
Poznan University of Technology

Faculty of Computing Science

Institute of Computing Science

Master’s thesis

AUTOMATED DESIGN OF SEMANTICALLY SMOOTH
INSTRUCTION SPACES FOR GENETIC PROGRAMMING

Tomasz Pawlak

Supervisor

Krzysztof Krawiec, Ph. D., Dr. Habil Associate Prof.

Poznań 2011

Tutaj przychodzi karta pracy dyplomowej;

oryginał wstawiamy do wersji dla archiwum PP, w pozostałych kopiach wstawiamy ksero.

Contents

1 Introduction 7
1.1 Motivation . 7

1.2 Aim of the thesis . 8

1.3 Organization of the thesis . 8

2 Genetic Programming Overview 9
2.1 Introduction to Genetic Programming . 9

2.2 Genotype representation . 11

2.3 Genetic operators . 13

2.3.1 Selection . 13

2.3.2 Crossover . 14

2.3.3 Mutation . 17

2.4 Applications of Genetic Programming . 18

3 Challenges for Genetic Programming 21
3.1 Typical problems and troubleshooting . 21

3.1.1 Code bloat . 21

3.1.2 Other problems in Genetic Programming 23

3.2 Locality and global convexity in context of Genetic Programming 24

4 Automatic Design of Semantically Smooth Instruction Spaces 29
4.1 Embeddings of program spaces . 29

4.2 Program representation . 32

4.2.1 Binary Decision Diagrams . 32

4.2.2 Instruction and program representations 34

4.3 Shape optimization of metainstruction space . 35

4.4 Locality optimization of metainstruction space 40

4.5 Search in optimized metainstruction space . 41

5 Empirical Results 45
5.1 The experiment . 45

5.1.1 Implementation . 46

5.1.2 Runtime environment . 46

5.2 Shape optimization of metainstruction space . 47

5.3 Locality optimization of metainstruction space 51

3

Contents

5.4 Search using optimized metainstruction space 56

6 Conclusions and Future Work 59

Bibliography 61

4

“In the discrete world of computing, there is

no meaningful metric in which ‘small’ changes

and ‘small’ effects go hand in hand, and there

never will be.”

Edsger Wybe Dijkstra [19]

5

Chapter 1

Introduction

This thesis concerns the design, implementation and evaluation of the concept of automatic design

of semantically smooth instruction spaces for Genetic Programming. The work is focused on

improving of Genetic Programming performance by providing sets of instructions that make more

smooth transitions between one program instance to another one in terms of program semantics.

On a general level the research problem is to invent generic methodology for creation of sets of

abstract instructions that help the program search process to converge in global optimum of fitness

landscape.

The improvement of search performance is achieved by embedding of original program space

into new space, where coordinates of programs are optimized with regard to their semantic sim-

ilarity. Unfortunately the number of programs, that can be created from given set of instructions

is potentially unlimited, therefore it is proposed to split up the program into group of metain-

structions – a program building blocks and optimize limited space of the blocks instead. The

metainstruction space must be shaped somehow, therefore four methods are proposed for calcu-

lation of space dimensions. The analysis of all these methods as well as impact on the search

performance caused by the space embedding is verified on the basis of Genetic Programming and

compared with its canonical form.

1.1 Motivation

From the time of modern computer invention, the term ‘computing’ refers to two related tech-

nologies, automated calculation and programmability of the calculations. It is not irrational to

ask, why not move the computing to a higher level of abstraction – automated programmability

of the computer. The task of programming is clearly an intelligent approach aimed at specific

goal, which is a program performing a certain job. A software developer, who knows the seman-

tics of instructions and rules of the programming language can write a program with no troubles.

As this task is time-consuming, therefore it is tempting to pass on part of the job to the automatic

process. However, while human intelligence works by bringing facts together, the artificial one

involves massive search trials. These search trials operate with varying performance, depending

on difficulty of the problem being solved. Therefore any adjustment that improves the search

performance is meaningful.

7

Introduction

The main headache of searching through program spaces is connected with quite accidental

relation between program code and its outputs. While traditional approaches build programs by

operating exclusively in the syntactic space of given language, it is possible to make use of the

space of program semantics. The knowledge on the semantics of program or even its fragments

makes it potentially helpful in manipulation of program code in more foreseeable way. There is

a hope, that this predictability leads program search process to faster finding of target solution.

1.2 Aim of the thesis

The thesis is aimed at development of methodology for design of semantically smooth instructions

spaces for Genetic Programming. Thanks to the smoothness of the set, it is expected to achieve

improved performance of search for desired program. The main objectives are: development of

the methodology of automated construction of instruction sets, in particular design of instruction

form, a way to effectively filter useless instructions from set of developed routines, a method

for giving a shape to the set and a approach for smoothing of the instruction space, such that

the Genetic Programming will perceive noticeably better correlation between program semantics

and its location in the search space. In order to achieve the main goal, the auxiliary objectives

must be done. They consist of preparation of software project for experimental framework, its

implementation and use for tests. The last task will be focused on analysis and interpretation of

obtained results. The analysis will cover the scope of entire methodology, from designing of the

instruction set, through smoothing procedure, to behavior of the Genetic Programming algorithm.

The project described in this thesis lasted from February 2011 to June 2011 and it was split

into five single-month phases. The first phase was devoted to analysis of learnable embeddings

of program spaces concept as well as review of literature. The next phase was dedicated to the

development of metainstruction and program concept. The third one was spent on implementation

of algorithms and next one on computational experiments. The last phase was dedicated to the

final review.

1.3 Organization of the thesis

The thesis is organized as follows. Chapter 2 presents an overview of Genetic Programming, its

concept, current state of the art and common applications. Next, in Chapter 3, the major challenges

for Genetic Programming and searching through program spaces in general are described. Chap-

ter 4 briefly introduces to concept of learnable embeddings of program spaces, metainstruction

definition and successive phases of automatic design of instruction sets for Genetic Programming.

Chapter 5 analyzes results of computational experiment, the impact of program space embedding

and comparison to performance of traditional Genetic Programming approach. Finally, Chapter 6

concludes the thesis and points the way for future work.

8

Chapter 2

Genetic Programming Overview

2.1 Introduction to Genetic Programming

Evolutionary Computation (EC) is biologically inspired approach to solve optimization problems.

The assumptions of EC date back to discoveries of Charles Darwin in the 19th century about

means of natural selection and survival of the fittest [17]. Darwin reasoned that immutable species

would become progressively incompatible with their changing environment. He noticed similarity

of children to their parents, which lead him to conclusion that traits pass from one generation to

the next. He also observed little differences between siblings, which provide species with pools

of unique individuals competing for food and place to live. From the above observations Darwin

concluded that if environment changes, organisms best adapted to the new situation would bring

forth offspring reflecting their successful traits. The process was named natural selection and

Darwin believed that it is the most significant mechanism in evolution of species. He did not

know the way characteristics are inherited from parent to children, he simply saw it happens.

The missing part was beyond the reach of science for about century after his death. In 1952

Hershey and Chase firstly confirmed that deoxyribonucleic acid (DNA) takes part in heredity [1].

A year after, in 1953, two biologists, Crick and Watson, published the first correct double-helix

model of DNA structure [20, 21]. The DNA is essential in inheritance process because it encodes

the chemical recipes for life’s proteins, enzymes and, as a result, individual traits. Moreover it

packs huge amount of data into very small space.

With analogy to the DNA as medium of information about certain organism, the Evolutionary

Computation, also known as Evolutionary Algorithm (EA), involves digital information, which

fully describes particular solution. In EA, each solution is called an individual and a group of

individuals is named a population. Since the procedure works by evolving population of solutions,

it belongs to class of population-based algorithms. The default schema [27, 30] for Evolutionary

Computation consists of initialization and generation stages. In the first stage the initial population

is randomly generated from scratch or by seeding using domain knowledge. Generations are

repeated until a stopping condition is satisfied. Each generation can be split up into four phases:

evaluation, selection, reproduction and mutation. The evaluation phase is aimed at scoring each

individual for solving the particular problem of consideration. The score, often called fitness,

is utilized in the subsequent selection phase to compare individuals. In the selection phase, the

best suited individuals are chosen and then recombined in the reproduction phase. The crossover

9

Genetic Programming Overview

operator responsible for recombination, with analogy to biological reproduction, is a procedure

that creates a child by combining parts from parents’ genomes. The intuition behind the process

is to create a new individual that is a ‘mixture’ of its parents. The last phase is mutation, usually

applied to a small percent of entire population. This phase is not always necessary but since

crossover can bring the population to convergence in a single point of the search space, mutation

is typically added to the process to maintain diversity by random changes in genome [57]. The

pool of children from the current generation become parents in the next generation. The stopping

condition predominantly used in practice are findind the global optimum or reaching limit of the

number of generations.

The above description of EC is a bit general. The reason is a vast variety of evolutionary

algorithms. They differ in representation of genotype, construction of genetic operators, the way

the operators are applied to the population, etc. The most widely known classes of evolution

algorithms are Genetic Algorithms [30], Evolution Strategies [78], Differential Evolution[86, 87],

Evolutionary Programming [22] and Genetic Programming [42, 43, 77]. This thesis focuses on

the last one – Genetic Programming.

