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We propose a method that enables effective code reuse between evolutionary runs that solve a set of related
visual learning tasks. We start with introducing a visual learning approach that uses genetic programming
individuals to recognize objects. The process of recognition is generative, i.e., requires the learner to restore
the shape of the processed object. This method is extended with a code reuse mechanism by introducing
a crossbreeding operator that allows importing the genetic material from other evolutionary runs. In the
experimental part, we compare the performance of the extended approach to the basic method on a real-world
task of handwritten character recognition, and conclude that code reuse leads to better results in terms of
fitness and recognition accuracy. The detailed analysis of the crossbred genetic material shows also that code
reuse is most profitable when the recognized objects exhibit visual similarity.
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1. Introduction

Experimental evaluation of evolutionary computa-
tion methods, similarly to other computational intel-
ligence approaches, usually concerns isolated tasks,
often given in a form of well-defined, standardized
benchmarks. Though justified by the scientific rigor
of reproducibility, this happens to focus the research
on the algorithms that match such experimental
framework, i.e., on the methods whose ‘lifecycle’ is
limited to a single experiment. Each experiment, typ-
ically composed of an evolutionary run on a partic-
ular problem and examination of its outcomes, takes
place in isolation from the other experiments. The al-
gorithm is not enabled to ‘recall’ its experience with
other problems.

This approach is fundamentally different from
the human way of problem solving, which is strongly
based on experience. Priors in human reasoning come
from one’s history of dealing with similar tasks and
are essential for acquiring new skills. By reusing
knowledge, humans solve problems they have never
faced before and perform well in difficult circum-
stances, e.g., in presence of noise, imprecision, and
inconsistency.

The inability to make use of the past experi-
ence affects, among others, the genetics-based ma-
chine learning that this paper is devoted to. In a typ-
ical scenario, the learning algorithm (inducer) uses
exclusively the provided training data to produce a
classifier. In that process, the inducer relies on fixed
priors that do not change from one learning process
to another. There is no widely accepted methodol-
ogy for reusing the knowledge that the inducer could
have acquired in the past, and hence knowledge reuse
is still listed among the most challenging issues in
machine learning (Mitchell, 2006).

In an attempt to narrow the gap between the
human and the machine way of learning, we propose
here a simple yet effective approach to knowledge
reuse. Our major contribution is a method of code
reuse for genetic programming (Koza, 1992; Lang-
don and Poli, 2002; O’Neill, 2009), which operates
between evolutionary runs that learn to recognize dif-
ferent visual patterns given by disjoint training sets.
The technical means for that is a crossbreeding op-
erator that allows individuals to cross over with the
individuals evolved for other learning tasks. By way
of learning task (or task for short) we mean the pro-
cess of learning a particular class of visual patterns.
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Within the proposed framework, such a task corre-
sponds to a single evolutionary run that optimizes a
specific fitness function.

The remaining part of this paper starts with a
short review of related work and motivations for code
reuse (Section 2). In Section 3 we detail the approach
of generative visual learning based on genetic pro-
gramming individuals that process visual primitives.
Section 4 is the core part of this paper and presents
the proposed method of code reuse within the genetic
programming paradigm. Section 5 describes the com-
putational experiment, and Section 7 draws conclu-
sions and outlines the future research directions.

2. Motivations and Related Work
Koza (1994) made the key point that the reuse of
code is a critical ingredient to scalable automatic pro-
gramming. In the context of genetic programming,
code reuse is often associated with knowledge en-
capsulation. The canonical result in this field are
Automatically Defined Functions defined by Koza
(1994, section 6.5.4). Since then, more research on
encapsulation (Roberts et al., 2001) and code reuse
(Koza et al., 1996) has been done within the genetic
programming community. Proposed approaches in-
clude reuse of assemblies of parts within the same
individual (Hornby and Pollack, 2002), identifying
and re-using code fragments based on the frequency
of occurrences in the population (Howard, 2003),
or explicit expert-driven task decomposition using
layered learning (Hsu et al., 2004). Among other
prominent approaches, Rosca and Ballard (1996) uti-
lized the genetic code in form of evolved subrou-
tines, Haynes (1997) integrated a distributed search
of genetic programming-based systems with collective
memory, and Galvan Lopez et al. (2004) reused code
using a special encapsulation terminal. In a recent
development, Li et al. (2012) proposed a code reuse
mechanism for variable size genetic network program-
ming.

In the research cited above, the code was reused
only within a single evolutionary run. Surprisingly
little work has been done in genetic programming to
reuse the code between multiple tasks. To our knowl-
edge, the first to notice this gap was Seront (1995),
who investigated code reuse by initializing an evo-
lutionary run with individuals from the concept li-
brary consisting of solutions taken from other, similar
tasks. He also mentioned the possibility of introduc-
ing a special mutation operator that would replace
some subtrees in population by subtrees taken from
the concept library, in a way similar to our contribu-
tion, but did not formalize nor computationally ver-
ify it. An example of other approach to reusing the

knowledge between different tasks is Kurashige’s work
on gait generation of a six-legged robot (Kurashige
et al., 2003), where the evolved motion control code
is treated as a primitive node in other motion learning
task.

In machine learning, the research on issues re-
lated to knowledge reuse, i.e., meta-learning, knowl-
edge transfer, and lifelong learning, seem to attract
more attention than in evolutionary computation
(Vilalta and Drissi, 2002, for a survey). Among these,
the closest machine learning counterpart of the ap-
proach presented in this paper is multitask learn-
ing, meant as simultaneous or sequential solving of
a group of learning tasks. Following Caruana (1997)
and Ghosn and Bengio (2000), we may name several
potential advantages of multitask learning: improved
generalization, reduced training time, intelligibility of
the acquired knowledge, accelerated convergence of
the learning process, and reduction of the number
of examples required to learn the concept(s). The
ability of multitask learning to fulfill some of these
expectations was demonstrated, mostly experimen-
tally, in different machine learning scenarios, most of
which used artificial neural networks as the underly-
ing learning paradigm (Pratt et al., 1991; O’Sullivan
and Thrun, 1995).

