameter setting
In this COIL20 experiment, we use feature-level CFP. The detailed param-
eter settings are presented in Table 7.4. This experiment runs in minimum
con�guration, with np = 2 populations and nr = n′r = 2 registers. Small np

allows us to verify the approach in simple setting and provides relatively high
search mobility (cf. remarks in section 6.2).

Standard genetic operators are used for recombination and selection. The
probability of mutation refers to single bits. Therefore, given �xed mutation
probability, the longer the FEP code, the more mutations it undergoes on
the average. The crossover probability amounts to 1.0, what implies that all
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individuals undergo recombination and none of them is directly transferred to
the subsequent generation (i.e., there is no elitist sampling [114, section 4.1]).
To motivate this choice, let us argue that the primary task of evolutionary
algorithm within EFP/CFP is to perform e�ective search, and that maintaining
continuity between consecutive generations is of secondary importance.

No constraints have been imposed on chromosome loci where the one-point
crossover operator starts to exchange the `tails' of genetic material. As a result,
recombination may break apart the FEP instructions (for instance, opcode
may be detached from its arguments and replaced by di�erent arguments).
This setting may seem weird at �rst sight, as apparently one should treat the
entire operations as genes and do not allow recombination to break them apart.
Nevertheless, the preliminary experiments have shown that such an approach
is much more e�ective as far as search convergence is concerned.

Setting the tournament pool size to 5 is a compromise between 2 and 7
used commonly in genetic algorithms and genetic programming, respectively.
In each experiment, if no ideal individual is found, evolutionary search stops
after 4000 seconds � from practical viewpoint, one hour seemed to be acceptable
amount of time to be devoted to design of recognition system. The presented
results have been obtained using PC computers equipped with Pentium PC
1.4 GHz processor.

To provide for statistical signi�cance, each evolutionary run is repeated 10
times, starting from di�erent initial populations. Technically, this is provided
by changing the seed of random number generator. Therefore, if not otherwise
stated, the following tables and graphs show the mean performances of best
individuals obtained from ten independent runs.

Table 7.4: Parameter settings for COIL20 experiments

Parameter Setting
Single population size |Pi| 500

# of populations np 2
# of registers nr = n′r 2
Mutation operator bit �ip, probability 0.1
Crossover operator one point, probability 1.0
Selection operator tournament selection, pool size: 5

Time limit for evolutionary search 4000 seconds



Chapter 7. Real-world applications 103

7.4.2.3 Results
Binary classi�cation tasks. In this setting, we evolve recognition systems
to recognize one class (positive class, d+) against the remaining 19 classes of
COIL20 objects, which are temporarily grouped to form the negative class d−.
Table 7.5 presents the results of training the feature-level CFP on the COIL20
data (means over 10 runs). For brevity, classes are referenced by numbers with
respect to the order they appear in Fig. 7.3 (rows, then columns). In Table 7.5,
column marked by f+ shows mean �tness of best solution found in evolutionary
search. For 13 out of 20 binary problems, CFP yields recognition systems
having perfect �tness 1.0 (with respect to the training data). In remaining
cases, the training-set performance of evolved recognition systems is very close
to ideal. Note however, that the a priori probability for the negative class d−

amounts here to 0.95 (nd = 20), and this is the reference point for recognition
ratio assessment (the performance of the so-called default classi�er). The
evolutionary runs lasted for 12.5 generations on the average.

Table 7.5 contains also testing results for the binary COIL20 tasks. For
this purpose, we build (for each base class) a simple recognition system (G,h)
using the best representation G evolved in the run and the C4.5 decision tree
classi�er h trained on this representation. Therefore, the �nal recognition
system uses the same inducer as the wrapper-based �tness function and may
bene�t from concordance of inductive biases. Table contains mean values and
0.95 con�dence intervals for 10 independent runs.

As expected, training set-based estimate (�tness function) is in most cases
overoptimistic: test-set evaluation (column `Recognition ratio') is usually infe-
rior to solution's �tness value. Nevertheless, this deterioration does not exceed
0.01, and for class 2 (`Block1') even some improvement may be observed (from
0.997 to 0.999). Thus, for COIL20 problem, CFP seems to generalize well and
no signi�cant over�tting is observed.

Table 7.5 provides more details on the test-set performances, i.e., the true
positive ratio (TP = Pr(h(x) = d+ | d(x) = d+)) and false positive ratio (FP
= Pr(h(x) = d+ | d(x) = d−). Also in these terms, �gures vote in favour of
CFP. Only a few cases exhibit signi�cantly worse performance when compared
to other classes. The classes most a�ected by this are those for which there
are visually similar objects in the database: classes 3 and 19 (cars), and 5
and 9 (elongated boxes). Nevertheless, the overall performance is still sound.
Even for the worst case (decision class 19), the mean TP value is 0.8804, what
means that only about 12% of positive class instances are not detected by the
system. As the negative decision class comprises in fact images of 19 di�erent
objects, the obtained rates should be regarded as good.
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Table 7.5: Results for binary COIL20 problems

Test set evaluation (L =C4.5)
d+ f+ Rec. ratio TP FP |h|

1 Duck 1.000 0.9981±0.0129 0.9721±0.0204 0.0005±0.0006 5.8
2 Block1 0.997 0.9990±0.0067 0.9832±0.0115 0.0001±0.0002 5.4
3 Car1 0.997 0.9933±0.0192 0.8999±0.0258 0.0017±0.0012 7.6
4 Cat 1.000 0.9989±0.0084 0.9944±0.0069 0.0008±0.0009 6.8
5 Box1 0.999 0.9933±0.0295 0.9249±0.0407 0.0028±0.0017 12.0
6 Car2 0.999 0.9943±0.0156 0.9222±0.0296 0.0018±0.0008 10.0
7 Block2 1.000 0.9982±0.0122 0.9721±0.0256 0.0004±0.0006 6.6
8 Bottle1 1.000 0.9981±0.0134 0.9916±0.0080 0.0015±0.0012 6.6
9 Box2 0.999 0.9949±0.0189 0.9250±0.0336 0.0012±0.0006 5.8
10 Vas 1.000 0.9943±0.0287 0.9277±0.0561 0.0021±0.0019 7.8
11 Block3 1.000 0.9986±0.0163 0.9750±0.0282 0.0001±0.0002 5.2
12 Mug 1.000 0.9983±0.0138 0.9861±0.0258 0.0009±0.0009 6.2
13 Pig 0.999 0.9990±0.0077 0.9582±0.0291 0.0012±0.0009 5.8
14 Socket 1.000 0.9990±0.0067 0.9832±0.0115 0.0001±0.0002 5.6
15 Box3 1.000 0.9992±0.0057 0.9944±0.0069 0.0005±0.0006 5.6
16 Bottle2 1.000 0.9983±0.0093 0.9972±0.0052 0.0014±0.0010 6.6
17 Pot 1.000 0.9990±0.0039 0.9944±0.0069 0.0005±0.0003 5.2
18 Cup 1.000 0.9931±0.0204 0.9224±0.0185 0.0032±0.0016 4.8
19 Car3 1.000 0.9918±0.0294 0.8804±0.0528 0.0023±0.0012 10.8
20 Box4 1.000 0.9987±0.0081 0.9916±0.0080 0.0008±0.0007 5.8