Genetic Programming (GP) is a variant of Evolutionary Algorithm, whose unique feature is

maintaining of population of solutions that are programs. The GP algorithm automatically builds

computer program, that solves certain problem, with no requirement of user knowledge and no

specification of structure of solution. In other words, GP is a domain-independent and systematic

approach to automatically synthesize computer programs from a high-level instruction sets and

information what needs to be done [77]. Programs generated by GP are usually much shorter

than ordinary computer programs. They typically consist of several dozen instructions, thus they

can be identified with single function instead of whole computer program. Moreover sets of

instructions that takes part in GP usually are not Turing-complete, because they are limited to

instructions required to express solution to certain problem only. Of course this is not a rule,

there were many successful attempts to evolve Turing-complete programs by either providing

indexed memory [89], creating recurrent program structures [96] or designing Turing-complete set

of instructions [53]. Despite the power of Turing-completeness, there is a generic issue common

for each approach: undecidability of the halting problem. The problem can be easily worked

around by limiting number of operations executed in a program run. Furthermore involving halt

instruction radically lowers percentage of non-terminating programs (in certain limit of executed

operations) [53].

Evolution in GP stochastically transforms population of computer programs from one gen-

eration to the another, hopefully better generation. As a random process, GP cannot guarantee

good results and convergence to the global optimum. But, like the nature, GP is very successful

in extraordinary ways of solving problems. A human-competitive design of miniature antenna

that is neither straight nor elliptic [58] or optical fibers with non-uniform but symmetric structure

[61] are just some examples of surprising GP solutions. More Genetic Programming applications

are described in Section 2.4. Furthermore advantage of non-deterministic characteristic of the GP

trial is ease of escaping from traps (e.g. local optimum) in fitness landscape, that capture other

deterministic methods [77].

The basic GP algorithm is specialized form of Evolutionary Algorithm in terms of genetic op-

erators. Detailed procedure is shown in Algorithm 1. The initial population is randomly generated

10

2.2. Genotype representation

Algorithm 1 The basic Genetic Programming algorithm.

1. Initialize startup population P0 of randomly generated programs from set of available in-
structions

2. Evaluate fitness of each program p ∈ P0

3. Select two parent programs p1, p2 ∈ Pn with probability proportional to their fitness

4. Do one of the following with given probability:

5. αc: Crossover parents p1, p2 to create 1 or 2 children c1,c2 and add them to pop. Pn+1

6. αm: Mutate parents p1, p2 and add them to population Pn+1

7. 1−αc−αm: Reproduce parents p1, p2 into population Pn+1

8. Repeat steps 3 – 7 until population Pn+1 achieves desired number of individuals

9. Evaluate fitness of each program p ∈ Pn+1

10. Let n← n+1

11. Repeat steps 3 – 9 until ideal individual is found or stopping condition is satisfied

12. Return best found individual

from given set of instructions. Before selection starts, each program must be evaluated. It is done

by running the program against given set of test cases. The closer program is to desired outputs,

the better fitness it gains. Fitness function can be any function compliant with user’s optimization

target. It can be measured as amount of error between desired output and program output, the ac-

curacy of program classifying objects or cost (time, money, fuel) needed to bring system to desired

state [77]. The main role of fitness function is to indicate areas of good solutions. After parents

are chosen, crossover begins with given probability αc, usually αc = 90% or higher. On the other

hand mutation probability αm is much smaller, typically about αm = 1%. If the probabilities do

not sum up to 100%, the additional operator – reproduction is used with rate αr = 1−αc−αm.

The reproduction operator simply copies parents to new population [77]. Genetic operators run

in loop until new population achieves desired number of individuals and then it replaces the old

one and new generation begins. After ideal individual is found or stopping condition is satisfied

(e.g. maximum number of generations is reached) the algorithm returns best found individual.

2.2 Genotype representation

From all program representations in Genetic Programming the tree-based one is the most pop-

ular. The tree-based Genetic Programming is alternatively called canonical GP. Each tree node

represents separate instruction in here and connections between them symbolize a control flow.

Intermediate nodes take evaluation results of their children as arguments and returns own result to

the parent. The root node returns program output. Since leaf nodes have no children they have to

take their value from external source (e.g. program input) or constant. The instruction with one

or more arguments is named nonterminal, on the contrary instruction with no arguments is called

11

Genetic Programming Overview

+
+

c

* *
*

a x x xb inputs

output

FIGURE 2.1: Example genome in canonical Genetic Programming. The tree in the picture
represents function ax2 +bx+ c, where x is independent variable (function argument) and a,
b, c are constants.

terminal. Therefore set of instructions can be split up into nonterminals and terminals. The first

one is applicable to intermediate nodes, the second one to leafs. The term instruction can be used

interchangeably with primitive.

The example genome can be found in the Figure 2.1. There is a second-degree polynomial

in the picture represented as syntax tree by nonterminal set {+,∗} and terminal set {a,b,c,x},
where a, b, c are constants and x is independent variable. The terminal set is treated as program

input with different meaning for each input. Note that, the program structure may be considered as

redundant. There are three instances of x, which technically can be combined to a single node, but

it is not usually done, because nodes may keep state information, different for each one. Moreover

entire representation is redundant by definition. For example, consider the tree, where a× (x× x)

is replaced by ∑
a
i=1 x× x for natural a≥ 1, the semantics is the same, but syntax is very different.

The sum operator can be implemented as a subtree built from {+} nodes only.

It is common in Genetic Programming that trees are written in prefix notation in text. The

example tree from Figure 2.1 becomes written as (+ (+ (∗ a (∗ x x)) (∗ b x)) c). This notation

makes easier to extract subtrees from entire tree and it shows relationships between them at glance.

The prefix notation will be used later in this master’s thesis.

One might be aware of type safety in GP, because different primitives may have different

types of arguments and outputs, therefore they may be incompatible in terms of evaluation safety.

This is known problem in GP and there are two general approaches to solve it. The first one is

strongly typed GP [67], the second one is to ensure closure property of instruction set [44]. The

strongly typed GP assumes that each primitive has a type for its every argument and for return

value. Therefore a tree is built taking into account type system’s constraints. Moreover every

genetic operation must guarantee that these constraints remain satisfied. The type system implies

a formal grammar that may help implementing type-safe genetic operators and reduce program

search space. On the other hand, in non-typed GP, there is assumption that instruction set has

closure property [44]. Closure means here that every primitive in the set may get return value of

every other primitive as an argument, therefore its return value may be given as an argument to

another primitive. Sometimes it is possible to weaken type consistency by introducing automatic

type conversion mechanism. For example integer value may be cast to floating-point, and boolean

may be obtained from number by treating all non-negative values as truth and all negative as

12

2.3. Genetic operators

false. The above mechanism may be considered as quite limiting, but usually simple refactoring

of primitives can resolve apparent problems. Let us consider if instruction. Its definition has often

three arguments: decision variable, if-true statement and if-false statement. The first of them is

clearly boolean, however taking into account conversion mechanism discussed above it is possible

to take numbers as all three arguments.

There are other forms of GP with custom program representations like linear GP, graph GP

and probabilistic GP. In linear GP [8, 69], program is built upon list of instructions, therefore it is

similar to ordinary assembler-like listing. The program usually executes on virtual machine, but

sometimes it is generated for real CPU. The program stores its intermediate and final results in

registers. Sometimes jump instruction is involved. Generally unrestricted usage of jumps leads to

infinite loop, consequently additional steps must be done to cope with them.

Graph GP is natural extension to canonical GP since tree is special form of graph. There are

few different approaches to graph GP. The first one, Parallel Distributed GP (PDGP) [72, 73] is

similar to tree-based GP in program representation, but allows instruction to take as argument

any other node, the constraint is that the graph must remain acyclic and connected. In addition

PDGP gives ability to represent programs as logic networks, neural networks, recurrent transition

networks and finite state automata. The other approach involving graphs is Cartesian GP [65, 66].

The programs are represented here as lists of integers. The list is decomposed into groups of three

or four integers. Each group is associated with corresponding position in 2-D array. First integer

in each group selects the primitive for that position in the array, the remaining integers point at

arguments positions in the array. The instruction does not define itself where its output is used,

this is done by other primitives. The output of primitive may be used multiple times or not at all,

depending on the way in which the inputs of other functions are specified.

In probabilistic incremental program evolution (PIPE) [80, 81] the program is represented as

tree of probability tables. Each row in the table defines probability that particular primitive will

be chosen in specific node in the newly generated program tree. In each generation, population is

formed from programs created upon current tree of probability tables. The process of generation

begins by selecting root node from root probabilistic table and then control goes down the hierar-

chy and chooses instructions from lower tables. The process ends for particular branch if terminal

is chosen.

The canonical tree-based representation is used in this master’s thesis if not stated otherwise.