In the field of genetic algorithms (Holland, 1975),
the work done by Louis and McDonnell (2004) re-
sembles our contribution the most. In their Case
Injected Genetic Algorithms (CIGAR) experience is
stored in a form of solutions to problems solved ear-
lier (‘cases’). When confronted with a new problem,
CIGAR evolves a new population of individuals and
periodically enriches it with such remembered cases.
The experiments demonstrated CIGAR’s superior-
ity to genetic algorithm in terms of search conver-
gence. However, CIGAR injects complete solutions
only and requires the ‘donating’ task to be finished
before starting the ‘receiving’ task, which makes it
significantly different from our approach.

From another perspective, our algorithm per-
forms visual learning and that makes it related to
computer vision and pattern recognition. Most vi-
sual learning methods proposed so far operate at
a particular stage of image processing and analy-
sis (like local feature extraction, e.g., (Perez and
Olague, 2013; Chang et al., 2010a)), which enables
easy interfacing with the remaining components of
the recognition system; using a machine learning clas-
sifier to reason from predefined image features is a
typical example of such an approach. In contrast
to that, we propose a learning method that spans
the entire processing chain, from the input image to
the final decision making, and produces a complete
recognition system. Former research on such sys-
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tems is rather limited (Teller and Veloso, 1997; Rizki
et al., 2002; Howard et al., 2006; Tackett, 1993).
Bhanu et al. (2005) and Krawiec and Bhanu (2005)
proposed a methodology that evolved feature extrac-
tion procedures encoded either as tree-like or linear
genetic programming individuals. The idea of us-
ing genetic programming to process attributed visual
primitives, presented in the following section, was ex-
plored for the first time by Krawiec (2006) and further
developed by Jaśkowski et al. (2007c) and Krawiec
(2007).

Previously (Jaśkowski et al., 2007a), we demon-
strated the possibility of explicit cross-task sharing of
code between individuals. Here, we study a method
that benefits from code fragments imported from
other individuals. In comparison with our earlier
work on this method (Jaśkowski et al., 2007b) here
we additionally demonstrate its validity on a nontriv-
ial, large multi-class problem, compare it to other ma-
chine learning techniques, analyze in-depth the effects
of code reuse, provide extensive results for compound
recognition systems, and place this study in the con-
text of related research.

3. Generative Visual Learning
The approach of generative visual learning (Jaśkowski
et al., 2007c; Krawiec, 2007) evolves individuals
(learners) that recognize objects by reproducing their
shapes. This process is driven by a fitness function
that applies a learner to each training image indepen-
dently and verifies its ability to recognize image con-
tent. The process of recognition of a single training
image starts with transforming it into a set of visual
primitives (Alg. 1). Then, the learner is applied to
the primitives and hierarchically groups them accord-
ing to different criteria. At every stage of grouping
process, the learner is allowed to issue drawing ac-
tions that are intended to reproduce the input image.
Reproduction takes place on a virtual canvas spanned
over the input image. The fitness function compares
the contents of the canvas to the input image, and
rewards individuals that provide high quality of re-
production. The trained learner may be then used for
recognition, meant as discriminating the instances of
the shape class it was trained on from the instances
of all other classes (e.g., telling apart the examples of
specific handwritten character from the examples of
all the other characters).

The generative approach incites each individ-
ual to prove its ‘understanding’ of the analyzed im-
age, i.e., its ability to (i) decompose the input shape
into components by detecting the important image
features, and (ii) reproducing the particular compo-
nents. An ideal individual is expected to produce a

Algorithm 1 The process of recognizing image s by
learner L

1: function Recognize(L, s)
2: ◃ L - evaluated program (learner)
3: ◃ s - input image
4: P ←ExtractPrimitives(s)
5: GroupAndDraw(L,P ,c) ◃ c - canvas
6: return Similarity(c,s)
7: end function

minimal set of drawing actions that completely and
exactly reproduce the shape of the object being rec-
ognized. These desired properties of drawing actions
are promoted by an appropriately constructed fit-
ness function. Breaking down the image interpreta-
tion process into drawing actions allows us to exam-
ine individual’s processing in a more thorough way
than in the non-generative approach, where the in-
dividuals are expected to output decision (class as-
signment) only. Here, an individual is rewarded not
only for the final result of decision making, but for
the entire ‘track’ of reasoning process. Thanks to
that, the risk of overfitting, so grave in learning from
high-dimensional image data, is significantly brought
down.

Following Krawiec (2007), to reduce the amount
of processed data, our learners receive only pres-
elected salient features extracted from the original
raster image s (function ExtractPrimitives in Alg.
1). Each such feature, called visual primitive (or
primitive) in the following, corresponds to an image
location with a prominent ‘edgeness’.

Note that our feature extraction method is sim-
ple and could be improved by applying more accurate
edge detection algorithms as described by, e.g., Fabi-
janska (2012), or by using more sophisticated interest
point detector, e.g., proposed by Trujillo and Olague
(2006).

Each primitive is described by three scalars
called hereafter attributes; these include two spa-
tial coordinates of the edge fragment (x and y) and
the local gradient orientation. The complete set P
of primitives, derived from s by a simple procedure
(Jaśkowski et al., 2007c), is usually much more com-
pact than the original image, yet it well preserves its
sketch. The top part of Fig. 1a presents an exemplary
input image (s in Alg. 1), and the lower part shows
the set of primitives P retrieved from that image.

The actual process of recognition (procedure
GroupAndDraw in Alg. 1) proceeds as follows. An
individual L applied to an input image s builds a hi-
erarchy of primitive groups in P . Each invoked tree
node creates a new group of primitives and groups of
primitives from the lower levels of the hierarchy. In
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(a) (b) (c)

Fig. 1. A simple geometric figure s and its primitive representation P (a); the primitive hierarchy built by the learner
from primitives, imposed on the image (b) and shown in an abstract form (c).

Table 1. The genetic operators (function set).