The FP results are even more appealing. In the worst case (class 18, `Cup'),
the mean FP rate is 0.0032. Thus, only 0.32% images of other 19 objects are
identi�ed as cups on the average. For many other classes, this �gure is much
smaller. Among the total of 200 recognition systems considered in this exper-
iment (nd = 20 decision classes × 10 runs per class), 109 recognition systems
attained zero FP rate. These results are comparable and, in some cases,
superior to past experimental studies concerning COIL20 database which, in
most cases, engage model-based approach (e.g., [107, 3]). The con�dence inter-
vals are narrow and ensure stability of the obtained results. This is important
from in practice, where the method is expected to yield reasonable result in
one run, without need for redesigning the settings and repeating computation.
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These encouraging results have been obtained using simple decision tree
classi�ers. The last column of Table 7.5, denoted by |h|, presents the average
number of tree nodes used by trees induced from the transformed training data.
In particular, di�cult problems (e.g., for decision classes 6, 9, and 19) result
in larger trees. Figure 7.5 shows one of induced trees. Numbers in parenthesis
denote leaf weight (number of training examples that reached tree node). The
total number of training examples |T | = 20 × 15 = 300. Due to uneven
distribution of decision classes in data (19:1), the tree is heavily imbalanced
and classi�es the greater part of examples already in the root node. Most other
trees induced for this binary problem and for other binary COIL20 problems
have similar structure. Relatively small trees (6.8 nodes for all 200 experiments
on the average) clearly indicate, that the most di�cult part of recognition takes
place within FEPs1. The readable structure of trees enable human inspection
and analysis.

g0(x) <= 3849: h(x) = d− (270.0)
g0(x) > 3849
| g1(x) <= 361962: h(x) = d− (13.0)
| g1(x) > 361962
| | g2(x) <= 2853.808333: h(x) = d+ (15.0)
| | g2(x) > 2853.808333: h(x) = d− (2.0)

Figure 7.5: Decision tree used by the �nal recognition system evolved in one of COIL20
binary experiments

Complete classi�cation task. Here, we use CFP to discriminate all
20 decision classes present in COIL20 dataset, what is obviously much more
di�cult than the binary recognition tasks. For this purpose, we treat the
evolved binary recognition systems (presented in Table 7.5) as base classi�ers,
and combine their votes. Therefore, in fact we apply o�-line one-versus-all
problem decomposition on class level; such proceeding is fully justi�ed
as class-level decomposition leads to separable modules (cf. section 6.4.3).
The assembled compound classi�er comprises 20 base classi�ers, one for each
decision class. We build 10 such compound recognition systems (each binary
CFP run was repeated 10 times).

The resulting mean accuracy of classi�cation for these compound recogni-
tion systems on the test set amounts to 0.9877±0.0036. Thus, only about 1%
of images are mistakenly labelled by the compound recognition system. Analy-

1Otherwise, the results would be probably much worse, as C4.5 often fails when faced
with highly imbalanced decision classes.
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sis of error occurrencies in test-set confusion matrices con�rms the conclusions
of the binary experiments: the most often confused classes are the ones that
exhibit visual similarity: 3 `Car' and 5 `Box1', 3 `Car' and 6 `Car2', 3 `Car'
and 18 `Cup', 3 `Car' and 19 `Car3' , 5 `Box1' and 6 `Car2'.

7.4.3 Vehicle recognition in radar modality
As another experimental testbed, we chose the task of object (vehicle) recog-
nition in synthetic aperture radar images. Imaging in radar modality, due to
particular wavelengths and their properties, is fundamentally di�erent than in
the visible spectrum. Radar senses in wavelengths outside the visible spectrum
and infrared, providing information mostly on surface roughness, dielectric
properties, and moisture content. Radar waves may penetrate some materials,
e.g., vegetation, sand, and snow. Radar imaging is active in the sense that it
requires illumination (source of radiation).

Synthetic aperture radar (SAR) imaging is a speci�c technology that makes
a relatively small antenna work like if it were much larger, due to receiver
(here: aircraft) motion and the Doppler principle (see [67] for details). As a
result, SAR overcomes azimuth resolution principles present in standard radar
imaging techniques. Nevertheless, from the viewpoint of human perception, the
subjective quality of the acquired images is disappointedly low. In particular:
• SAR images are non-literal, i.e., they do not re�ect directly the spatial

characteristics of objects.
• Usually only so-called scattering centers are visible.
• The features do not persist under rotation (aspect change).
• The images are noisy.

These properties make SAR image interpretation di�cult. This is particu-
larly true for this study, which concerns recognition of relatively small (when
compared to image resolution) man-made objects like vehicles.

We use the public part of the MSTAR database [148] as the benchmark for
evolutionary feature programming. MSTAR database contains SAR images
of several objects, mostly vehicles, taken at di�erent elevation angles and az-
imuth (aspect) angles. In this study, we consider only images acquired at 15◦

elevation angle (MSTAR contains also images for di�erent elevation angles).
The spatial resolution is 1 foot and the objects are centered in the image. Fig-
ure 7.6 presents selected images of considered vehicles: BRDM truck (armored
personnel carrier), ZSU gun, T62 tank, ZIL truck, T72 tank, 2S1 gun, BMP2
tank, and BTR transporter. Figure 7.7 shows selected SAR views of particular
object classes. Note that, though the pictures have been taken at 15◦ elevation
angle, the pictures show the vertical projection with radar shadow.
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2S1 BRDM2 ZIL131 BTR

D7 T62 T72 ZSU23

Figure 7.6: Selected vehicles from MSTAR database

SAR images are originally two-channel (complex), with each image pixel
described by signal amplitude/magnitude (real part) and signal phase (imagi-
nary part) [67]. As previous studies showed that phase component is not much
useful for recognition, we discard it and use the magnitude component only.
The images are cropped to 48×48 pixel window centered in the original image.
No other form of preprocessing (e.g., speckle removal) is applied.

2S1 BRDM2 ZIL131 BTR

D7 T62 T72 ZSU23

Figure 7.7: Exemplary images from the MSTAR database (brightness and contrast
enhanced for better legibility)
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7.4.3.1 Problem decomposition on instruction level
In this experiment, we compare the performances of evolutionary feature con-
struction (EFP) and coevolutionary feature construction (CFP), where the
cooperation in CFP takes place on instruction level. To make this comparison
reliable, we provide for equal total chromosome length: for EFP experiment
with code length l, in the corresponding CFP experiment each of np popula-
tions works on code fragment of length l

np
. Similarly, we �x the total number

of individuals: the total number of individuals in all np populations in CFP is
equal to the number of individuals maintained in the single population of the
corresponding EFP run (see Table 7.7).

The task is to recognize three di�erent objects: BRDM2, D7, and T62 (see
Figs. 7.6 and 7.7). From the MSTAR database, 507 images of these objects
have been selected by means of appropriate sampling procedure. The resulting
set of images has been split into disjoint training and testing parts to provide
reliable estimate of the recognition ratio of the learned recognition system (see
Table 7.6). This selection was aimed at providing uniform coverage of the
azimuth; for each class, there is a training image for approximately every 5.62◦
of azimuth, and a testing image every 2.9◦-5.37◦, on the average.

Table 7.6: Training data for cooperation on instruction level

Number of images
Class Total Training set Aspect interval Testing set Aspect interval

BRDM2 188 64 5.62◦ 124 2.90◦

D7 188 64 5.62◦ 124 2.90◦

T62 131 64 5.62◦ 67 5.37◦

Total 507 192 315

Table 7.7 compares the recognition performances obtained by the proposed
coevolutionary approach (CFP) and its regular counterpart (EFP). To estimate
the performance the learning algorithm is able to attain in a limited time, we
stop evolution when its run time reaches a prede�ned limit. Two di�erent
limits have been imposed on the evolutionary learning time, 1000 and 2000
seconds. To obtain statistical evidence, all evolutionary runs are repeated 10
times, so the table presents the average performances of the best individuals
found.