2.3 Genetic operators

2.3.1 Selection

The intuition behind evolution is that the good individuals (solutions, programs) are reproduced

with higher probability than worse equivalents. However higher selection pressure, or in other

words higher domination of better individuals over worse, leads to lower diversity between chil-

dren. These two aspects of selection are conflicting, but both of them are desirable. The pressure

of selection can be controlled by fitness scaling. Too high selection pressure leads to convergence

in local optimum, but too weak pressure causes very high diversity, therefore evolution process

behaves like random search algorithm. The most popular techniques of selection are listed below

13

Genetic Programming Overview

[26, 27]. Let f (p) be a fitness function and fi = f (pi),∀pi ∈ P be a fitness value of the individual

pi and ei = |P|× fi

∑
|P|
i=1 fi

be an expected number of its copies in new population.

The fitness proportionate or roulette wheel selection is a method where individuals are as-

signed to fields on the roulette wheel with size proportional to their fitness fi. The roulette wheel

is spun |P| times, selecting one individual each time. Roulette wheel selection is one of the sim-

plest methods of selection, thus it has multiple disadvantages. First of all, the roulette scheme

does not guarantee that the best fitted individuals will be chosen, however their probability of

selection is high. Thus, this method may have run of the mill results, especially for small popula-

tions. Moreover the selection pressure changes over time. Consider four individuals with fitness

values {1,3,4,5}, according to the algorithm the individuals have following probabilities of se-

lection (in the same order as above) {0.08,0.23,0.31,0.38}. Now let us assume that evolution

improved each solution by 50 fitness points. Consequently current fitness values of individuals

are {51,53,54,55} and their corresponding probabilities are {0.24,0.25,0.25,0.26}. As you see

the relation between solutions did not change but probabilities did. The selection pressure low-

ered, therefore good solutions are selected less likely. Although the problem can be worked around

by normalizing or standardizing fitness before computing probabilities. Regardless of mentioned

disadvantages, roulette wheel selection is successively applied in many systems because of its

simplicity and low computation complexity.

In the random selection according to residuals without repetitions each individual pi is copied
beic times to the new population. The remaining (single) place is assigned to individual pi with

probability ei−beic. On the contrary in random selection according to residuals with repetitions

the remaining places are filled by roulette wheel selection, with field size proportionate to indi-

viduals fractional part of ei. Very similar method is deterministic choice where “standard” places

are assigned as previous, but remaining ones are filled in descending order of fractional part of ei.

The main advantage of these methods is guarantee that good individuals will get their places in

upcoming population.

The very popular method is tournament selection, where fixed k individuals compete in the

tourney. They are chosen to the tournament by roulette wheel selection. The individual with

highest fitness becomes winner of the tournament and it is added to the new population. The

entire process is repeated until there is no free space in new population. The tournament selection

has advantage over fitness proportionate selection in constant selection pressure.

Ordered selection is a method where individuals receive ranks according to their fitness. The

individuals are chosen with probability density function defined on their ranks. There is wide

range of functions that are applied, linear and non-linear. The function parameters allow to control

selection pressure. This method instead of taking into account amount of differences between

individuals, it takes only fact of difference, therefore it guarantees that selection pressure is not

dependent of fitness absolute values. Unfortunately someone may consider number of possible

functions and their parameters as confusing, therefore a simpler method is usually involved.

2.3.2 Crossover

Like in the nature, aim of crossover is to mix genetic material in such way, the children inherit good

traits of their parents. Because crossover needs two (or sometimes more) parents, the operator

14

2.3. Genetic operators

parents offspring

+
*
x y

2

-
*
x y

/
2 x

*
x y

+
2/

2 x

crossover
point

crossover
point

FIGURE 2.2: Subtree crossover operator in Genetic Programming.

usually takes its arguments from selection. Since there is a plenty of ways to mix genetic material

in Evolutionary Algorithms, there is no best-one crossover operator and Genetic Programming

is not an exception. Because of specific, tree-based, genome representation in GP, brand new

operators have been proposed over the years. The few examples of them are described in this

section.

The simplest and commonly used operator is subtree crossover. The operator takes pair of

parents as arguments, then it randomly selects one node in each parent independently. The selected

nodes are named crossover points. Afterwards the process creates child by copying first parent

tree without subtree rooted at crossover point and replaces the missing branch by subtree of second

parent rooted at its crossover point. The example of subtree crossover of two parents is illustrated

in the Figure 2.2. It is possible to select crossover points multiple times, therefore creating whole

family of children from single pair of parents. It is also possible that single crossover iteration

creates two children by swapping parents in above routine, but it is not common behavior [77].

Note that, primitives except terminals usually have from 2 to 4 arguments, consequently average

branching factor for entire tree balances between 2 and 4. Because that, leafs are 1
4 to 1

2 of all

nodes. Therefore uniform distribution of crossover points causes exchange of small amount of

genetic material due to lower nodes are chosen more frequently. In addition, many crossover

runs may be reduced to simple swapping of two leafs. To work around the problem, Koza [44]

proposed widely used technique to select intermediate nodes with probability 90% and leafs with

probability 10%. This is part of GP setup often called Koza-I [44].

The previous crossover operator does not preserve position of genetic material due to parent

subtree may be moved far away to totally different place in the child tree. This is other behavior

than in the nature, where genes in child genome correspond to parent genes at approximately the

same position. The crossover, that preserves genes position is called homologous crossover. There

has been proposed several approaches to homologous crossover, few of them are described below.

The popular one is one-point crossover [74, 76] shown in the Figure 2.3. Given two parents,

the operator aligns them to determine their common region. The common region is defined as

topologically equal part of both trees starting at root node. Then common crossover point must be

15

Genetic Programming Overview

parents

offspring

-
+

x y

/
2 x

-
+

x y

/
2 x

+
*

x y

2*
x y

+
*

x y

2*
x y

-
/

2 x

+
*

x y

2 *
x y

+
x y

crossover
point

alignment

common
region

crossover

from parent 1

from parent 2

parent 1 parent 2

FIGURE 2.3: One-point crossover operator in Genetic Programming.

selected upon common region. The point is selected randomly from available nodes. The operator

produces two children by swapping parents subtrees rooted at crossover point. Since common

region in both parents has the same shape, it is safe to replace entire subtree without violating

homology constraint.

The next homologous operator is uniform crossover [75]. The method works like uniform

crossover in Genetic Algorithm, therefore it goes through the tree and draws lots whether pick

a node from first parent or another. Moreover if picked node is nonterminal node then entire

parent subtree is also copied. Since the trees can have different shapes, only nodes inside common

region can be chosen to not violate arity constraints. The common region is determined identically

like in one-point crossover. This method tends to mix genetic material stronger near the root than

other crossover operators.

The context-preserving crossover [18] behaves similar to one-point crossover, but the crossover

points are not limited to the common region. Instead, there are additional constraints put on path

from root node to the point. There are given coordinates to each node. The coordinate is defined

as vector of choices on path from root to the node. The choice is defined as number of selected

branch in particular node. In strong context-preserving crossover, only nodes with exact coordi-

nates can be selected as crossover points. In weaken version of crossover, the point in first parent

is selected as previous, but in second parent, any node in subtree of valid crossover point coordi-

nates may be selected. The strong version of context-preserving crossover may reduce diversity,

on the contrary weak version works around the problem.

The size-fair crossover [51] works similar to the subtree crossover. The crossover point in the

first parent is chosen randomly, then the size of subtree to be removed is computed. The crossover

point in the second parent is selected with regard to the computed size in order to limit unfairly

big structures. Therefore the method is helpful with reducing code bloat.

Regardless of the method, crossover has a heavy preference for constructing non-uniform

distributions of tree sizes [71]. The crossover operator generates short programs more often than

longer ones. Usually only few generations are required to completely rearrange tree shapes and

16

2.3. Genetic operators

sizes. The mutation operator can be helpful in coping with the problem.

However there is some evidence [32], that GP crossover affects inheritance of good parents

traits by their children, the same evidence shows that crossover may cause random-like changes in

the program and therefore loss in program fitness. This is known issue in the Genetic Programming

caused by complex relation between program code and program results. It is very hard, or even

impossible to define how similar is one subroutine (e.g. subtree) to the another. Consequently it is

hard to tell, how to change program (e.g. how to select crossover points), to improve its results.

Someone may suggest that crossovers near the leafs causes less changes in the program code,

therefore it causes lower changes in its output. This is not particularly true. With analogy to

rounding errors of floating-point arithmetic, the small reorganization of computation order may

dramatically change the results. In other words small adjustments of intermediate results in deep

tree nodes, can completely change a way, the higher nodes behave. The problem will be addressed

later in Section 3.2 of this master’s thesis.

2.3.3 Mutation

Since crossover may lead entire population to premature convergence to local optimum [57], there

is another genetic operator utilized to preserve diversity – mutation. In common sense, the operator

makes random changes to the genome, more formally it moves search process from one part of

solution space to another. The following paragraphs describe the most common mutation operators

for canonical GP.

The most broadly used form of mutation is subtree mutation. The method randomly selects

one node in the tree as mutation point. Then it replaces original subtree under mutation point

by new one generated randomly. The subtree mutation is sometimes implemented as subtree

crossover between original program and random generated one. The operation is also known as

headless chicken crossover [5, 33]. Moreover there has been proposed an amended version of

operator, that limits new subtree depth to grow no more than 15% [39]. The modified method is

useful to fight with bloat of code. Furthermore Langdon proposed another modification of this

behavior called size-fair subtree mutation [50]. The operator guarantees that new subtree will be,

on average, the same size as replaced one. The method split up into two cases. In first case it

samples uniformly in program space with guarantee that length of subroutine will be in the range

[50%,150%] of original subroutine. On the contrary, in the second case, the operator samples

uniformly in the space of program lengths limited to the same range. Experiments have shown

that sampling in program space causes far more code bloat than in space of program lengths.