Type Operator
ℜ ERC – Ephemeral Random Constant
Ω Input() – the primitive representation P of the input image s

A px, py , po – the attributes of visual primitives
R Equals, Equals5Percent, Equals10Percent, Equals20Percent, LessThan, GreaterThan
G Sum, Mean, Product, Median, Min, Max, Range
ℜ +(ℜ,ℜ), –(ℜ,ℜ), *(ℜ,ℜ), /(ℜ,ℜ), sin(ℜ), cos(ℜ), abs(ℜ), sqrt(ℜ), sgn(ℜ), ln(ℜ), AttributeValue(Ω,ℜ)
Ω SetIntersection(Ω,Ω), SetUnion(Ω,Ω), SetMinus(Ω,Ω), SetMinusSym(Ω,Ω), SelectorMax(Ω,A), SelectorMin(Ω,A),

SelectorCompare(Ω,A,R,ℜ), SelectorCompareAggreg(Ω,A,R,G), CreatePair(Ω,Ω), CreatePairD(Ω,Ω),
ForEach(Ω,Ω), ForEachCreatePair(Ω,Ω,Ω), ForEachCreatePairD(Ω,Ω,Ω), Ungroup(Ω), GroupHierarchyCount(Ω,ℜ),
GroupHierarchyDistance(Ω, ℜ), GroupProximity(Ω, ℜ), GroupOrientationMulti(Ω, ℜ), Draw(Ω)

Fig. 2. An exemplary evolved individual capable of recognizing triangular shapes.
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the end, the root node returns a nested primitive hi-
erarchy built atop of P , which reflects the processing
performed by L for s.

An exemplary process of recognition by a hypo-
thetical learner is shown in Fig. 1. Figure 1b depicts
the hierarchical grouping imposed by L on P in the
process of recognition of image from Fig. 1a (pro-
cedure GroupAndDraw). Figure 1c presents the
same hierarchy in abstraction from the input image.
Note that the groups of primitives are allowed to in-
tersect.

Internally, an individual is a procedure written
in a form of a tree, with internal nodes representing
functions that process sets of primitives. Every vi-
sual primitive has three attributes: the coordinates
of its midpoint (px, py), and the orientation po ex-
pressed as an absolute angle with respect to abscissa.
The terminal nodes fetch the initial set of primitives
P derived from the input image s, and the consecu-
tive internal nodes process the primitives, all the way
up to the root node. The functions, presented in Ta-
ble 1, may be divided into scalar functions, selectors,
iterators, and grouping operators. Scalar functions
implement conventional arithmetic. Selectors filter
primitives based on their attributes; for instance, call-
ing LessThan(A1, px,20) returns only those primitives
from the set A1 that have px < 20. Iterators process
primitives one by one; e.g., ForEach(A1, A2) will iter-
ate over all primitives from the set A1, process every
one of them independently using the program (sub-
tree) defined by its second argument A2, gather the
results of that processing into a single set, and return
that set. Grouping operators group primitives based
on their attributes and features; e.g., GroupProxim-
ity(A1, 10) will group the primitives in A1 according
to their spatial proximity, using the 10 argument as
a threshold for proximity relation, and return the re-
sults of that grouping as a nested hierarchy of sets
(every results of type Ω (see Table 1) is in general a
hierarchy of sets of primitives, as shown in example
in Fig. 1).

Since the above instructions operate on differ-
ent types, we use strongly-typed genetic program-
ming (Montana, 1993), which implies that two nodes
may be connected only if their input/output types
match. The list of types includes numerical scalars,
sets of primitives, attribute labels, binary arithmetic
relations, and aggregators.

Fig. 2 presents an exemplary evolved individual
capable of recognizing triangular shapes. Let us clar-
ify the recognition process by tracking the execution
of the leftmost tree branch (bottom-up processing).
The SelectorMin operator selects from the entire in-
put set of primitives (supplied by the ImageNode)
those that have minimal value of the Y coordinate.

The resulting group of primitives is merged by oper-
ator CreatePairD with the primitives selected by the
sibling branch (nodes ImageNode and SelectorMax).
That group of primitives is merged again by subse-
quent CreatePairD node with another group of primi-
tives. Finally, the resulting group of primitives is pro-
cessed by symmetric set difference (SetMinusSym) at
the root node.

Apart from grouping of visual primitives, some
branches of the tree may contain drawing instructions
that affect the canvas, which is ultimately subject to
evaluation by the Similarity function in Alg. 1.
Drawing actions insert line segments into the output
canvas c. The coordinates of line segments are de-
rived from the processed primitives. The simplest
representative of drawing nodes is the function called
Draw, which expects primitive set T as an argument
and draws on canvas c line segments connecting each
pair of primitives from T . Draw does not modify the
set of primitives it processes. Other drawing func-
tions, with names ending with upper-case letter D
(see Table 1), perform drawing as a side-effect of their
processing.

The recognition of image s by an individual L
is completed by comparing the contents of canvas c
to the original image s (the Similarity function in
Alg. 1). It is assumed that the difference between
c and s is proportional to the minimal total cost of
bijective assignment of pixels lit in c to pixels lit in
s. The total cost is a sum of costs for each pixel as-
signment. The cost of assignment depends on the dis-
tance between pixels: when the distance is less than
5, the cost is 0; maximum cost 1 is assigned when
the distance is greater than 15; between 5 and 15 the
cost is a linear function of the distance. These thresh-
olds were adjusted by experimentation and depend on
the lower limit of distance between primitives spec-
ified in the preprocessing procedure (see (Jaśkowski
et al., 2007c) for details). For each pixel that can-
not be paired (e.g., because there are more lit pixels
in c than in s), an additional penalty of value 1 is
added to the total cost. In such a way, an individual
is penalized for committing both false negative errors
(when parts of input shape are not drawn on the can-
vas) and false positive errors (the excess of drawing),
including the special case of drawing line segments
that overlap (partially or completely). The pairing
of image and canvas pixels is carried out by an ef-
fective greedy heuristic. The heuristic iterates over
canvas pixels and to each of them assigns the closest
non-paired pixel from the input image.