The results presented in Table 7.7 prove superiority of the instruction-level
CFP to EFP. This applies to both the performance of the synthesized systems
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on the training as well as on the test set. In all cases, the observed increases
in accuracy are statistically signi�cant with respect to the one-sided t-Student
test at the con�dence level 0.05. Though it is not shown in the table, CFP
usually ran for a smaller number of generations on the average, due to the
extra time required to maintain (perform selection and mating) in multiple
populations. Tables 7.8 and 7.9 show, respectively, the confusion matrices for
the best individuals found in the �rst two experiments reported in Table 7.7
(time limit: 2000 seconds, procedure length: 72, total # of individuals: 300).

Table 7.7: Performances of recognition systems evolved by means of cooperation on
instruction level (superior results in bold)

Method Parameter setting Recognition ratio
1000 seconds 2000 seconds

np l |Pi| Train set Test set Train set Test set
EFP 1 72 300 0.806 0.747 0.843 0.801
CFP 3 24 100 0.915 0.867 0.933 0.890
EFP 1 72 900 0.839 0.795 0.881 0.830
CFP 3 24 300 0.927 0.874 0.940 0.883

Table 7.8: Test set confusion matrix for exemplary EFP recognition system

Predicted class
Actual class BRDM2 D7 T62 None
BRDM2 97 3 22 2

D7 0 115 9 0
T62 1 0 66 0

7.4.3.2 Binary classi�cation tasks
To illustrate the performance of the proposed approach let us �rst consider the
simple two-class experiment setting. The overall architecture of the recognition
system is in this case straightforward: it consists of two modules: (i) the best
feature extraction procedure G and classi�er h trained using those features.

For this performance experiment, we designed a more thorough dataset
sampling procedure. To provide for good representation of the problem in the
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Table 7.9: Test set confusion matrix for exemplary CFP recognition system

Predicted class
Actual class BRDM2 D7 T62 None
BRDM2 118 1 4 1

D7 5 114 3 2
T62 5 1 61 0

training data, we implemented aspect-aware division procedure of the origi-
nal MSTAR collection into training and test data. We attempt to build the
training set so that representative spectrum of di�erent view angles (aspects)
is present in T (similarly to COIL20 database partitioning). For each decision
class, its representation in the training data T consists of two subsets of im-
ages sampled from the original MSTAR database. Two subsets are necessary
to provide proper operation of the cross-validation experiment involved by the
�tness function. For both subsets, the images are selected from MSTAR col-
lection as uniformly as possible2 with respect to a 6◦ azimuth step. Therefore,
the training set T contains 2(360/6) = 120 images from each decision class, so
its total size is 120nd, where nd is the number of decision classes.

The corresponding test set W contains all the remaining images from the
original MSTAR collection (for considered decision classes and 15◦ elevation
angle). In this way, the T and W are disjoint, yet the learning task is well
represented by the training set as far as aspect is concerned. Thus, we can be
con�dent in credibility of results; performing time-consuming multiple train-
and-test experiment would probably not change much the overall picture. For
simplicity, we keep the numbers of numeric registers and image registers (nr

and n′r, respectively) as low as possible, similarly to COIL20 experiment. This
implies setting nr = n′r = 2, as some of the elementary operations from O
are binary and need two registers to fetch input arguments. The number of
coevolving populations np is this time set to 4, as the SAR task is more di�cult
that the COIL20 problem. This implies m = nP n′r = 8 scalar features gi

computed by the four coevolving FEPs. The settings of remaining parameters
are the same as in COIL20 experiments.

The task is the recognition of the positive decision class d+ represented here
by the BRDM vehicle. The objects representing the remaining categories build
up the negative class d−. We run several experiments of di�erent di�culty,

2As opposed to COIL20 database, MSTAR images do not observe precisely equidistant
view angles.
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starting with d− containing images from single decision class ZSU; let us denote
this task by B1. Next, we de�ne subsequent tasks, denoted hereafter B2 to B7,
by extending d− by other vehicles in the following order: T62, ZIL131, T72,
2S1, BMP2, and BTR70. In all these tasks, d+ remains �xed and contains
exclusively images of the BRDM vehicle.

On each of these seven binary classi�cation problems B1..B7, ten indepen-
dent CFP processes have been run to provide statistical signi�cance. Each
run started with di�erent, randomly created, initial population of solutions.
Fig. 7.8 presents �tness graphs of the best individuals for evolutionary learn-
ing process run on the B2 problem, i.e., BRDM (d+) versus ZSU and T62
(d−). Particular data series depict 10 independent evolutionary runs start-
ing from di�erent initial states. All learning processes attain �tness over 0.9
within the �rst three generations. The �tness f of the best solutions s found
varies from 0.964 to 0.992, depending on the run. Runs end up in di�erent
generations (57th to 75th), as the stopping condition concerns time limit (4000
seconds), and particular individuals contain feature extraction procedures that
require di�erent amounts of time when executed. Note that this learning pro-
cess seems to be quite resistant to the problem of local minima: after long
periods of leveling-o�, several runs show improvement.
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Figure 7.8: Fitness graph for binary experiment (�tness of the best individual for
each generation)

The �tness graphs presented in Fig. 7.8 re�ect the behavior of the recog-
nition systems on the training data. The performances of the synthesized
recognition systems on the test data are gathered in Table 7.10 and Figure 7.9.
Two variants of recognition systems are considered here, those using C4.5 clas-
si�er and those using support vector machine (SVM). In each learning task, the
recognition systems use the same best solution evolved in the training phase.
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Table 7.10: True positive (TP) and false positive (FP) ratios for SAR binary recog-
nition tasks (testing set). Table presents averages over 10 independent synthesis
processes and their 0.95 con�dence intervals

C4.5 SVM
Task TP FP TP FP
B1 0.987 ± 0.007 0.042 ± 0.016 0.966 ± 0.032 0.022 ± 0.019
B2 0.960 ± 0.013 0.040 ± 0.011 0.935 ± 0.027 0.010 ± 0.005
B3 0.892 ± 0.025 0.035 ± 0.005 0.929 ± 0.030 0.017 ± 0.005
B4 0.901 ± 0.023 0.036 ± 0.007 0.929 ± 0.032 0.013 ± 0.002
B5 0.860 ± 0.030 0.033 ± 0.007 0.880 ± 0.039 0.014 ± 0.005
B6 0.733 ± 0.055 0.026 ± 0.004 0.762 ± 0.063 0.018 ± 0.009
B7 0.654 ± 0.041 0.039 ± 0.006 0.610 ± 0.069 0.012 ± 0.004

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B1 B2 B3 B4 B5 B6 B7

C4.5 True positives

C4.5 False positives

SVM True positives

SVM False positives

Positive class a priori prob.`

Figure 7.9: True positive (TP) and false positive (FP) ratios for SAR binary recog-
nition tasks (testing set). The chart presents averages over 10 independent synthesis
processes and their .95 con�dence intervals

Table 7.10 and Figure 7.9 present true positive ratio and false positive ratio
that the recognition systems attain on test set W (averages and 0.95 con�dence
intervals for 10 independent runs). It may be observed that in all experiments,
recognition systems using C4.5 and SVM perform similarly. At �rst sight this
may seem surprising, taking into account the simplicity of C4.5, especially
its limited capability of fusing and combining attributes. On the other hand,
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the synthesized features are especially well-suited for C4.5, as this induction
algorithm is used for �tness computation in the process of feature synthesis.
In terms of machine learning, the features generated are biased towards C4.5.

The number of decision classes building up the negative class controls the
complexity of this learning task. More di�cult tasks lower the a priori proba-
bility of the positive class (Fig. 7.9). The TP ratios of synthesized recognition
systems also decrease with growing task complexity. Nevertheless, the results
obtained are still impressive if we keep in mind that the classi�er operates in
the space spanned over only m = 8 scalar features computed by the best solu-
tion from raw, di�cult to recognize, raster images. Let us also point out, that
objects BMP2 and BTR70, used in problems B6 and B7, the last two instances
of the problem, is visually very alike the positive class BRDM (see Fig. 7.6).
Note also that a priori probabilities of the positive class in these instances are
relatively low, amounting to 0.15 and 0.14, respectively.