The other common method is point mutation, an equivalent of bit-flip mutation in Genetic

Algorithms [27]. For each node the method chooses with certain probability whether the node

will be mutated and if so, it replaces the node with another primitive with equal arity. If there is no

other primitive with the same arity, the node remains unchanged. The notable difference between

two above approaches is that the first one modifies entire subtree, therefore shape of the tree may

change. On the other hand, point mutation does not change shape of tree, but only semantics of

particular nodes.

In shrink mutation [4] the mutation point is chosen randomly and then whole subtree is re-

placed by randomly generated terminal. Thus, this is special case of subtree mutation, where

17

Genetic Programming Overview

the tree is replaced by terminal. Obvious motivation to shrink mutation is reduction of program

length.

The permutation mutation is applied to at least binary nodes. The method randomly selects

children of the same parent and then permutes their positions with entire subtrees. It is worth

noting that this operator makes no changes in program semantics if chosen primitive is symmetric,

such as addition or multiplication.

However some researchers argued that mutation is not necessary [44] and Genetic Program-

ming performs well without it, others have shown that mutation can be advantageous. There

has been demonstrated that combination of six mutation operators and no crossover operator per-

forms as well as standard GP with crossover [14]. The work compared both quality of results

and computation effort on 14 well known problems. Some other researches have shown that hill

climbing with mutation can outperform standard crossover-based GP without mutation [28]. Gen-

erally situation is complex, as described in [60], the impact of mutation and crossover depends on

a problem and details of GP system. Moreover there is no evidence that any particular combina-

tion of both crossover and mutation performs significantly better than either mutation or crossover

alone. Nowadays, it is advised to involve mutation in GP trial with low probability [70].

2.4 Applications of Genetic Programming

Over the years Genetic Programming has proven its high usability by extraordinary number of suc-

cessful applications. Since its prevalence by John Koza in early 1990s [43, 44] there was written

more than 80001 of reports, articles and books about GP and its number is growing rapidly. The

Genetic Programming is especially useful where relationship between relevant variables is un-

known or poorly understood or the structure of solution is unknown. In addition, as a method

of machine learning it works well if significant amount of learning data is available in systematic

form. Moreover Genetic Programming has mechanisms to deal with noise in data aswell. Note

that GP, like the nature, does not guarantee that it finds the best possible solution, it rather create

“good enough” approximation of the best one. It is important to say that GP is very good scal-

able process, therefore it can replace conventional mathematical analysis if its computation time

is unacceptable.

Genetic Programming has numerous achievements, it copes well with curve fitting, data mod-

eling and time series prediction [34], control of industrial process [13, 41], synthesis of electronic

circuits [9, 45], robot controlling [52], image and signal processing [31, 46, 88], lossy [68] and

lossless [37] compression and more.

The most common and widely analyzed [7, 38, 44, 94] task for GP is symbolic regression

problem with all its variations. The symbolic regression is the problem where goal is to find

a function whose output matches desired values. In ordinary sense regression means finding coef-

ficients of predefined function that best matches data. Although if given function does not describe

data good enough, the traditional regression fails. Then the experimenter must try with more and

more models as long as he or she finds the best one. The work is laborious even for experienced

analyst. Furthermore, even expert analysts tend to have mental biases when choosing models. The

1Bibliography on Genetic Programming http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

18

2.4. Applications of Genetic Programming

symbolic regression solves all these problems without user attention. It tries to fit the data as much

as possible with given set of instructions, without making any assumptions about structure of the

output function.

Before Genetic Programming trial starts, some preparatory steps must be done. First of all,

instruction set must be chosen. The set should be sufficient to express acceptable or even best

solution2 to the problem but semantic redundancy is allowed. For example multiplication and

power with constant integral exponent are redundant, since all equations that can be represented

with power may be also represented by multiplication, but power can speed up evolution process

and simplify results, especially for high exponents. Note that, oversized instruction sets do not

tend to slow down evolution very much, but in some cases they may bias system in unexpected way

[77]. The symbolic regression problem typically works on set of {+,−,∗,/,0,1,x} instructions.

The set contains division, therefore division by 0 must be handled in some way. It is usually done

by returning 0 if divisor is 0. The modified version of division is called protected division. It is

common to use protected versions of other primitives like logarithm, square root or modulo. The

alternative to protected primitives is penalization mechanism. The mechanism relies on run-time

error checking and reflects them in fitness penalty. However if tendency to generating invalid

expressions is significant, it can lead to many individuals in population with nearly the same, poor

fitness. This may impede selection to choose which individuals may be good parents [77]. In next

step constraints to the size of tree, genetic operators and their probabilities need to be chosen.

Usually standard values as described in Section 2.1 and its subsections are sufficient. The final

step is preparation of test set. It commonly contains from tens to hundreds of test cases. Each test

case is a k− tuple consisting of k− 1 values of independent variables and 1 value of dependent

variable. The relationship between k− 1 independent variables and dependent variable ought to

be found.

However the symbolic regression problem naturally works on continuous variables, the Ge-

netic Programming behaves very well on discrete problems. Most of considered of them are logic

problems. Usually the task is defined as synthesis of logic gate for given set of inputs and desired

outputs. The objective is to find logic function that matches all of the test cases. Typically evolved

gates are multiplexers, comparers and parity gates. A multiplexer gate takes a ≥ 1 address bits

and 2a data bits as inputs and returns as output a bit indicated by the address. Common problem

instances are 3-, 6- and 11-multiplexers. The numerical id states for sum of address and data bits

(a+2a), consequently it clearly and unambiguously defines the instance. The another gate – com-

parer takes two equal-length sequences of bits, each representing a number, and returns 1 if and

only if the numbers are equal and 0 otherwise. Alternatively the comparer can verify if one of the

numbers is less than the second one. The transition function of last one – the parity gate checks

if vector of input values contains more ones or zeros. All these gates are commonly employed in

many digital circuits, particularly in CPUs, RAMs and network controllers. The nonterminal set

of available instructions, used to synthesize the gates, usually consists of logic ‘and’, ‘or’, ‘not’

and sometimes conditional ‘if’ statement, while terminal set is built upon input variables. This

faction of the Genetic Programming paves the way to the new branch of science called Evolvable

Hardware [9, 35, 55].

2Formally instruction set is sufficient if the set of all possible recursive compositions of primitives contains at least
one solution [77].

19

Genetic Programming Overview

Because of clarity of symbolic regression, it will be involved in many examples in this master’s

thesis and logic problems will be used as benchmarks in the experiments due to discrete nature of

discussed approach.

20

Chapter 3

Challenges for Genetic Programming

3.1 Typical problems and troubleshooting

3.1.1 Code bloat

Previously we have mentioned few times about code bloat, currently it is time to describe this

phenomenon. In Genetic Programming, or more generally in Evolutionary Computation, the most

significant improvement of the objective function value is noticeable in the early generations of

run. The later generations usually provide less enhancement, but search process operate as usual

checking more and more solutions. It causes that the GP browses syntactically different programs

and from time to time it adds additional level of depth to the tree. It is worth noting, that number

of syntactically different trees rises exponentially with increase of their depth. Therefore the trees

become progressively more complex, but the increase in their fitness is usually not significant.

This observation is called bloat of code.

However the code bloat is very widely analyzed problem in Genetic Programming, there is no

generic and universally-accepted explanation for wide spectrum of observations [77]. One may

argue that the bloat is caused by evolution of dead code. The dead code, alternatively named

intron, is branch of tree, that does not contribute to program output. For example consider tree

with ’multiply’ instruction in an intermediate node. If one of its children always evaluates to 0,

evolution of the second child does not change anything. Thus the second subtree is dead code.

Since modification of dead code does not change program outputs, it can grow limited only by

additional constraints given on tree shape, which usually are not very restrictive. Experiments [85]

have shown that dead code tends to be placed in lower parts of trees, consequently the dead

branches are typically smaller than average size of subtree. The same experiments demonstrate

that crossover in dead regions causes code to grow. This explanation is known as removal bias

theory.

The nature of program search spaces theory [54] states that code bloat is associated with

variable-length program representation. The empirical results have statistically confirmed that

there is no meaningful correlation between length of program and its fitness distribution. Because

there is much more long programs than shorter ones, it is more likely that the longer programs

appear in the population. Therefore the population is only a sample of entire program space.

Finally, another theory states that there exists the replication accuracy force [62], that biases

21

Challenges for Genetic Programming

the evolution to promote individuals, which produce functionally similar offspring. However exis-

tence of functionally similar trees leads to better average fitness and lowers its standard deviation,

mixing of similar genetic material decreases diversity and causes bloat.

Bloat would not be problematic from practical point of view unless it affected performance

and caused difficulties in interpretation. That is, long and complex programs are computationally

expensive during execution as well as during evolution. In consequence genetic operators such as

crossover and mutation must process more nodes in average case. The complex programs are also

hard to interpret and understand. Additionally they may encounter poor generalization features.