To evaluate the fitness of an individual-learner
L, the above recognition process is carried out for all
training images from the training set S of images.
The (minimized) fitness of L is defined as the total
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Algorithm 2 Evolution of classifiers for a single de-
cision class. I1 is the initial population, gmax is the
number of generations, and O stands for the set of
breeding operators.

1: function Evolve(I1, gmax, O)
2: for g ← 1 . . . gmax − 1 do
3: Evaluate each L ∈ Ig

4: B ← Selection(Ig)
5: Ig+1 ← apply breeding operators

from O to B
6: end for
7: return Igmax

8: end function

cost of the assignment normalized by the number of
lit pixels in s, and averaged over the entire training
set of images S. An ideal individual perfectly repro-
duces shapes in all training images using the minimal
number of line segments, so that its fitness amounts to
0. The more the canvas produced by L differs from
the input image (for one or more training images),
the greater (worse) its fitness value. Thus, the fitness
function rewards individuals that exactly and com-
pletely reproduce as many images from S as possible,
promoting so the discovery of similarities between the
training images.

Let us now explain how the generative recogni-
tion process is employed in the multi-class classifica-
tion task that is of interest in this paper. For each de-
cision class (handwritten character class in our exper-
iment), we run a separate evolutionary process that
uses only examples from that class in the training
set S. A highly fit individual resulting from such a
process should be able to well reproduce the shapes
represented by images in S, and at the same time
is unlikely to accurately (and minimally) reproduce
the shapes from the other classes. Examples of such
close-to-perfect and imperfect reproductions will be
given in Figs. 6a and 6b in the experimental part of
this paper.

In other words, our learning algorithm uses train-
ing examples from the positive class only, having
no idea about the existence of other classes (object
shapes). This learning paradigm, known as one-class
learning (Moya and Hostetler, 1993), may be ben-
eficial in terms of training time (fewer training ex-
amples) and is context-free in the sense that no other
classes are involved in the training process. To handle
a k-class classification problem, we run k independent
evolutionary processes, each of them devoted to one
class (see Alg. 2). The k best individuals obtained
from particular runs form the complete multi-class
classifier (recognition system), ready to recognize new

Algorithm 3 GPCR evolutionary process. m is the
length of the primary run, n is the length of en-
tire evolutionary process (primary run and secondary
run).

1: function GPCR(m, n) ◃ m < n
2: for c← 1 . . . k do ◃ Loop over primary runs
3: I1

c ← RandomPopulation( )
4: Pc ← Evolve(I1

c , m,
{Mutate, Crossover})

5: end for
6: P ← (P1, . . . , Pk) ◃ Pools for crossbreeding
7: for c← 1 . . . k do ◃ Loop over secondary runs
8: In

c ← Evolve(I1
c , n−m,

{Mutate,Crossover, Crossbreed(P )})
9: end for

10: return (In
1 , . . . , In

k )
11: end function

images using a straightforward procedure detailed in
Section 5.2.

4. Code Reuse
Given the similar visual nature of the learning tasks
related to particular classes of characters, we expect
them to require some common knowledge. Some
classes may need similar fragments of genetic code
to, e.g., detect the important features like stroke ends
or stroke junctions. For instance, locating the ends of
the shape of letter Y may require a similar code (sub-
tree) as locating the ends of letter X. To exploit such
commonalities and avoid unnecessary redundancy, we
enable cross-task code reuse between the evolutionary
processes devoted to particular classes.

The method, Genetic Programming with Code
Reuse (GPCR, Alg. 3), runs in parallel k evolution-
ary processes for n generations, one process for each
of k classes. For the initial m generations (m < n),
evolution proceeds exactly as in the basic algorithm
described in the previous section (referred to as GP
in the following). We call this part of evolutionary
process the primary run (line 4 in Alg. 3). When
the cth run (c = 1...k) reaches the mth generation,
we store a snapshot (copy) of its population in a pool
Pc. Next, the process’s population is re-initialized in
the same way as the initial population of the primary
run, and the evolution continues for the remaining
n−m generations, referred to as secondary run (line 8
in Alg. 3). The secondary run is initialized using the
same random seed as the primary run, so the initial
populations of the primary and secondary runs are
exactly the same (I1 in Alg. 3).

The secondary runs differ from the primary ones
in that they activate an extra crossbreeding operator
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m
 gen.

n-m
 gen.

...

...

P1 P2 P3 Pk

Task 1 Task 2 Task 3 Task k
primary

runs

secondary
runs

Fig. 3. The architecture of GPCR.

that is allowed to import genetic material from the
pools. Its algorithm is presented in Alg. 4, along with
the standard breeding operators used in genetic pro-
gramming. Crossbreeding for the cth secondary run
works similarly to subtree-swapping crossover, how-
ever, it interbreeds an individual from the current
population (a ‘native’) with an individual from one of
the pools of the other decision classes Pj , j ̸= c (an
‘alien’). First, it selects a native parent from the cur-
rent population using the same selection procedure as
crossover. Then, it picks out an alien parent by ran-
domly choosing one of the pools Pj , j ̸= c, and then
randomly selecting an individual from Pj , disregard-
ing its fitness. Fitness is ignored in this process as it
reflects alien’s performance on a different task (deci-
sion class); in particular, alien’s low fitness does not
necessarily mean that it lacks code fragments that are
useful for solving the native’s task. Finally, the cross-
breeding operator randomly selects two nodes Nn and
Na in the native and the alien parent respectively, and
replaces Nn by the subtree rooted in Na. The modi-
fied native parent (offspring) is injected into the sub-
sequent population (provided it meets the tree depth
constraint), and the alien parent is discarded. Thus,
crossbreeding may involve large portions of code as
well as small code fragments, in an extreme case even
single terminal nodes.