In terms of false positives, all the synthesized systems perform well. Here,
SVM outperforms C4.5 in statistically signi�cant way (signi�cance level 0.01),
exceeding 2% FP ratio only for the simplest problem B1 (BRDM (d+) versus
ZSU (d−)). Compared to C4.5, SVM reduces the FP rate from by 32% (B6)
to by 75% (B2).

7.4.3.3 On-line adaptation of population number
The results presented in Table 7.10 and Fig. 7.9 have been obtained with np = 4
populations, each of them evolving nr = 2 features. Determining the number
of populations n required to attain acceptable performance on a particular task
prior to test set evaluation may be di�cult in general. Therefore, we developed
a variant of the approach, adaptive cooperative feature programming (CFP-A),
which adapts the number of cooperating populations to the problem di�culty.
The coevolutionary algorithm starts with a single population (np = 1). In this
special case, the solution the algorithm works on, is composed of a single part
(individual). In this con�guration, evolution proceeds until saturation, i.e.,
until the �tness of the best solution does not improve for a certain number of
generations (here: 5). In such a case, a new, randomly initialized population
is added to the cooperation (np ← np + 1), and the evolutionary process
continues with two populations. Consecutive saturations of the evolutionary
search cause addition of other populations. However, with np populations at
hand, the extension to np + 1 populations is allowed only if the best solution
has been improved since the insertion of nth population.
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Table 7.11: True positive (TP) and false positive (FP) ratios for SAR binary recog-
nition tasks (testing set, CFP-A; means over 10 independent synthesis processes and
0.95 con�dence intervals)

C4.5 SVM Final np

Task TP FP TP FP MeanMax
B1 0.973 ± 0.012 0.050 ± 0.019 0.981 ± 0.010 0.012 ± 0.008 5.6 7
B2 0.969 ± 0.011 0.033 ± 0.010 0.972 ± 0.012 0.013 ± 0.008 5.1 7
B3 0.904 ± 0.025 0.036 ± 0.008 0.940 ± 0.026 0.014 ± 0.006 5.8 6
B4 0.888 ± 0.031 0.026 ± 0.006 0.908 ± 0.035 0.021 ± 0.011 5.3 6
B5 0.816 ± 0.036 0.028 ± 0.006 0.856 ± 0.038 0.015 ± 0.003 5.0 6
B6 0.736 ± 0.038 0.037 ± 0.008 0.723 ± 0.058 0.018 ± 0.006 4.9 6
B7 0.652 ± 0.062 0.027 ± 0.007 0.698 ± 0.082 0.014 ± 0.003 4.4 5

Table 7.11 and Figure 7.10 present results of the evolutionary runs carried
out using the above algorithm. Table 7.11 depicts also the mean and maximum
number of individuals (FEPs) that form the best solution found in the runs.
These �gures decrease as the complexity of the problem grows. This is due
to the fact, that the runs on more di�cult problems last usually for a smaller
number of generations (�tness function is there more time-consuming). As
a result, within the �xed time limit of 4000 seconds per evolutionary run,
the CFP-A algorithm has fewer opportunities to add new populations on the
di�cult problems.

The results suggest that the test set performances of the recognitions sys-
tems synthesized using CFP-A do not di�er much from those obtained using
CFP. The observed slight di�erences in both TP and FP ratios are not statis-
tically signi�cant. We can, therefore, draw a positive conclusion that CFP-A
allows attaining results that are not worse than those obtained by CC, with
the advantage of relieving the system designer from �xing the number of co-
operating populations np.

7.4.3.4 Scalability
From practical viewpoint, our interest is not limited to binary classi�cation
only. To investigate the ability of the proposed approach to handle multi-
ple class recognition tasks, in this section we consider several problems with
increasing numbers of decision classes, similarly to the binary classi�cation
experiments. The simplest problem involves nd = 2 decision classes: BRDM
(D1) and ZSU (D2). Consecutive problems are created by adding the decision
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Figure 7.10: True positive (TP) and false positive (FP) ratios for SAR binary recog-
nition tasks (testing set, CFP-A; means over 10 independent synthesis processes and
0.95 con�dence intervals)

classes up to nd = 8 in following order: T62 (D3), ZIL131 (D4), T72 (D5),
2S1 (D6), BMP2 (D7), and BTR70 (D8). In this task, the architecture of the
compound recognition system is the same as the one used in Section 7.4.3.2,
however, this time each base recognition system makes decision concerning
nd > 2 decision classes. The number of base systems (voters is nsub = 10).
Each base system is a result of an independent evolutionary run that started
from di�erent initial population. Simple voting (argmax-like) is used.

Figure 7.11(a) presents the accuracy of classi�cation (recognition) rate as
a function of the number of decision classes nd. It can be observed, that the
scalability of the proposed approach with respect to the number of decision
classes depends heavily on the base classi�er. Here, SVM clearly outperforms
C4.5. The major drop-o�s of accuracy occur when T72 tank and 2S1 self-
propelled gun (classes D5 and D6, respectively), are added to the training data;
this is probably due to the fact that these objects are similar to each other
(e.g., both have gun turrets) and signi�cantly resemble the T62 tank (class
D3). On the contrary, introducing consecutive classes D7 and D8 (BMP2 and
BTR60) did not a�ect the performance much; more than this, an improvement
of accuracy is even observable for class D7.

Figure 7.11(b) shows the curves obtained, for the recognition systems using
SVM as a base classi�er, by introducing and modifying the con�dence threshold
that controls voting among base classi�ers. The higher this threshold, the more
classi�ers are required to vote for particular class to make the �nal decision.
Too small number of votes causes an example to remain unclassi�ed.
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Figure 7.11: (a) Test set recognition ratios of compound recognition systems for dif-
ferent number of decision classes (b) ROC-like curves for di�erent number of decision
classes (base classi�er: SVM)

The curves in Figure 7.11(b) may be regarded as generalization of ROCs
(receiver operator characteristics) curves to nd > 2 decision classes. Let nc,
ne, and nu, denote respectively the numbers of test objects correctly classi�ed,
erroneously classi�ed, and unclassi�ed by the recognition system. In this chart,
the error rate is de�ned as ne/(nc +ne +nu), and the accuracy of classi�cation
as nc/(nc + ne + nu). Also here the results are encouraging, as the curves
do not drop rapidly as the error rate decreases. By modifying the con�dence
threshold, one can easily control the characteristic of the recognition system,
for instance, to lower the error rate by accepting a reasonable rejection rate
ne/(nc + ne + nu).

7.4.3.5 Recognizing object variants
From computer vision perspective, a desirable property of an object recogni-
tion system is ability to recognize di�erent variants of the same object, i.e.,
to generalize the knowledge acquired from the training data. In vehicle recog-
nition in SAR modality, di�erent con�guration variants of the same vehicle
often vary signi�cantly; major di�erences result from the presence of extra
equipment mounted on the vehicle. The MSTAR database contains images of
di�erent con�guration variants for selected vehicles; these variants will be in
the following distinguished by the pound (#) sign and vehicles' serial number
following class name; e.g., `BMP2#C21' denotes variant C21 of BMP2 tank.

To provide comparison with human-designed recognition systems, we use
the experimental setting as in [14]. In particular, we synthesize two separate
recognition systems using the following training data:
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1. 2-class recognition system trained with BMP2#C21 and T72#132,
2. 2-class recognition system trained with BMP2#C21, T72#132,

BTR70#C71, andZSU23/4.
After learning, these systems are tested on testing set W that contains two
other variants of BMP2 (#9563 and #9566), and two other variants of T72
(#812 and #s7). Therefore, the testing set is not only disjoint with the training
sets, but it also contains signi�cantly di�erent objects to be recognized.