There have been proposed several effective methods to troubleshoot the code bloat. The most

common of them are listed below. The simple, intuitive and one of the oldest method is limiting

of size and depth. The method was firstly discussed by Koza [44], it is no more than hard limiting

of maximal depth of tree and less likely number of nodes. Therefore if genetic operator generates

tree that violates the above constraints, the tree can be either rejected or pruned. If tree produced

by crossover is rejected, one of its parents is returned instead of the child. It is clear, that this

approach is effective, but it has serious disadvantage. The programs that are more likely to violate

constraints are copied unmodified into new population more frequently than others. Consequently

entire population is led into state, where it is filled by programs that nearly break the restric-

tions. The tree pruning even more likely tends to similar consequences. Experiments [16] have

shown that depth threshold biases population to be filled by very bushy programs with majority

of branches reaching depth limit. On the other hand, limiting of node number produces very tall

and simultaneously sparse trees that reaches the size limit in several generations. To cope with

above issues, one may not return parent if genetic operation fails, but repeat operation either with

new parents or new crossover or mutation points few times before giving up. Note that minimal

size and depth limits must be coordinated to allow formulation of proper solution. Moreover it

is essential to give some additional space to evolution by expanding acceptable range of values,

typically to [50%,200%] of expected solution size [77]. Usually the limits are chosen by some

trial and error runs.

Next approach is known as anti-bloat genetic operators. As the name states, it involves de-

signing of genetic operators that either directly or indirectly prevents formation of bloat. In general

words, the operator tries several configurations, calculates projected tree size or depth and makes

a decision to limit unattended growth of program. For example see size-fair crossover and size-fair

mutation discussed previously in Sections 2.3.2 and 2.3.3.

Other common technique is called anti-bloat selection. There are many variations of this tech-

nique. The widely known parsimony pressure [44] method will be discussed here. The method op-

erates by punishing programs for their sizes. It defines new fitness function f ′(p)= f (p)−c× l(p)

that gives certain amount c of penalty for each involved program building element. The l(p) states

for length of program p and f (p) states for original fitness function. The selection mechanism

takes into account new fitness function f ′(p) in order to choose individuals. Note that original

fitness function may be still required to recognize solutions and stop trial.

Concluding, bloat of code is significant problem in Genetic Programming. It causes programs

to grow above the norm, in consequence they become difficult to understand, expensive to both

evaluation and evolution and above all they poorly generalize. However there are several tech-

niques to fight with the phenomenon, its general origin is not known. Overall, it is recommended

22

3.1. Typical problems and troubleshooting

to control bloat on the problem basis with use of trial and error methodology.

3.1.2 Other problems in Genetic Programming

Despite of code bloat, in Genetic Programming, there are many other problems, to which attention

must be paid. The checklist of issues that need to be inspected while debugging GP trial is shown

below.

Because GP is random search process, different runs may return different results. Therefore

inferences have to be formulated very carefully and thoroughly reviewed. One may consider 10

runs of GP trial, all failing, in consequence he or she may conclude that GP (with specific settings)

is not good framework for particular job. Although if success ratio, for particular settings, is 5%,

failing probability in all 10 runs is
(

10
0

)
×0.050×0.9510 ≈ 59.8%. However there is reasonable

probability of unsuccessful, it decreases with successive runs. Obviously there is no hard threshold

indicating that the repetition should be discontinued. Therefore it is recommended to make use of

appropriate statistical tests to confirm that inferences are significant in terms of numbers.

The consecutive runs lead us to problem of high computational effort of Genetic Program-

ming. Since every single GP run usually takes from minutes to hours depending on population

size, number of individuals involved, quantity of test cases and available computing resources, the

n repetitions pull the process into hours or even days. Because of that, there have been developed

several methods for process parallelization and distribution over available machines. The process

can be distributed in many ways. For coarse-grained parallesism each GP run can be executed on

different machine and results would be aggregated at the end of computation for future analysis.

In the contrary, in fine-grained parallelism model, the population can be divided into several parti-

tions and each partition can be processes by another machine or processor. It is worth noting here

that program fitness evaluation is usually the most computationally expensive part of entire trial.

Therefore it is sufficient to parallelize only this part of algorithm. If one would like to parallelize

a process himself, it is important to take into account concerns of synchronization mechanisms

and maximal possible speedup coming from parallelization, which can be calculated according

to Amdahl’s law [2]. Let us describe another commonly known distribution model called island

model [3], where population is split up into subpopulations and each of them settles another island

(a physical computer). Then evolution acts independently on each machine. Every few genera-

tions a random sample of individuals is chosen and moved to another island in order to bring there

a breath of fresh air.

From above considerations we have come to maintaining of diversity problem. The problem

is essential to every population-based algorithm, not only to Genetic Programming. As men-

tioned previously in Section 2.3.2, crossover operators tend to converge population into small

area in search space, therefore all solutions are nearly the same. It causes that most areas, likely

promising, remains unexplored by search process. Therefore it is recommended to add diversity

preserving mechanism to the process, such as mutation. However the mutation is important, its

high probability turns search process into completely unguided random trial. Therefore mutation

probability should be as low as 1%, what was described in Section 2.1. Note that, measurement

of diversity can be distinguished into two kinds. The frequency of primitives determines sharing

rate across solutions for each primitive separately. If the rate drops down to meaningless values,

23

Challenges for Genetic Programming

it may mean that this primitive is either unnecessary or there is an problem with diversity. Manip-

ulating of mutation rate should be helpful here. On the other hand variety of population measure

computes percentage of distinct individuals in the population. If it falls down below 90% [77],

it may indicate problems. Although high values do not mean that everything is right. Intuitively

completely random search process would have the highest possible value of diversity. Addition-

ally sometimes programs produced by GP contain introns. Since the introns do not contribute to

the program’s output, the programs that are not syntactically identical, may behave in the same

way. Because they are different in their syntax, they contribute to diversity measure, but it does

not mean they are different in useful manner. Consequently one may consider measurement of

semantic diversity instead of syntactic diversity. For future investigation refer to the [63]. More

information about relation between program syntax and its semantics can be found in Section 3.2.

Genetic Programming, like any other Evolutionary Algorithm, has plenty of parameters that

need to be tuned. These parameters differ mostly in their nature. Some of them, like genetic

operators probabilities or population size, are continuous (of course there cannot be half of an

individual, but the range of proper values is infinite, therefore we call it ‘continuous’ in common

sense). Others, like instruction set and collection of genetic operators, are naturally discrete. The

amount of available parameters gives a headache even to the most experienced experimenters.

Additionally the discrete parameters are not as easily adjustable as continuous ones. Consider

addition or removal of single primitive, how it will affect the results? There is no easy answer

to that question. The user must ask himself if the instruction is widely used by individuals, if

it has semantic equivalent produced from other primitives, if the instruction is required to build

a target program. Changes in the discrete parameters have often more radical effects than one may

suppose. In consequence it is advised to not make a hasty decisions, but make use of statistical

analysis, as it was mentioned before.

In conclusion, do not let early failures to discourage your efforts. There are many factors influ-

encing success of GP trials. However most of them are hardly tunable, statistical analysis comes

to the rescue. Despite its power, it requires array of data to get proper inferences. That amount

of data rises computational effort needed for its generation. Fortunately there are multiple models

of parallel and distributed computing for Genetic Programming, that are very handy in lowering

time of processing. Moreover some of ready-to-go GP frameworks bring such functionality with

itself.

3.2 Locality and global convexity in context of Genetic
Programming

Each program individual in population must be evaluated in order to compare with other individ-

uals. However quality assessment of program itself is very hard or even impossible, it is possible

to evaluate it against set of test cases. Each test case consists of set of program inputs and desired

output. The vector of program outputs for given collection of test cases will be called semantics

of program. Formally, let P be a space of all possible programs and p ∈P be a program in

that space. Let s(p) be a semantics of program p and S be a metric space of semantics, therefore

s is a semantic mapping where s : P → S. It is assumed that s is surjective (e.g. S ≡ image(s)).

24

3.2. Locality and global convexity in context of Genetic Programming

fit
ne
ss

solutions

A

B

C
D

FIGURE 3.1: Example fitness landscape. Arrows indicate improvement paths, A,B,C,D
stand for local optimums and B is additionally global optimum, a travelers denote search
process start points. If search starts to the left of A, then local optimum A can be found
without any problems, but B is separated by valley, therefore, only search algorithm, that is
able to jump over valley can find it. Note that if search process starts to the right of D, it is
far more difficult to find B because the valley between C and D is much deeper than between
A and B and there is another local optimum C on the path.