Fig. 3 outlines the dataflow in GPCR. Each col-
umn of two blocks in the diagram comprises the pri-
mary run and the secondary run for one decision class
(task), and the arrows depict the transfer of genetic
material between them. Overall, GPCR involves k
primary runs lasting m generations and k secondary
runs lasting n−m generations, so the total number of
individual evaluations is the same as in standard GP
running k runs for n generations each. Thus, the ad-
ditional computational overhead brought by GPCR
includes the cost of re-initialization of k populations
at the verge between the primary and secondary runs

Algorithm 4 Genetic Programming operators
1: function Mutate(p) ◃ A single parent
2: s1 ← randomly selected subtree in parent p
3: s2 ← randomly generated subtree
4: return child produced by replacing s1 with

s2 in p
5: end function

6: function Crossover(p1, p2) ◃ Two parents
7: s1 ← randomly selected subtree in parent p1
8: s2 ← randomly selected subtree in parent p2
9: c1, c2 ← swap s1 with s2 in p1 and p2

10: return {c1, c2}
11: end function

12: function Crossbreed(p, c, P ) ◃ A parent, its
task id, and pools from primary run

13: Pj ← randomly selected pool from P
such that j ̸= c

14: a← randomly selected individual from Pj

15: s1 ← randomly selected subtree in parent p
16: s2 ← randomly selected subtree in alien a
17: return child produced by replacing s1 with

s2 in p
18: end function

and the cost of crossbreeding. As these operations
are generally computationally inexpensive when com-
pared to the fitness assessment, the overall computa-
tional effort of GPCR is roughly the same as that of
GP1. This enables fair comparison and allows us to
focus exclusively on the performance of the evolved
solutions in the experimental part of the paper.

5. The Experiment
In the experimental part, we approach a real-world
multi-class problem of handwritten character recog-
nition and demonstrate how GPCR compares to GP
on that task in terms of fitness as well as classifica-
tion accuracy (recognition performance). The task
is to recognize letters from Elder Futhark, the oldest
form of the runic alphabet. To make the task realistic
and self-contained, we consider all character classes
present in this problem, which look in print as follows:
f U þ a r k g w h n i j
I p R s t b e m l ŋ d o

Elder Futhark letters are written with straight
pen strokes only, which makes them a good testbed

1The cost of population re-initialization is in fact close to
zero: as the secondary run starts with exactly the same popu-
lation as the primary run, one can cheaply create a copy of the
initial population of the primary run and use it as a starting
point for the secondary run.
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Fig. 4. Examples of handwritten Elder Futhark charac-
ters.

for our approach that uses line segments as draw-
ing actions (see Section 3). Using a TabletPC com-
puter, we prepared the training set containing 240
images (examples, objects) of k = 24 runic alphabet
characters, each character class represented by 10 ex-
amples written by 7 persons (three persons provided
two character sets each). Fig. 4 shows examples of
selected handwritten characters.

The purpose of the experiment is to compare the
method with code reuse (GPCR) to the basic genetic
programming (GP) that provides us with the con-
trol results. Technically, for each of k = 24 charac-
ter classes we run a generational evolutionary process
maintaining a population of 10,000 individuals. Each
process lasts for n = 600 generations; this number
of generations was necessary for GP to reach a firm
leveling-off of fitness graph indicating little chance for
further improvement. To provide for statistical signif-
icance, we repeat each process 30 times, starting each
time from a different initial population created using
Koza’s ramped half-and-half operator with ramp from
2 to 6 (Koza, 1992). We apply the tournament selec-
tion with tournament of size 5, using individuals’ sizes
for tie breaking and thus promoting smaller trees and
alleviating the problem of code bloat. The tree depth
limit is set to 10; the mutation and crossover opera-
tions may be repeated up to 5 times if the resulting
individuals do not meet this constraint; otherwise,
the parent solutions are copied into the subsequent
generation. The algorithm was implemented in Java
with help of the ECJ package (Luke, 2002), except
for the fitness function written for efficiency in C++.
For the evolutionary parameters not mentioned here,
ECJ’s defaults were used.

For GP runs, offspring are created by crossing
over the selected parent solutions from the previ-
ous generation (with probability 0.8; see Crossover
function in Alg. 4), or mutating them by replacing
subtrees (with probability 0.2; see Mutate function

in Alg. 4). For GPCR, the primary run lasts for
m = 300 generations with the same settings as GP
and the same contents of the initial population, so it
is literally the same as the first m generations of the
corresponding GP run. In the secondary run (lasting
for 300 generations as well) the mutation probabil-
ity is lowered to 0.1 and the remaining 0.1 is yielded
to the crossbreeding operator. Apart from this shift
in probabilities associated with particular operators,
the GP and GPCR settings are virtually identical and
take the same computation time.

To intensify the search and prevent premature
convergence to local optima, we used the island model
(Whitley et al., 1999). We split the population into
10 equally-sized islands and, starting from the 50th

generation, exchange individuals between the islands
every 20th generation. During the exchange, every
odd-numbered island donates the clones of its best-
performing individuals (10% of population, selected
by tournament of size 5) to the five even-numbered
islands, where they replace the worst-performing in-
dividuals selected using an inverse tournament of the
same size. Reciprocally, the even-numbered islands
donate their representatives to the odd-numbered is-
lands in the same way. The islands should not be
confused with the boxes depicting the evolutionary
runs in Fig. 3 — the island model is implemented
within each evolutionary run independently, both in
GPCR and in basic GP, so its presence does not bias
their comparison.

5.1. Fitness comparison. In order to confront
GPCR with GP, we first compared their results in
terms of fitness. Table 2 presents the average fitness
(computed on the training set) of the best-of-run in-
dividuals for each runic letter. Clearly, the fitness for
GPCR is better in all cases. Statistical analysis re-
veals that, for 21 classes marked by stars, reusing the
code significantly pays off (t-test, α = 0.05).

We also evaluated the best-of-run individuals on
the test set of characters, which was disjoint with
the training set and contained 1440 images, that is
60 images for each character class. On the test set,
GPCR outperformed GP for 22 classes, and in 15
cases the difference was statistically significant (see
Table 3). The two cases where GP outdid GPCR
were statistically insignificant. On average, the fit-
ness of the GPCR best-of-run individual was better
than that of the GP best-of-run individual by nearly
21% for the training set and by nearly 24% on the
test set.