Table 7.12: Confusion matrices for recognition of object variants for 2-class recognition
system

Predicted class
Object BMP2#C21 T72#132 No decision

BMP2#9563,9566 295 18 78
T72#812,s7 4 330 52

Table 7.13: Confusion matrices for recognition of object variants for 4-class recognition
system

Predicted class
Object BMP2#C21 T72#132 BTR#C71 ZSU#d08 No decision

BMP2#9563,9566 293 27 27 1 43
T72#812,s7 12 323 1 9 41

Tables 7.12 and 7.13 present test set evaluation of the synthesized recogni-
tion systems shown in the form of confusion matrices. The results suggest that,
even when the recognized objects di�er signi�cantly from the models provided
in the training data, the approach is still able to maintain high performance.
Here the true positive rate equals 0.804 and 0.793, for 2- and 4-class systems,
respectively. If we consider only test cases for which the systems make any
decision (83.3% and 89.2% of test examples for 2-class and 4-class decision
system, respectively), then the classi�cation accuracy amounts to 0.966 and
0.940, respectively. These �gures are comparable to the forced recognition re-
sults of the human-designed recognition algorithms reported in [14], which are
0.958 and 0.942, respectively. Note however, that in this experiment we do not
use confusers, i.e., test images from di�erent classes than those present in the
training set. In [14] the BRDM class has been used for that purpose.
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7.4.3.6 Problem decomposition on decision level
Some preliminary experiments have been run for the vehicle recognition task
decomposed on decision level. For this purpose, we designed an evolutionary
experiment as described in section 6.4.4: each individual in jth population Pj

implements one or more complete FEPs. For evaluation, the FEPs encoded by
the individual are run on the training data T and produce the derived dataset
T ′(j), which is subsequently passed to the wrapper within �tness function f .
Till this stage, the evaluation process is independent from the remaining pop-
ulations.

In each cross-validation fold, the wrapper induces a compound classi�er
from the training data. The number of voters is equal to the number of popu-
lations np, and each base classi�er h(j) works exclusively with features devel-
oped by the corresponding population Pj (precisely speaking, the remaining
base classi�ers work with features computed by the representatives of the re-
maining populations). In testing, the base classi�ers cooperate by voting on
the class assignment of each example; their votes are aggregated into overall de-
cision by simple (unweighted) majority rule. This process is repeated for each
cross validation fold. As in all other cooperation levels, the predictive accuracy
resulting from this cross-validation is assigned to the evaluated individual as a
�tness.

This process resembles the class-level decomposition used in some COIL20
experiments (cf. section 7.4.2.3). Here, however, each of the base classi�ers
solves the complete,multi-class training task; in class-level decomposition, base
classi�ers handle (usually simpler) binary classi�cation tasks. As a result, the
computational cost of individual's evaluation is here much higher.

In decision-level decomposition the cooperation is postponed as long as pos-
sible. The cooperating individuals (and representatives) do the prevailing part
of their work prior to cooperation. As already predicted in section 6.4.4, some
properties of this cooperation model may prevent it from providing signi�cant
improvements in comparison to EFP. In particular, voting makes probable that
incorrect base classi�er's decision is concealed by its peers: the `bad and ugly'
will not show up in the crowd of `goods'. This becomes especially probable
when the number of voters is high.

The computational experiment we performed with decision-level CFP con-
�rmed this hypothesis. The �tness of best solutions found during evolutionary
search and the test set performance of the resulting recognition systems usu-
ally did not show signi�cant improvement in comparison to EFP. Even worse,
in time-complexity terms, the results obtained with decision-level cooperation
were usually inferior to other CFP decomposition methods and EFP, as the
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computational overhead resulting from the presence of compound classi�er in-
side the �tness function is overwhelming. Therefore, the results concerning
this cooperation model are not presented in detail here.

Note that these observations may be interestingly related to Marr's prin-
ciple of least commitment [106], which states that reasoning should postpone
making crisp (qualitative, discrete) decisions as long as possible, because erro-
neous crisp decisions are di�cult to withdraw. This principle, though formu-
lated within vision science, is applicable to all decision-making systems that
perform reasoning in stages, especially those that work with imperfect real-
world data. In decision-level decomposition, cooperating populations make
their crisp choices prior to decision aggregation. As the aggregation consists
in simple voting and does not involve any adaptation, these decisions cannot
be withdrawn and, if incorrect, deteriorate the overall performance.

An important conclusion of this decision-level CFP experiment is that, with
the cooperation taking place on such a high abstraction level, the CC does not
seem to be able to provide for successful decomposition of the training task, or,
more precisely, for enough diversi�cation among voting recognition subsystems.
A natural question that may be risen at this point is: why not treat the modules
in this decomposition method as separable and enforce diversi�cation of voters
by other means?

Table 7.14: True positive and false positive ratios for binary recognition tasks (testing
set, o�-line decision-level decomposition)

C4.5 SVM
Task TP FP TP FP
B1 1.000 0.000 1.000 0.000
B2 1.000 0.000 0.981 0.000
B3 0.955 0.006 0.981 0.002
B4 0.955 0.006 0.974 0.000
B5 0.955 0.004 0.961 0.001
B6 0.792 0.002 0.896 0.004
B7 0.721 0.005 0.708 0.001

Such diversi�cation may be naturally provided by the random nature of
genetic search. For this purpose, we detach, in a sense, the populations that
would run in the framework described above, and run many independent ge-
netic searches that start from di�erent initial states (initial populations). The
best solution evolved in each run gives rise to a separate recognition system,
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which serves as voter in the overall recognition system architecture. This
assembling of the �nal recognition system takes place o�-line, i.e., after all
genetic searches come to an end. The base recognition systems are therefore
homogenuous as far as their structure is concerned.

The number of subsystems ns is a parameter set by the designer. In this
heavyweight experiment, we attempt to maximize the predictive performance
and verify scalability of the resulting recognition system. That's why, ns has
been set to quite high value 10. In particular, as base recognition systems we
use here the solutions obtained in the experiments described in section 7.4.3.2.

Table 7.14 and Figure 7.12 present test-set TP and FP ratios of the com-
pound recognition systems built using the described procedure. Quite natu-
rally, the cooperation of ten classi�ers using di�erent features makes the com-
pound recognition system superior to all the single recognition systems exam-
ined in earlier in this section. This applies to both C4.5 and SVM, as well as to
both performance measures: true positives and false positives. In particular,
the FP ratios are here approximately one order of magnitude smaller than in
the case of single recognition systems.
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Figure 7.12: True positive and false positive ratios for binary recognition tasks (testing
set, o�-line decision-level decomposition)
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7.4.4 Analysis of evolved solutions
One of the advantages of symbolic feature construction is the readable form
of acquired knowledge. To illustrate this virtue, we present an example of a
complete evolved recognition system. The recognition system considered here
is the best solution s found in one of the learning processes concerning binary
classi�cation tasks described in the beginning of Section 7.4.3.2, more precisely
the B1 task (BRDM versus ZSU). This particular solution has perfect �tness
(f = 1) on the training set, and attains TP and FP ratios of, respectively, 0.974
and 0.058, when combined with C4.5 classi�er, and 0.974 and 0.0, respectively,
when used together with SVM classi�er.

Figure 7.13: Image of the ZSU class taken at 6◦ azimuth angle (cropped to input size,
i.e. 48× 48 pixels)

The experiment referenced here concerned CFP with np = 4 populations
cooperating on feature-level. Therefore, in Figures 7.14 to 7.17, we present
four FEPs, each of them working with two image registers and two numeric
registers. The �gures depict FEPs encoded by particular individuals that the
considered solution is composed of. Each row in these tables corresponds to
execution of a single elementary operation. The �gures depict the processing
carried out for a selected image representing the negative class (ZSU in this
experiment), taken at 6◦ azimuth (see Figure 7.13).