Usually semantic mapping is not invertible because program space is much bigger then semantics

space (|P| � |S|). Consequently it is possible, that there is set of syntactically unique programs

but semantically equal. In particular, two programs varying only in swapped subtrees under sym-

metric node have this property. More formally, let define [p] = {p′ : s(p′) = s(p)} as class of

semantic equivalence of program p. Since any program p′ ∈ [p] is indistinguishable by fitness

function with any other p′′ ∈ [p]\{p′}, it does not matter which one will be chosen as represen-

tative of entire equivalence class. The space of semantically unique programs will be denoted by

P̂ = { p̂ : any([p]), p ∈P}, therefore |P̂|= |S|.
The semantic mapping is identified with genotype – phenotype mapping in the nature. The

features of individual phenotype (here: program semantics) influence reproductive success. The

replication rate of each individual is known as fitness function, mentioned previously. The better

fitted individual, the higher its replication rate, the worse fitted one, the higher chances for ex-

tinction. By combining space of genotypes with fitness function obtained from their phenotypes

as additional dimension, a new space, called fitness landscape [15, 40, 95], will be created. The

landscape is nonuniform, with plenty of hills and valleys. Assuming that higher values are better,

the hills represent local optimums and at least one of them is globally optimal, thus the optimal

one is the highest of them. Although finding the global optimum is not trivial. See Figure 3.1 for

example. Since there are many valleys separating hills, the simple hill climbing method does not

guarantee finding of global optimum. Consequently finding of optimum requires jumping from

one hill to another, climbing to the peak and then checking another one. The problem with this

approach is hidden in unexplored space of solutions. It is not known where are other hills until

search process finds it. In addition, the genotype space is usually very large or even infinite, there-

fore it is not possible to explore all its parts. Furthermore there are better and worse areas. Thus

good area surrounded by broad bad region can be a trap to any non-exhaustive optimization algo-

rithm. In contrary, global optimum surrounded by very poor solutions may not be found because

entire area is not promising.

Fortunately, all is not lost, the fitness landscape of majority of real-world NP-hard problems

has property called global convexity. The term global convexity refers to the fitness landscape.

25

Challenges for Genetic Programming

fit
ne
ss

solutions

fit
ne
ss

solutions
FIGURE 3.2: Global convexity comparison. Left: barely visible global convexity, there
are plenty of local optimums, the rising trend is disregarded. Right: the convexity is well
outlined, variation of landscape is reduced.

It means that there is noticeable convexity of fitness function extended over entire landscape.

As mentioned before, fitness landscape contains multiple pits and hills, therefore the term convex-

ity here does not follow classic mathematical definition, it would rather mean convex in common

sense. Note that, the landscape is smoother, the uphill climbing to the optimum is easier. For ex-

ample see Figure 3.2. Landscape to the left is far more jagged, then right one. Therefore a search

process, that is able to jump over small valleys can find global optimum in second case, but may

stuck in local optimum in first case. Note that it has been proven that if objective function is non-

convex and non-linear (in its mathematical definition), the optimization problem is NP-hard [49].

Therefore it is natural to consider problems with noticeable convexity as easier than more jagged

ones.

It is intuitive that similar solutions have similar values of fitness function, therefore it can be

expected that they lie near each other. However the statement is generally true, this is very weak

property of Genetic Programming. That is because the nature of computer programs is digital,

therefore even the smallest possible perturbation in program (e.g. change of single instruction)

can have the most drastic consequences to the outputs [19]. Moreover the space of programs have

at least three undesirable properties [59] from search process point of look. First of all the space

is non-orthogonal, it means that every formula can be represented by multiple ways. For exam-

ple consider addition of zero or multiplication by one, there is no effect in semantics, but syntax

of expression changes. Similar redundancy can be found in Boolean formulas (x∨ x⇐⇒ x) and

conditional expressions (if x then y else z⇐⇒ if ¬x then z else y). Since often there is no effective

way to eliminate these redundancies, the program space is greatly expanded, consequently it is far

from orthogonality. The next property is oversampling of behaviorally distant programs. The main

cause for that is chaotic program execution and overrepresentation mentioned above. The over-

representation itself leads to simpler programs being heavily oversampled, while complex ones

are rare. Simplicity is defined here in terms of minimal program length that produces the same

semantics. Finally, semantically close programs are undersampled. As shown previously, syn-

tactically different programs can have the same behavior. Redundancy as well as non-redundant

programs that achieve the same result by different ways can be responsible for this state of affairs.

Consider expression x+ x+ x+ x, it can be alternatively represented as 4× x. As you see, both

representations are syntactically far. Now look at expression 4.1× x, it is very similar in syntax

and semantics to the previous one, but it cannot be represented by addition. Therefore from point

26

3.2. Locality and global convexity in context of Genetic Programming

of view of part of program space, where programs are constructed from additions the semantically

similar expression is distant. In conclusion, the semantic mapping in Genetic Programming has

very low locality and correlation between program fitness and distance.

However there is no method to measure global convexity itself, because it does not follow

mathematical definition of convexity, it has been shown [24, 25, 29, 91] that in most Evolutionary

Computation systems genotype distance correlates with locality in space of phenotypes. On the

basis of Genetic Programming, high phenotype locality means that for each program in the pro-

gram space, its direct neighbors produce similar semantics. This statement can be defined formally

as follows. Let N(p) be the neighborhood of program p (N : P → 2P\ /0, p /∈ N(p)). Normally

the neighborhood is set of programs that can be derived from p by introducing small changes

in it, like replacement of single primitive. From context of Genetic Programming, N(p) can be

identified with set of all mutants of p. The following expression is proposed to measure locality

of single program p in its neighborhood N(p):

l(N, p,s) =
1

|N(p)| ∑
p′∈N(p)

1
1+‖s(p′),s(p)‖

(3.1)

The particular definition of neighborhood relation N(p) is provided from outside. The s(p)

denotes semantic mapping and ‖s(p′),s(p)‖ indicates metric between semantics of programs p′

and p (e.g. a distance between semantic vectors). It is obvious that codomain of l(N, p,s) is in

range (0;1]. The value of 1 clearly say that all neighbors of p has the same semantics, in con-

trary values near 0 correspond to notable dissimilarities in neighborhood. It is worth noting that

l(N, p,s) is nonlinear, therefore high values of distance have much less influence to entire measure

than small values. Moreover the localities of different programs in different spaces are incompa-

rable because of unrestricted range of distances. For example consider a program space, where

average distance between programs is 3 and standard deviation is 1, therefore, assuming normal

distribution, average value of locality metric is
´

∞

0
1√
2π

e−
(x−3)2

2 1
1+x dx ≈ 0.27. Now consider an-

other program space that differs only in average distance, which is 30 now, the average value of

locality is
´

∞

0
1√
2π

e−
(x−30)2

2 1
1+x dx≈ 0.03. As you see, the second distribution of distances between

programs is only shifted on numerical axis, but locality metric changed a lot, even though dis-

tribution is pretty the same. To work around this problem normalization or standardization of

distance metric is advised. However outliers have disadvantageous impact to the first one, the

standardization causes that some values may be negative. To comply with the problem modified

standardization is proposed. The modification consists of increase of standardization result by

triple standard deviation, which is 1 after the operation, and then rounding up of negative values

to the zero. Let define modified standardization as follows:

std(x,µ,σ) = max
{

x−µ

σ
+3;0

}
(3.2)

where x is value to standarize, µ is average and σ is standard deviation in population. As-

suming normal distribution, only 1−
´

∞

−3
1√
2π

e−
x2
2 dx≈ 0.13% of observations will be rounded up

to zero. The standardized distance metric will be used later in this master’s thesis if not stated

otherwise.

Let us generalize the locality concept to entire program space by averaging locality of program

27

Challenges for Genetic Programming

neighborhood (l(N, p,s)) over all programs p ∈P:

L(N,P,s) =
1
|P| ∑

p∈P
l(N, p,s) (3.3)

It is clear that L ∈ (0;1], but L = 1 should not be expected in practice, as it happen if and only

if all programs in P have the same semantics. Since semantic mapping s and its codomain S is

given as part of problem specification and cannot change, the last argument of function will be

suppressed, therefore shortest form L(N,P) will be used later.

The method of increasing locality in program space will be discussed later in Chapter 4,

whereas in the current paragraph we consider effects of locality improvement. The natural conse-

quence of high locality is drop in diversity. The diversity is defined here as number of semantically

different programs in the entire program space. In common sense, greater number of programs

leads to finding better suited solution. Moreover the diversity is important from completeness

perspective, since it increases probability of producing any result by a program.

Concluding, higher values of program space locality correlate with smoother fitness landscape

and therefore noticeable global convexity. The convexity indicates the direction of improvement,

consequently any non-random search algorithm, in particular Genetic Programming, follows in

that direction. If the fitness landscape were convex in mathematical sense, even the simplest local

search algorithm would find solution that lies very near global optimum. An slightly more sophis-

ticated procedure would almost guarantee finding of the optimum. The space of programs is broad

or even infinite, therefore exhaustive searching in it is futile. The program space can be reduced

by extracting semantically unique programs to the new space. That space is computationally hard

to produce, but with some constraints on program size, it is possible to be generated in finite time.

The main advantage of semantically unique program space is lack of redundancy.

28

Chapter 4

Automatic Design of Semantically
Smooth Instruction Spaces

4.1 Embeddings of program spaces

As mentioned previously in Section 3.2, many of program spaces are characterized by very low

locality, because of the complex relation between program syntax and its semantics. There were

many attempts to solve the problem by designing new semantically smooth genetic operators,

such as semantically-aware crossover and semantic-similarity crossover, both described in [92]

or geometric crossover [48]. However these methods do not redesign the program space, are

not generic, and assume that programs are produced by combining two or more other programs.