Figure 5 presents the progress of GP (solid lines)
and GPCR evolutionary processes (dotted lines) for
the 5 first letters of the runic alphabet. These graphs
are representative for the behavior of both methods
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Table 2. Fitness of best-of-run individuals for the training set for GPCR and GP averaged over 30 runs for each runic
letter. The lower the value, the better fitness; stars mark statistical significance (t-test, α = 0.05).

Letter f U þ a r k g w h n i j

GP 0.301 0.128 0.275 0.261 0.261 0.226 0.212 0.185 0.166 0.153 0.066 0.235
GPCR 0.188* 0.119* 0.144* 0.205* 0.196* 0.191* 0.192* 0.173* 0.149* 0.149* 0.066 0.217*

Letter I p R s t b e m l ŋ d o

GP 0.214 0.447 0.203 0.299 0.214 0.293 0.208 0.249 0.182 0.244 0.235 0.278
GPCR 0.197 0.267* 0.188* 0.254* 0.211* 0.226* 0.184* 0.187* 0.164* 0.215 0.212* 0.257*

Table 3. Overall comparison of GPCR and GP best-of-run fitness. GPCR is better for all 24 letters on the training set
and for 22 letters on the test set. These differences are statistically significant in 21 cases in training and 15
cases in testing (t-test, α = 0.05).

GPCR Average fitness gain # better # worse # stat. better # stat. worse

Training set 20.9% 24 0 21 0
Test set 23.9% 22 2 15 0

for all 24 characters. GPCR series start from the
300th generation, when the secondary run is initial-
ized, while its primary runs are the same as GP’s first
300 generations. The convergence of GPCR is much
faster than GP’s: the line is nearly vertical for the
first few generations of the secondary run. Note also
that GPCR significantly outperforms GP on the so-
phisticated characters, while on a simple one (U) it
does not have much chance for improvement.

5.2. Comparison of recognition systems. We
compare GPCR and GP also in terms of the multi-
class recognition performance. For this purpose, we
combine all 24 best-of-run individuals, forming the
complete recognition system that undergoes evalua-
tion on the test set of characters. The system clas-
sifies an example t by computing fitness values of all
24 individuals for t and indicating the class associated
with the individual that produced the smallest (the
best) value. Such procedure is motivated by an obser-
vation, that individual’s fitness should be close to 0
only for the positive examples (images from the class
it was trained on). For the negative examples, the re-
production process should most probably fail, draw-
ing inappropriate line segments on the canvas and
thus resulting in inferior fitness (cf. Section 3). As
a demonstration, Fig. 6a presents the close-to-perfect
reconstructions produced by the 24 best-of-run indi-
viduals for examples from the corresponding positive
classes. On the other hand, in Fig. 6b, where each
shape was reconstructed using the same individual

taught on class I, only the reconstruction of charac-
ter I is correct2.

The above recognition procedure, called simple
recognition system in the following, may be obtained
at a relatively low computational expense of one evo-
lutionary process per class. Given more runs, recog-
nition accuracy may be further boosted by employ-
ing more voters per each class, as opposed to one-
voter-per-class scheme used by the simple recognition
system. This is especially appealing in the context
of evolutionary computation, where each run usually
produces a different best-of-run individual, so their
fusion may be synergistic. To exploit this opportu-
nity, we come up with a vote-l recognition system that
uses l best-of-run individuals for each class. Given
30 runs performed for each class in this study, we
build ⌊30/l⌋ separate vote-l systems. When classi-
fying an example, the vote-l system considers all l24

possible combinations of voters, using one voter per
class in each combination. Each combination pro-
duces one decision, using the same procedure as the
simple recognition system. The class indicated most
frequently across all combinations is the final decision
of the vote-l recognition system. Technically, there is
no need to construct all l24 ensembles, because the
result can be computed at lower than quadratic time
complexity.

Table 4 compares GP to GPCR with respect to
the test-set classification accuracy of the simple recog-
nition system and the vote-l method with a different
number of voters l. The table shows the averages

2Though also reconstruction of letter i seems correct, closer
examination reveals surplus overlying strokes that will be pe-
nalized by the fitness measure.
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(a) Training set

Fig. 5. Fitness graphs of best-so-far individuals for the 5 first letters of runic alphabet (f, U, þ, a and r). Solid line
corresponds to the GP experiment whereas dotted line to the GPCR one. Averaged over 30 evolutionary processes.

Table 4. Test-set classification accuracy (%) for different voting methods.
simple vote-2 vote-3 vote-4 vote-5 vote-30

GP 69.79±1.66 78.50±1.12 82.50±1.02 85.21±0.79 86.66±0.61 91.32
GPCR 81.94±0.89 87.88±0.49 91.19±0.41 92.58±0.31 93.18±0.27 95.56

with .95 confidence intervals; for vote-30, confidence
intervals cannot be provided as, with 30 independent
runs for each character class, only one unique vote-30
recognition system can be built. Quite obviously, the
more voters, the better the performance. But more
importantly, GPCR improves the baseline result of
GP for every number of voters. The gap between
them narrows when the number of voters increases,
but remains substantial even for the vote-30 case.

Finally, these results are also competitive to the
commonly used standard techniques. A radial ba-
sis function neural network, a support vector ma-
chine, and a 3-layer perceptron, when taught on the
same training data digitized to 32 × 32 raster im-
ages, attain test-set accuracy of 79.25%, 89.75%, and
90.67%, respectively (using the default parameter set-
tings provided by the Weka software environment
(Hall et al., 2009)).

Table 5 presents the test set results for the vote-
30 GPCR experiment in terms of true positives and
false positives. Nine out of 24 characters are recog-
nized perfectly. Overall, only three characters are
recognized in less than 90% of cases: U, w, and l.
Analysis of the confusion matrix (not shown here for
brevity) allows us to conclude that U is sometimes
mistaken for l, hence both yield high false positive
errors. Similarly, the recognition system occasionally
incorrectly classifies w as þ. Since the letters in these

pairs are very similar to each other and even a human
may find it difficult to tell them apart in handwriting,
this result may be considered appealing.