First table row presents the initial register contents, which is determined
by initial fragment of solution encoding (see section 4.4.3). Before carrying
out the FEP, the image registers are initialized by passing the original input
image through one of prede�ned �lters. The masks of the registers are initially
set to the brightest spot, and the numeric registers are initialized by mask
coordinates. The initial mask dimensions are 5× 5 pixels. This chromosome-
dependent register initialization method proved useful in preliminary exper-
iments, speeding up the convergence by enabling FEP to start with already
preprocessed image. It also provides more diversity among individuals and
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Arguments r1 r2 R1 R2
Initial register contents (input 
image after initial, genome-
dependent preprocessing) 20.0 -3.0

1 Scalar multiplication r2,r1,[r1]

-60.0
2 Move mask to minimum 

brightness
[R1],[r2],[r1]

126.0 3.0
3 Normalized central moment R1,[r1]

0.0
4 Image dot product (pixelwise, 

global)
R1,R2,[r2]

2577.0
5 Median filter R1,[R2]

6 Average brightness R2,[r1]

2.1
7 Move mask's lower right corner 

to specified point
[R1],r2,r1

8 Highpass filter 5x5 (global) R2,[R1]

2.1 2577.0

Numeric registers Image registers
Operation

Final feature values

Figure 7.14: Processing carried out by one of the evolved solutions (individual 1 of 4)

causes the e�ective code to be shorter by one chunk (4 bytes). This is why,
though originally the parameter determining FEP length has been set to 9
operations (implying chromosome length of 36 bytes), the e�ective number of
operations is 8.

In Figs. 7.14 to 7.17, the original binary code (chromosome) is not pre-
sented, as it would not be readable. Rather than that, in each row, the �rst
column presents the textual description of the operation being carried out,
whereas the second column contains the argument lists. Argument list contains
references to registers; for better readability, numeric registers are denoted here
by lower-case symbols (r1 and r2), and image registers by upper-case symbols
(R1 and R2). Registers in square brackets are output or input-output argu-
ments, i.e., their contents changes when the operation is executed; lack of
brackets denotes input (read only) argument. Each subsequent table columns
corresponds to a particular register and illustrates how its contents changes
during FEP execution. For clarity, only register changes are shown in the �g-



Chapter 7. Real-world applications 123

Arguments r1 r2 R1 R2
Initial register contents (input 
image after initial, genome-
dependent preprocessing) 19.0 14.0

1 Scalar multiplication r1,r2,[r2]

266.0
2 L2 norm between image and 

itself
R2,[r2]

1128.3
3 Logarithm (ln) r2,[r2]

7.0
4 Morphologic erosion R2,[R1]

5 Scalar maximum r2,r2,[r2]

7.0
6 Median filter R1,[R2]

7 Erase entire image (global) [R2]

8 Standard deviation of pixel 
values

R1,[r1]

14.2
14.2 7.0

Image registers
Operation

Final feature values

Numeric registers

Figure 7.15: Processing carried out by one of the evolved solutions (individual 2 of 4)

ures; blank table cells denote no change of register contents. Arrows illustrate
data �ow or, in other words, dependencies between particular nodes of the
processing graph. The images have been enhanced (brightness and contrast
increased) for better legibility.

Small boxes in images mark the current position of the image mask. Local
operations process the image within that mask only; global ones ignore them.
Mask position and size may be controlled by the FEP, either explicitly (see,
for instance, operation #7 in Fig. 7.14 and operation #5 in Fig. 7.17), or
as a side e�ect of some image processing operations (e.g., operation #4 in
Fig. 7.15). As a consequence, a particular FEP may apply and use di�erent
mask position/size depending on the input image. Any violations of required
ranges of scalar values (e.g., mask corner coordinate exceeding the actual image
dimension) are handled by modulo operation.

Note that some operations involve some constants that are not fetched
from the registers but are encoded directly in the FEP code. For clarity,
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Arguments r1 r2 R1 R2
Initial register contents (input 
image after initial, genome-
dependent preprocessing) 14.0 14.0

1 Shift the mask towards adjacent 
local brightness maximum

[R1],[r2]

24.5
2 Highpass filter (global) R1,[R2]

3 Scalar multiplication r1,r2,[r1]

343.0
4 Scalar minimum r2,r2,[r2]

24.5
5 Central moment R2,[r2]

6798.5
6 Central moment (global) R2,[r2]

4386817
7 Exclusive OR of a pair of images 

(pixelwise, global)
R1,R1,[R2]

8 Count non-zero pixels (global) R2,[r1]

343.0 4386817

Image registersNumeric registers
Operation

Final feature values

Figure 7.16: Processing carried out by one of the evolved solutions (individual 3 of 4)

such constant parameters are not shown in these examples. For instance, they
determine the orders of geometrical moments to be computed (see operation
#3 in Fig. 7.14, operation #6 in Fig. 7.16).

It may be observed that, due to the heuristic nature of evolutionary search,
only a part of FEP code is e�ective, i.e., produces feature values that are
fetched from numeric registers after execution of the entire procedure. As
mentioned in section 4.4.2, FEP fragments may constitute dead code that
does not in�uence the �nal feature values. This phenomenon takes place when
an operation writes to a image register that is not being read till the end of the
entire procedure execution (e.g., operations #7 and #8 in Fig. 7.14), or the
register contents (image or numeric) is overwritten by subsequent operation
without being read (e.g., operation #1 in Fig. 7.14). Seemingly super�uous,
this redundancy is a normal and positive phenomenon characteristic to all
variants of genetic programming (see section 4.4.2 for more details).
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Arguments r1 r2 R1 R2
Initial register contents (input 
image after initial, genome-
dependent preprocessing) 17.0 12.0

1 Scalar subtraction r1,r2,[r1]

5.0
2 Shift the mask towards adjacent 

local brightness maximum
[R1],[r1]

24.5
3 Scalar maximum r2,r1,[r1]

24.5
4 L2 norm between image and 

itself (global)
R2,[r2]

909.2
5 Move mask's lower right corner 

to specified point
[R2],r2,r2

6 Vertical Previtt filter (global) R2,[R1]

7 Move mask to the pixel of 
maximum brightness

[R1],[r2],[r2]

0.0
8 L1 norm between image and 

itself
R1,R1,[r1]

0.0
0.0 0.0Final feature values

Operation
Numeric registers Image registers

Figure 7.17: Processing carried out by one of the evolved solutions (individual 4 of 4)

For the input image x considered here, the four individuals described above
return feature values gi(x) of, respectively, 2.1 and 2577, 14.2 and 7.0, 343 and
4386817, and 0 and 0. These eight feature values build up the �nal feature
vector G(x), that is subsequently passed to the classi�er h. Both C4.5 and
SVM yield correct decision for this image, pointing to the ZSU decision class.

7.5 Summary of computational experiments
When faced with real-world application, the proposed methodology proves
e�ective in both machine learning and computer vision tasks. In particular:
• EFP and CFP provide good results for learning tasks of di�erent

nature, including learning from attribute-value data and raster images.
• EFP and CFP work well within di�erent vision frameworks: passive

and active sensing, visual and radar modality. No application-speci�c
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tuning of the proposed method is required to maintain high quality of
results � both vision case studies use the same background knowledge
represented by the set of operators O. This applies to both true positive
and false positive ratios.

• EFP and CFP yield good results for di�cult real-world problems, where
one has to rely on imperfect training data (noisy, imprecise, incon-
sistent, incomplete). The recognition statistics are comparable and/or
superior to approaches discussed in literature.