Therefore these operators do not apply in non-GP context.

In this thesis it is proposed to take advantage of program space reorganization in such way,

that the new “optimized” space can be utilized by any search algorithm. The new approach, called

learnable embeddings of program spaces, was firstly presented in [47]. The key idea is to design

a mapping from some abstract space into target program space, such that it maximizes locality

with regard to semantics of program. The outline of the slightly developed (in comparison to [47])

version of this methodology is illustrated in the Figure 4.1 as well as described below.

Let P be a given space of programs. Because the number of possible programs is very big, it is

assumed that space is limited to semantically unique programs of given length only and denoted by

P̂ . Let X be a space of all programs from P̂ , called prespace. and organized into d-dimensional

toroidal hyperrectangle of integral sizes n1,n2, ...,nd . Note that ∀i=1..d ni ≥ 2, because having

ni = 1 for the i-th dimension degenerate it, therefore the space is one dimension smaller indeed.

It is clear that prespace consists of ∏
d
i=1 ni unique locations. Of course, the number of semantically

unique programs may not factorize to d components, therefore the precise shape of the space must

be managed in some way. The particular approach to optimize the layout of program space will

be described later in Section 4.3. However, even the after prespace optimization there may still

remain a few empty places (e.g. if the number of programs is a prime number). These empty places

can be discarded by wrapping the last dimension of space or can be filled by randomly chosen

programs from X . The random fulfillment causes redundancy, but simplifies implementation,

therefore it will be used later in this master’s thesis if not state otherwise.

Let NX be a neighborhood relation in prespace X . For future considerations, let us define

29

Automatic Design of Semantically Smooth Instruction Spaces

1 6 3 7 1 2

1 4 3 7 1 2

2 0 3 5 8 4

3 3 3 7 1 3

mapping u semantic
mapping s 2 7 1 5 3 4

n1

n2

n3

2 7 8 1 3 4

semantic
distance || ||

x1

NX

x2

NX

Prespace X
(hyperrectangle) with

neighborhood relation NX

Program space P with

similar programs placed
together

Semantic space S with
distance metric || ||

FIGURE 4.1: Learnable embeddings of program spaces.

NX(p) as a subset of programs in X such that their city-block distance from p is exactly 1. Since the

prespace is toroidal, the distance has to be computed modulo ni for particular dimension i = 1..d.

Note that, the definition in a natural way corresponds to minimal changes in coordinates of p.

Let u be a bijective mapping from prespace X to program space P̂ , such that u : X → P̂

and |X | = |P̂|. To provide clear naming, P̂ will be referred as original program space. There

are many possible ways to define u. To narrow spectrum of definitions, it is assumed that u is

permutation of elements in X . Consequently u can be considered as a form of embedding of P̂

in X .

The objective of optimization is to find the optimal triple (NX ,X ,u) that maximizes locality

of P̂ with respect to the mapping u and neighborhood relation NX . Since X and NX are fixed, as

described above, the objective boils down to learn the optimal embedding u∗ of P̂ in X , such that:

u∗ = argmax
u
{L(NX ,X ,s◦u)} (4.1)

where s ◦ u∗ is the best locality preserving mapping from prespace X to semantic space S

through program space P̂ .

It is easy to see that the traveling salesman problem transforms polynomially to the probelm of

finding an embedding, where u defines an order of program (city) visiting in X and ‖s(p′),s(p)‖
(from expression 3.1) is distance between programs (cities). Since in the current problem we

maximize the formula consisting distance metric in denominator, an formula defined on sum of

distances is being minimized. Consequently finding of optimal u∗ is a NP-hard problem. Since the

computational effort required for an exhaustive search (or, e.g., branch & bound) is exponential,

it can be equally well consumed to find an optimal program by enumerating all programs in the

original program space, even without the described procedure.

Thus, the computation effort is too big for majority of real-world sized X . However, an im-

portant tenet of this thesis is that even suboptimal mapping provided by local search algorithm or

metaheuristics can smother fitness landscape, emphasize global convexity, and reduce the search

effort required to find a well-performing solution (program).

For instance, consider a simple symbolic regression problem. The task is to find an expression

30

4.1. Embeddings of program spaces

Non-optimized prespace X Mapping u Optimized prespace X
4x x2 +2x 2x2

4x2 2x3 x4 =⇒
u∗=[4,6,5,3,2,1]T

4x2 x4 2x3

2x2 x2 +2x 4x
⇓ s ⇓ s

=⇒
u∗=[4,6,5,3,2,1]T

TABLE 4.1: Example of program space embedding. The left table represents non-optimized
prespace X of randomly assigned, in terms of semantic similarity, programs from P̂ . The
mapping u transforms prespace X into optimized space by reordering of programs inside.
Each chart at the bottom represents the semantics of corresponding programs plotted as func-
tion graphs in the interval [−2,2]. As a result of the optimization process, the optimized
program space is split up into two separated groups, even-degree polynomials (the four in the
left part of embedding) and odd-degree polynomials (the two in the right part). The major
reason is that semantics of both 2x3 and 4x go to +∞ for positive arguments and to −∞ for
negative values, while the analyzed even-degree polynomials go to +∞ in both cases.

(program) that has specific behavior (semantics). The program space is built upon the set of

nonterminals {+,∗} and only one terminal – the independent variable x. Let us limit the space of

solutions to binary trees of depth equal to 3, therefore each program consists of 3 instructions and

4 leafs. Since the leafs are fixed to be the independent variable (there are no other terminals), any

two programs built upon these assumptions differ only in the internal nodes. It is clear that there

8 syntactically different programs can be produced under these assumptions, but only 6 of them

are semantically unique, because of the symmetry of addition and multiplication operators. The

unique programs are:

1. x+ x+ x+ x = 4x

2. x+ x+ x× x = x× x+ x+ x = x2 +2x

3. x× x+ x× x = 2x2

4. (x+ x)× (x+ x) = 4x2

5. (x+ x)× (x× x) = (x× x)× (x+ x) = 2x3

6. x× x× x× x = x4

Let us organize the space of semantically unique expressions into 2-D, non-toroidal rectangle X

with dimensions 3× 2. Let us define the neighborhood NX(p) of program p as set of programs,

whose positions differ from p no more than 1 under Hamming distance. For instance, in the left-

hand side of Table 4.1 the neighbors of 4x are x2 +2x and 4x2. Define program p semantics s(p)

as vector of program values for the sequence of values of x from −2 to 2 with step 0.2 and the

semantic distance as a normalized Euclidean distance between the vectors of semantics.

Firstly, let us assign the programs from P̂ randomly to locations in the rectangle, then trans-

form the prespace X into optimized space by reordering of programs using mapping u, such that,

the locality measure L will be maximized. The Table 4.1 shows example program assignment

before and after applying optimized mapping u∗. The optimized mapping is the permutation of

31

Automatic Design of Semantically Smooth Instruction Spaces

programs, represented here as their identifiers: u∗ = [4,6,5,3,2,1]T . The locality of random

assignment is L = 0.69 and the optimized one is L = 0.76. Maximization of locality causes se-

mantically similar expressions to be placed together, consequently smoothing program fitness

landscape and simplifies finding of program that has desired behavior. This is visible in the plots,

which clearly group according to visual similarity. Note that the natural, or random in terms of

semantic similarity, assignment of programs in prespace X can produce multiple local optima,

therefore causing the search algorithm to more likely stuck in one of them.

In conclusion, it is worth noting, that pair of X and NX implicitly specifies new program rep-

resentation space, where program is addressed by d-tuple of coordinates that corresponds to the

location in prespace X . The location in hyperrectangle is totally separated from syntax of program,

unlike it is in ‘standard’ representation space, where composition of instructions (primitives, sym-

bols) determines location and distance between programs. Therefore any program p ∈ X can be

syntactically unrelated with its neighbors p′ ∈ NX(p). Moreover, the space P̂ acts as a transpar-

ent proxy between prespace X and semantic space S by quiet translation of program coordinates.

Additionally, the representation maintains explicability, because every coordinates in the prespace

X refer to the definition of particular program in original space P̂ .

4.2 Program representation

Previously in Section 2.2, the representation of GP-like program has been described. However

the form of canonical GP program is used in this paper, its structure needs to be constrained here

in order to fill our task requirements. Before the representation can be described, the notion of

binary decision diagram must be introduced.

4.2.1 Binary Decision Diagrams

Logic function is a function in form f : {0,1}k→{0,1}, for natural k. In more descriptive words,

it is a function, which domain is k-ary vector of logic values – true(1) and f alse(0), and its

codomain is single logic value. Moreover if k = 0, the function is constant. The logic function

is often called Boolean function, named after its inventor George Boole, by whom was firstly de-

scribed in 1854 [11]. In mathematics and computing science, there are multiple ways to symbolize

a logic function. It is commonly expressed as truth table. The truth table consists of k columns

representing input values (input vector) and one output column. The table typically contains 2k

rows, one for each combination of input variables. The value of function, for given input vector,

is obtained by selecting row that matches input vector values with input columns and returning

value of output column of that row. In conditional part of truth table, it is possible to introduce

“don’t care” value (∗) literal, that matches both 0 and 1 and therefore reduces number of rows,

but it will not be considered here. The other representation is Karnaugh map, introduced in 1953

[36]. In the map, input values are split into approximately equal in cardinality groups, and put on

columns and rows according to principles of Gray code. The interior of the table represents output

values. Thanks to Gray code, the adjacent table cells differ only in single input value. The value of

the function is obtained by treating input values as coordinates in the map and returning pointed

32

4.2. Program representation

x1

x2 x2

x3 x3 x3 x3

0 1

x1

x2 x2

x3 x3

0 1

nodes to
reduce

FIGURE 4.2: Binary decision diagram for expression f = ¬x1¬x2¬x3 ∨ x1x2 ∨ x2x3. The
dotted lines represent decision “0”, solid lines indicate decision “1”. Left: unreduced binary
decision diagram, right: reduced ordered binary decision diagram.

value. The Karnaugh map is often utilized to minimization of logic functions and synthesis of

logic circuits.