5.3. Discussion. We demonstrated that code
reuse between different tasks may boost the results
of the evolutionary process. Although we considered
a classification problem here, it is important to no-
tice that GPCR and GP were compared, above all,
on the set of optimization tasks (Section 5.1) with a
well defined, close-to-continuous fitness function (de-
scribed in Section 3). This suggests that applicability
of cross-task code reuse is not limited exclusively to
machine learning and pattern recognition. We hy-
pothesize that other types of tasks, like regression,
could benefit from such code reuse as well, provided
the existence of common knowledge that helps solving
multiple tasks.

On the other hand, the results suggest that us-
ing a generative, close-to-continuous fitness function
based on one-class data to evolve components of a
complex recognition system that makes discrete de-
cisions about multiple classes was a good choice. In
particular, the fitter individuals obtained in GPCR
translated into the better classification performance
of the recognition system, which we shown in Sec-
tion 5.2.
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(a)

(b)

Fig. 6. (a) Individuals tested on examples from their positive classes produce high-quality reproductions. (b) An indi-
vidual taught on class I, when tested on examples from all classes, produces poor reproduction for most of the
negative examples. Dotted line – input image, continuous line – reconstruction (drawing actions).

Table 5. True positive (TP) and false positive (FP) ratios for vote-30 GPCR method.
Letter f U þ a r k g w h n i j

TP 90.0% 80.0% 100% 95.0% 98.3% 100% 98.3% 81.7% 100% 93.3% 98.3% 98.3%
FP 0.0% 18.3% 21.7% 1.7% 0.0% 1.7% 3.3% 3.3% 0.0% 6.7% 8.3% 0.0%

Letter I p R s t b e m l ŋ d o

TP 100% 98.3% 93.3% 100% 95.0% 100% 100% 96.7% 80.0% 100% 100% 96.7%
FP 3.3% 1.7% 0.0% 1.7% 3.3% 0.0% 3.3% 0.0% 21.7% 6.7% 0.0% 0.0%

Though the reader may be tempted to consider
GPCR (and other methods that transfer knowledge
between different tasks) as yet another performance
improvement technique, there is something more to
it. Cross-task reuse of code cannot take place in isola-
tion: learning/optimization process requires an exter-
nal knowledge source that has not been derived from
the same training data. In this sense, the setup of
GPCR is different from the setup of performance im-
provement techniques that do not require such mea-
sures, like automatically defined functions. In return,
GPCR enables in-depth analysis of task similarity
that is subject of the following section.

GPCR with its crossbreeding operator can be
seen as a variant of island model in which the individ-
uals on different islands learn different tasks and op-
timize different fitness functions. Note, however, that
in the island model genetic material is exchanged,
usually, every several generations. In contrast, in
GPCR genetic material is exchanged between the evo-

lutionary processes (“islands”) only once: at the end
of the primary run. The crossbreeding operator acti-
vated in the secondary runs uses this once-saved ge-
netic material over and over again, but never modifies
it anymore. Though it is possible to modify GPCR
to resemble the island model more, here we chose a
setup that was conceptually less complex and tech-
nically easier to implement in our computational in-
frastructure (less communication between “islands”).

6. Detailed analysis of code reuse
The results presented so far reveal the ‘symptoms’
of code reuse, i.e., its impact on individuals’ per-
formance. In the following we look under the hood
of that process, attempting to describe it in a more
quantitative manner by ‘data mining’ a secondary
run. In particular, the questions of interest are i) how
much of individual’s knowledge results from cross-
breeding, mutation and crossover; and ii) how much
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knowledge is adopted by an individual from a partic-
ular pool Pi.

Since an individual is a tree-like expression, two
types of approaches may be considered: node-oriented
and edge-oriented. The idea behind the node-oriented
analysis is to count the tree nodes in individuals and
distinguish the initial-nodes, the mutation-nodes and
the pool-nodes, depending on node’s origin, i.e., the
initial population, mutation, or crossbreeding. How-
ever, such node-oriented approach would quantify
information rather than knowledge, since it would
not take into account the mutual connections of tree
nodes. That is why we favor here an edge-oriented
analysis and define the initial-edges, the mutation-
edges and the pool-edges, depending on the source
an edge comes from. An edge connecting the parent
tree with the subtree inserted by mutation, crossover,
or crossbreeding will be called a new-edge. For any
individual, the initial-edges, the mutation-edges, the
pool-edges, and the new-edges sum up to the total
number of edges.

We define the amount of knowledge received by
an individual from the primary run as the total num-
ber of its pool-edges. For an individual composed of
nodes that come each from a different genetic oper-
ation, this measure amounts to 0, no matter what
the actual numbers of pool-nodes is. This is con-
sistent with intuition: such a tree does not inherit
even a single pair of connected nodes from the pri-
mary run, so no code is reused (the arrangement of
nodes could as well result from mutation). Moreover,
unlike the node-oriented measure, the edge-oriented
measure prefers one subtree of n1 + n2 nodes reused
from pool Pi to two separate subtrees of sizes n1 and
n2 also reused from Pi. Such behavior is reasonable,
since in the latter case, the total amount of knowledge
is reduced due to partitioning of the genetic code.

We chose the letter þ for the detailed analysis
of code reuse to find out why the results of GPCR
for this class are much better than the results of
GP. Table 6 presents the statistics of edge types
for the best-of-run individuals, averaged over the 30
runs. Our first observation is that nearly half of the
edges (48.5%) comes from the pools whereas the rest
(51.5%) results from the other genetic operators (pop-
ulation initialization, mutation, and crossover). Only
7.7% of the code comes from mutation despite the
fact that its probability is the same as probability of
crossbreeding (0.1). This confirms that crossbreeding
is a valuable source of useful pieces of genetic code.
Apparently, the trees in the pools perform useful com-
putations, so they are preferred to the purely random
subtrees inserted by mutation.