• Vision applications show the ability of EFP and CFP to provide e�ective
view-independent recognition.

• CFP scales well with the complexity of the task, in particular with the
number of decision classes.

• CFP generalizes well: it is able to capture the essential features of the
decision class, discarding the details of secondary importance. In other
words, it is able to discover and describe relevant patterns in multidi-
mensional and sparse example spaces.

• The random nature of genetic search provides natural diversi�cation
of evolved recognition systems. This, in turn, enables performance
boosting through o�-line composition of multiple evolved solutions, in
cases when cooperation proves ine�ective (section 7.4.3.6).

• As there is no need for matching the recognized image with models
from the database, this feature-based approach o�ers high recognition
speed for CV applications. The average time required by the entire
recognition process for a single 48× 48 image, starting from the raw im-
age and ending up at the decision, ranged on the average from 2.2 ms to
20.5 ms for single classi�ers and compound recognition systems, respec-
tively. This impressive recognition speed makes our approach suitable
for real-time applications.

• Provided appropriate parameter setting, CFP is able to outperform EFP.
• Feature level seems to be the most appropriate decomposition level for

the CFP.
• CFP may be equipped in automatic adaptation of population number np

to the di�culty of the task being solved, without signi�cant decrease of
performance of resulting recognition systems.

• The evolved FEPs may be conveniently represented as data-�ow dia-
grams that give good insight into inner wiring of the recognition system.
Such graphs represent explicitly the knowledge acquired by the learner
(recognition system) and may be analysed and tuned by the human ex-
pert. Further re-use in other applications is also possible.



Chapter 8

Summary and conclusions
In this chapter, we group the general conclusions and overall summary. More
detailed observations made with respect to computational experiments are pre-
sented at the end of chapter 7.

8.1 Contributions
The major contribution of this monograph is development of a novel methodol-
ogy for transformation of representation for learning algorithms. The original
contributions include:
1. Within evolutionary feature programming (EFP):

• Introduction of a general, application-independent framework for
feature construction, applicable in ML, CV, and other domains,
including rationale and comparison to other feature construction
methods known from literature.

• Systematization and review of feature construction methods (im-
plicit, explicit, symbolic, non-symbolic).

• Discussion of commonalities and di�erences between the above cat-
egories, and between feature construction methods in ML and CV.

2. Within coevolutionary feature programming (CFP):
• Introduction of a coevolutionary variant of the proposed approach.
• Introduction of genotypic and phenotypic decompositions.
• De�nition of four decompositions methods for CFP and discussion

of their properties.
• Discussion of relevant properties of proposed decomposition meth-

ods (separability, reducibility, symmetry, data �ow).
• Discussion of locality-related characteristics of representation used

in EFP and CFP.
• Elaboration of an extended CFP approach with dynamically chang-

ing number of modules (populations).
3. Within experimental veri�cation of the proposed methodology:

• An extensive computational experiment concerning ML and CV
tasks, including di�erent imaging modalities.



128 Chapter 8. Summary and conclusions

• Assessment of recognition ratio, selectivity, sensitivity, scalability
with task size, and recognition speed.

• Analysis of evolved feature extraction procedures, including their
interpretation and visualization.

The elaborated methodology has many appealing features that may be outlined
as follows.
• Performance-related advantages:

� The proposed approach produces complete recognition systems.
This is especially important for CV applications, as it relieves the
human designer from handcrafting feature extraction procedures.

� EFP and CFP provide very good performance in terms of recog-
nition ratio, sensitivity, and selectivity. The obtained recognition
systems are comparable to, in some cases even outperform, other
approaches tested on the same benchmarks.

� For some decomposition methods, CFP leads to performance
improvements compared to EFP. The building blocks (modules)
acquired by CFP may be subject to knowledge re-usage in other
learning tasks (research direction pursued further in [84]).

� Evolutionary search inherently supports di�erentiation of evolved
solutions, what is helpful when building compound recognition
systems.

• Knowledge-related advantages:
� The approach provides a convenient way for embedding back-

ground knowledge and domain knowledge and separates them
clearly from general feature construction algorithm.

� For real world tasks considered in this book, the approach requires
general background knowledge only. No or little application-
speci�c knowledge is required to provide good results.

� EFP and CFP o�er good explanatory properties. In particular,
it is possible to visualize data �ow as well as trace FEP execution
on a speci�c input example/image.

8.2 Conclusions
In a broad sense, this book provides rationale for building adaptive intelligent
systems, which use background knowledge in a user-friendly way. Human inter-
vention is here limited to providing an appropriate set of elementary operators
(set O) and de�ning uniform communication interfaces between them, which,
in turn, determine the type of registers used by FEPs. Given general back-
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ground knowledge in this form, the elaborated approach is able to construct
feature extraction procedures for virtually any form/representation of training
data.

As the proposed approach abstracts from the particular working of ele-
mentary operators, the genetic representation of solutions has low locality.
However, as the experimental results show, this does not prevent the approach
to attain a competitive performance. As already stated in chapter 4, this low
(or hybrid) locality is an unavoidable consequence of keeping a clear bound-
ary between general EFP/CFP approach and application-speci�c background
knowledge contained in operators from O. We claim that, with increase of con-
ceptual complexity of problems that we attempt to solve (especially by means
of EC), we cannot avoid building less local representations.

As far as comparison of CFP and EFP is concerned, we showed that, for
some cases, the coevolutionary variant of evolutionary feature programming
is able to deliver signi�cantly better solutions than those provided by EFP.
Nevertheless, CFP does not outperform EFP in a systematic way. The `no free
lunch' theorem does not give us much chance; on su�ciently large population
of problems, CFP and EFP performances must be equal.

We provided theoretical and empirical rationale that, among the four iden-
ti�ed levels of decomposition of EFP task (instruction level, feature level, class
level, decision level), the feature level is the most appropriate one. We ob-
served a trade-o� between decomposability and the Baldwin e�ect: the higher
the level at which decomposition and cooperation take place, the more adapta-
tion takes place prior to cooperation (solution composition C). This Baldwinian
adaptation present within the evaluation function evens the �tness of solutions
and decreases the selective pressure.

In the performed experiments, we also observed a trade-o� between two
factors. One one hand, applying problem decomposition and cooperative co-
evolution may lead to performance improvements (earlier learning convergence,
better predictive accuracy). On the other hand, CC has signi�cantly lower `mo-
bility' of the search than regular EC, as only one solution component (module)
may be updated per generation (see Algorithm 1). This gives rise to a need for
another variant of CC that would perform more active search; such algorithm
could be subject to future research.

In author's opinion, to attain qualitative progress in designing and perfor-
mance of learning systems and cognitive systems, we have to turn to methods
which enable and maintain modular representation of knowledge. The coop-
erative evolutionary learning and/or feature construction seem to be a good
methodology to serve this purpose.
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8.3 Possible extensions and future research directions
As the feature construction task is formulated here in generic terms, the pro-
posed methodology is potentially applicable to other learning tasks and data
represented in other modalities. The only application-speci�c component of
the approach is the set of elementary operators O, which may be usually easily
de�ned based on human expertise. Many application areas would not require
almost any modi�cation of settings used within this book, for instance, im-
age restoration, interpretation of video streams (e.g., object tracking), and
learning from image data acquired in other bands of electromagnetic waves
(e.g., infrared imaging). Most of these extensions are only matter of modifying
the objective function f . Application to signi�cantly di�erent modalities like
time series or sound (e.g., speech recognition, speaker identi�cation), would
probably require introducing di�erent register types.

Particularly in the framework of CV, the proposed approach may undergo
further improvements. Possible extensions include, but are not limited to, us-
ing other types of registers for passing intermediate information during FEP ex-
ecution (e.g., structural information like region adjacency relations or graphs),
and extending the approach to model-based recognition paradigm (especially
important for problems with numerous decision classes, e.g., object/person
identi�cation). The iterative character of genetic search makes the method
also well-suited to tackle learning tasks that change with time and, in partic-
ular, on-line learning.