Table 7 presents the sorted distribution of edges
reused from particular pools by the best-of-run indi-

viduals for class þ. It should not come as a surprise
that pool-w, amounting to more than 9% of reused
code (11.2 edges per individual on average), helped
the most to recognize the examples from the class þ
(see Table 7). As no other letter is as visually similar
to þ as w, evolution reused the solutions for w. Their
code fragments proliferated throughout the popula-
tion and increased the survival chances of the cross-
bred individuals. We hypothesize that this is also why
it was so easy for GPCR to beat GP on this letter.

It is striking how the top five ranked letters (w, f,
a, I, l) are similar to þ in shape — they all have one
vertical segment and at least one diagonal segment
on the right. On the other hand, the last entries
of Table 7 contain mostly the letters that are visu-
ally dissimilar to þ — with multiple long diagonal or
vertical lines or without long lines at all. The least
used pool corresponds to the simplest letter i, which
was probably not challenging enough to give rise to a
reusable code.

Figure 7 shows the dynamics of the edge type
statistics during the evolution for letter þ, averaged
over the 30 runs. Only the first 100 generations of
the secondary run are shown since the graph does not
change much after this point. We can observe that
the total number of pool edges grows very fast in the
beginning of the evolution, reaches the peak value of
85 around the 15th generation, and then, after drop-
ping a bit, oscillates between 65 and 75. During the
first 30 generations some interesting patterns emerge.
Firstly, we observe the steady growth of edges from
pool-w that produces the widest stripe in the end of
graph, which is in accordance with the superior utility
of pool-w code for þ, discovered in the static analy-
sis. Secondly, the drop of the total number of reused
edges from 85 edges in the 15th generation to 65 edges
in the 50th generation is mostly caused by removing
the edges previously acquired from pool-f and (less
prominently) from pool-a. We hypothesize that the
code acquired from these pools, initially very useful,
was later replaced by the code from pool-w and by
the new-edges, since the number of new-edges grows
monotonically during the first 100 generations.

7. Conclusions
Despite the large number of classes (24), the low num-
ber of training examples per class (10), the variability
of handwriting styles (7 persons), and without access
to negative examples (one-class learning), our evolu-
tionary learning method attains an attractive classifi-
cation accuracy on the large and diversified test set in
a real-world problem of handwritten character recog-
nition. Most of the errors committed by the GPCR
recognition systems involve character classes that are
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Table 6. The distribution of edge types for the best-of-run individuals for class þ averaged over 30 runs. The average
total number of edges is 124 (100%).

Edge type initial-edges mutation-edges pool-edges new-edges

edges 0.9 9.6 60.1 53.5
% 0.7% 7.7% 48.5% 43.1%

Table 7. The sorted distribution of edges reused from particular pools by the best-of-run individuals for class þ (averaged
over 30 runs).

Letter w f a I l s r p b t m U

pool-edges 11.2 4.1 3.8 3.6 3.2 3.1 3.1 3.1 3.1 3.0 2.5 2.2
% 9.1% 3.3% 3.1% 2.9% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.0% 1.8%

Letter d ŋ h R j k n g e o i

pool-edges 2.1 2.0 1.6 1.5 1.4 1.3 1.2 0.9 0.9 0.7 0.4
% 1.7% 1.6% 1.3% 1.2% 1.2% 1.0% 1.0% 0.8% 0.7% 0.6% 0.3%

Fig. 7. The numbers of different edge types in individuals in the first 100 generations of secondary run of letter þ.
Each stripe represents one edge type. The graphs were averaged over 100 best-of-generation individuals and 30
evolutionary runs.

hard to tell apart also for humans (e.g., U and l, w
and þ). Thanks to one-class learning, the recogni-
tion system may be easily extended by a new class by
running a separate evolutionary process; the existing
components do not have to be modified.

GPCR, the proposed mechanism of code reuse,
boosts fitness and recognition accuracy, so that
the resulting recognition system outperforms the
standard GP. GPCR is a straightforward, easy-to-
implement extension of the canonical genetic pro-
gramming, and its extra computational overhead is
close to insignificant. It may be hypothesized that
it would prove helpful also in other recognition tasks
where common visual primitives occur in many de-
cision classes, like handwriting recognition for con-
temporary languages (e.g., Chang et al. (2010b) and

Ciresan et al. (2012)). Moreover, the results in terms
of fitness suggest that GPCR would be beneficial also
for other types of tasks that do not necessarily end
up with a multi-class recognizer.

In a more general perspective, we demonstrated
that the paradigm of genetic programming, thanks
to symbolic representation of solutions and the abil-
ity of abstraction from a specific context, offers an
excellent platform for knowledge transfer. However,
there is not enough evidence yet to claim that these
results generalize beyond our genetic programming-
based visual learning. At least three major factors
determine the profitability of code reuse: the repre-
sentation of solutions, the presence of commonalities
between the learning tasks, and the crossbreeding op-
erator. In particular, an appropriate crossbreeding
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operator that preserves the chunks of code for a spe-
cific knowledge representation may improve the con-
vergence of the secondary run. This leads to an in-
teresting idea of posing an inverse problem that may
become a further research topic: instead of trying to
devise a code reuse method for a particular knowledge
representation, one could try to design a knowledge
representation that enables code reuse. Furthermore,
analogously to evolving evolvability, this could lead to
the concept of evolving reusability, where the objec-
tive for the evolutionary process would be to evolve
individuals’ encoding that promotes code reusability.

The results obtained in this study suggest a suc-
cessful match between the abstraction level of knowl-
edge representation and the level at which GPCR op-
erates. Supposedly, our operators that group and
select visual primitives are well suited for identify-
ing the common subtasks (code fragments) and their
reuse. The detailed analysis shows that knowledge
proliferates most successfully throughout the popu-
lation when transferred from the similar tasks (e.g.,
characters þ and w). We hypothesize that, among the
reused code fragments, the most useful are those ones
that help the individuals to detect object features
that repeat across the classes, like stroke junctions
and stroke ends. However, this supposition needs a
more in-depth analysis and will be subject of another
study.
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