The presence of modularity o�ers the potential portability of acquired pro-
cedures; in this sense, the proposed approach may enable meta-learning, i.e.,
may enable the learner to reuse the expertise (FEPs) learned in previous tasks
(sometimes referred to as continuous learning ; may be also viewed as a special
case of incremental learning). This makes the proposed methodology somehow
related to developmental learning (e.g., developmental robotics [180, 181]),
and makes it applicable in cognitive systems (intelligent systems with internal
states/working memory). The author is currently working on an EFP variant
that bene�ts from this observation [84].

The presence of multiple cooperating populations in CC and the fact that
the evaluations processes taking place in particular populations are partially
independent, suggests the possibility of using multi-objective approaches. This
connection has been already suggested in [39] and seems to be a promising
research direction.

Last but not least, in the cooperative variant of the method, it seems worth
to investigate (measure) the mutual interdependencies between modules and
to use that information for tuning the evolutionary search to speedup learning
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convergence. The author did some some preliminary research on estimating
the strength of interdependency between particular variables/modules. Based
on formula 5.8, a measure may be introduced that re�ects the degree of inter-
dependency between modules. Though the knowledge about the entire �tness
landscape is required to estimate such interdependency precisely, it may be
roughly approximated based on the individuals, which are actually present in
populations. The matrix of interdependency coe�cients enables us then to
modify slightly the search strategy and improve search convergence. In more
general terms, measuring the overall epistasis of a given problem would be also
a useful indicator for deciding, whether it is worth to apply CC to a given
problem.
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Ewolucyjne i koewolucyjne metody konstrukcji cech w odkrywaniu
wiedzy i widzeniu komputerowym

Streszczenie
Niniejsza praca dotyczy algorytmów ucz¡cych si¦, które w sposób jawny mody-
�kuj¡ reprezentacj¦ danych wej±ciowych w trakcie uczenia. Proces ten, okre-
±lany zazwyczaj mianem konstrukcji cech, konstruktywnej indukcji cech lub
przeksztaªcania reprezentacji, usuwa zb¦dne komponenty danych ucz¡cych,
dokonuj¡c jednocze±nie fuzji komponentów u»ytecznych (np. takich, które
sprzyjaj¡ dobrej zdolno±ci dyskryminacyjnej). W procesie tym wykorzysty-
wana jest wiedza dziedzinowa, dana w postaci zbioru operacji elementarnych.

W proponowanym podej±ciu algorytm ucz¡cy si¦ indukcyjnie okre±la sposób
ekstrakcji cech z przykªadów ucz¡cych. P¦tla sprz¦»enia zwrotnego, która w
tradycyjnych algorytmach steruje przegl¡daniem przestrzeni hipotez, tu obej-
muje tak»e proces wst¦pnego przetwarzania danych ucz¡cych (ekstrakcj¦ cech).
System ucz¡cy si¦ otrzymuje w ten sposób szersze mo»liwo±ci formuªowania
hipotez dotycz¡cych analizowanych danych. W omawianym podej±ciu wyko-
rzystano obliczenia ewolucyjne do efektywnego przeszukiwania przestrzeni pro-
cedur ekstrakcji cech (ang. feature extraction procedure, FEP). Ka»dy punkt
tej przestrzeni (osobnik) reprezentuje rozwi¡zanie � opis konkretnego sposobu
ekstrahowania cech z przykªadu podanego na wej±cie, zakodowany w postaci
sekwencji elementarnych kroków (operacji) w sposób zbli»ony do liniowego
programowania genetycznego (ang. linear genetic programming [10]). Proce-
dura taka, zastosowana do oryginalnych danych (np. obrazu), oblicza warto±ci
pewnych skalarnych cech. Cechy te s¡ nast¦pnie wykorzystywane przez klasy-
�kator, który podejmuje ostateczn¡ decyzj¦ (np. rozpoznanie obiektu).

Tak sformuªowane zadanie konstrukcji cech jest zªo»one zarówno pod wzgl¦-
dem koncepcyjnym, jak i obliczeniowym. Z drugiej strony ma ono modularn¡
charakterystyk¦, tzn. jest "prawie dekomponowalne" (ang. nearly decompos-
able). "Dekomponowalne" � poniewa», mi¦dzy innymi, dla wi¦kszo±ci nietry-
wialnych zada« uczenia potrzebujemy wi¦cej ni» jednej cechy do skutecznego
dyskryminowania rozpoznawanych klas obiektów. "Prawie" � gdy» cechy musz¡
wchodzi¢ w u»yteczne interakcje (tzw. synergia), aby wspólnie opisywa¢ przyk-
ªady w przestrzeni cech w sposób umo»liwiaj¡cy ich skuteczne rozpoznawanie.
Niezale»ne konstruowanie wielu cech nie daje w ogólno±ci dobrych rezultatów.

Cz¦±ciowa dekomponowalno±¢ zadania konstrukcji cech czyni je dogodnym
polem dla zastosowania koewolucji kooperatywnej (ang. cooperative coevolu-
tion, [138]), wariantu oblicze« ewolucyjnych, w którym utrzymuje si¦ wiele
populacji osobników. Osobniki w ka»dej populacji reprezentuj¡ jedynie frag-
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menty rozwi¡zania. W konsekwencji ocena osobników nie mo»e si¦ odbywa¢ w
ka»dej populacji niezale»nie: osobniki pochodz¡ce z ró»nych populacji musz¡
by¢ agregowane w celu utworzenia kompletnych rozwi¡za«, które mo»na oce-
nia¢. Poza faz¡ oceny rozwi¡za« procesy ewolucyjne przebiegaj¡ niezale»nie
dla ka»dej populacji.

W koewolucyjnej wersji proponowanego podej±cia kooperuj¡ce populacje
odpowiadaj¡ za wyksztaªcanie poszczególnych elementów procedur ekstrakcji
cech. W pracy zaproponowano cztery jako±ciowo ró»ne sposoby dekompozycji.
Poza prezentacj¡ podej±cia oraz analiz¡ jego wªa±ciwo±ci niniejsza monogra�a
zawiera omówienie wyników wielu eksperymentów obliczeniowych, w których
zostaªo ono zastosowane do rzeczywistych zada« uczenia si¦ z przykªadów.
Praktyczna przydatno±¢ wery�kowana jest w dwóch jako±ciowo ró»nych oto-
czeniach: uczeniu maszynowym z przykªadów (ang. machine learning) oraz
uczeniu z informacji obrazowej (ang. visual learning). Przeanalizowane stu-
dia przypadków dotycz¡ identy�kacji typu szkªa na podstawie charakterystyki
�zykochemicznej, diagnozowania cukrzycy, rozpoznawania typu powierzchni
na podstawie odbitego sygnaªu radarowego, rozpoznawania obiektów trójwy-
miarowych w pa±mie widzialnym oraz rozpoznawania pojazdów w obrazowaniu
radarowym. Otrzymane wyniki wskazuj¡ na du»¡ skuteczno±¢ proponowanego
podej±cia, porównywaln¡ z rezultatami osi¡ganymi z u»yciem metod trady-
cyjnych, które zazwyczaj wymagaj¡ r¦cznego doboru sposobu ekstrakcji cech.
Warto podkre±li¢, »e w wielu przypadkach rezultaty otrzymane z wykorzys-
taniem koewolucji s¡ znacz¡co lepsze od uzykanych z u»yciem pojedynczego
procesu ewolucyjnego, co potwierdza tez¦ o modularnej charakterystyce prob-
lemu konstrukcji cech.
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