This master’s thesis takes advantages of other representation – a binary decision diagram

(BDD) [56, 90] introduced by Lee in 1959. BDD is a directed acyclic graph, with only one

starting vertex (diagram root) and two terminal nodes – true(1) and f alse(0). The graph is con-

nected. Each intermediate node, with root included, represents a single Boolean input variable

and therefore is named decision node. The node has exactly two outgoing arcs, the first arc leads

to the node referred as low child, the second to high child. The children are named after value

chosen in parent node – low child represents an assignment of the parent variable to 0, high child

to 1. The value of function is obtained by going along the path from the root to the terminal and

selecting particular way depending on input values. The value of terminal determines value of

function for given input. The example of BDD is illustrated in the Figure 4.2. As you see, the

structure is special case of Genetic Programming tree, therefore BDD will be implemented as the

tree. The details of implementation will be discussed later in Section 4.2.2. Now, let us introduce

some modifications of binary decision diagrams.

The binary decision diagram is called ordered (OBDD), if variables on all paths from root to

the leafs are placed in the same order. The gaps in numbering are allowed. The good variable

ordering is crucial to minimize size of BDD. Unfortunately, there has been shown that finding of

optimal variable ordering is NP-hard problem [10]. Additionally, even for any constant c> 1 there

is no polynomial time algorithm that guarantees the resulting OBDD is at most c times larger than

optimal one [83].

The OBDD is called reduced ordered binary decision diagram (ROBDD) if and only if both

of the following conditions are satisfied:

1. There is no node, which both outgoing arcs point at the same child,

2. There is no group of nodes, labeled with the same variable, where subgraphs of each node

are isomorphic (e.g. have equal layout).

In order to reduce OBDD, the following procedure must be done to satisfy above conditions. For

each node, that has both outgoing arcs pointing at the same child, remove the node and attach its

incoming arc directly to the child. For each group of equally labeled nodes, whose subgraphs are

isomorphic, replace entire group by single node along with its subgraph.

33

Automatic Design of Semantically Smooth Instruction Spaces

Finally, it has been proven, that there exists only one ROBDD for particular function and given

variable order [12]. This property is particularly useful in logic function equivalence checking and

functional technology mapping. However in the literature it common to use term BDD within the

meaning of reduced ordered BDD, these two concepts will be distinguished in this master’s thesis.

4.2.2 Instruction and program representations

Previously the concept of binary decision diagrams was introduced. In this section, we present

a program representation involving these diagrams. The proposed program structure consists of

set of subroutines composed in strictly defined way. The term ‘subroutine’ should be identified

with procedure or even macro in ordinary program. For this paper use, routine r of depth k

is defined as follows. r is an ordered, but not reduced, binary decision diagram, with k inputs

referring to decision nodes. The single-bit output of the OBDD is also output of r. The routine

defined above, will be called metainstruction, because it usually consists of sequence of only few

instructions. The space of all metainstructions of depth k will be denoted by Ik. The big advantage

of metainstruction definition as OBDD is that the set Ik consists only semantically unique routines.

The routine is implemented as ordinary GP tree with decision variables as nonterminals and set

of {0,1} as terminals. Moreover there is only one pair of terminal objects, since they do not

store any state information, thus multiple decision nodes can directly point at the same objects.

Note that relation between tree depth d and OBDD depth k is given by the formula d = k + 1.

From the above definition, it concludes that total number of nodes in metainstruction of depth k is

determined by formula 2k +1 and cardinality of space of all possible metainstructions of depth k

is given by expression:

|Ik|= 22d−1
= 22k

(4.2)

Note that there is no need to consider metainstructions shallow than k, because semantically

they are simply reduced versions of metainstructions from some subset of Ik. In other words

∀l=1..k, Il ⊂
s

Ik or recursively Ik−1 ⊂
s

Ik for k ≥ 2, where A ⊂
s

B means that set of semantic equiva-

lence classes of elements from A is contained in set of semantic equivalence classes of elements

from B.

Once metainstruction has been defined, let us discuss structure of entire program. Since

metainstruction takes k one-bit arguments and returns a single bit, the input vector can be treated

as binary representation of an integer, but there is a problem with output value, because it is no

use considering output as an integer. To work around this issue, a special binary neural network

structure of program is proposed. The metainstructions act as neurons in that network and their

depth clearly defines number of neuron inputs. The network can be constructed either from homo-

geneous or heterogeneous set of routines, in terms of their depth. Considering heterogeneous set,

there is no problem generating network where each neuron in one layer is connected to all neurons

in the next layer. Unfortunately the homogeneous network highly constraints space of available

architectures. However the restriction on peer connections between neurons can be weaken, it is

assumed, in order to simplify the architecture, that all layers except the output one have exactly k

neurons and cardinality of the last layer remains unrestricted. Note that the connections in neural

network defined in that way are not weighted due to logic characteristics of transferred signals.

34

4.3. Shape optimization of metainstruction space

Consequently the metainstruction becomes transition function of the neuron and it can ignore or

notice particular input itself without using weights. The program search process will be aimed

at looking for proper assignment of metainstructions for desired program characteristics. Search

process will be discussed more precisely in Section 4.5. Finally, it is worth noting, that program

structure as well as metainstruction definition are directly implementable in hardware, making

logic circuit synthesis extremely easy.

In conclusion, the metainstruction space, although smaller than program space, still grows up

rapidly with rising k. For relatively small k = 5, there are 225 ≈ 4.29×109 possible instructions,

with 25 +1 = 33 nodes each. Assuming that each node utilizes 32 bytes of memory, entire space

will take about 4.13T B! Because of this observation, we are forced to sample metainstruction set

for k≥ 5. However the sampling gives us ability to enforce arbitrary size of metainstruction space,

it must be taken into account that only uniform sampling in semantic space of metainstruction

preserves completeness. In this thesis, uniform sampling will be done in space of programs in

order to clarify the process.

4.3 Shape optimization of metainstruction space

As mentioned previously, program space, for our purposes, is built upon set of semantically unique

programs. Cardinality of this set is unknown until all programs are checked for uniqueness and

cannot be effectively predicted in most cases. Once it is done, the number of semantically unique

programs |P̂| = |S| is known. Since the program space is represented here as d-dimensional

hyperrectangle, where d is given, it is needed to determine adequate lengths of dimensions before

filling the space, in order to accommodate all the |S| programs. It is clear that there may not

be such vector n = [n1,n2, ...,nd]
T of dimension sizes containing integral values that matches the

equality |S| = ∏
d
i=1 ni. Therefore the number of free places must be reduced in some way. It can

be done by manipulating ni values.

For our use the program space is reduced to metainstruction space. Since metainstruction is

represented here as binary decision diagram, one may seem that it is known a priori how many

semantically unique metainstruction are in the space. However it is true and there has been pro-

vided formula for that (see Equation 4.2), it has been also noticed that for k ≥ 5 decision nodes

it is impossible to store entire space in memory of today’s computer. Therefore the uniform sam-

pling of the space has been proposed. Obviously the number of sampled programs can be given

in advance, although it should be as big as possible in order to make the best feasible representa-

tion of entire space. Because the number of free places in the hyperrectangle grows exponentially

with increasing dimensionality, it may be futile to store and process all programs in that rectangle,

especially for high dimensionality. Therefore, for given d, the number of sampled programs can

be set to value that is much smaller that desired hyperrectangle size.

In both cases, where number of programs is unknown a priori or the space must be sam-

pled, the number of programs may not fit perfectly any hyperrectangle of given dimensionality.

Therefore it is needed to optimize lengths of dimensions. Formally the objective is to find vec-

tor n = [n1,n2, ...,nd]
T of d integral values representing lengths of particular dimensions, that

minimizes unused space in the hyperrectangle with regard to given cardinality of program |P̂|,

35

Automatic Design of Semantically Smooth Instruction Spaces

Algorithm 2 Factorization of given |S| algorithm.

1. Let n← |S|

2. Let C← /0 be vector of components

3. Let Q be the sequence of prime numbers between 2 and b
√

nc

4. For each q ∈ Q (in increasing order) do

5. If n is divisible by q then

6. Add q to the component vector C

7. n← n/q

8. Go to step 9

9. Repeat steps 4 – 8 until n does not change

10. If n > 1 then

11. Add n to the component vector C

12. Return component vector C

metainstruction |Ik| or semantics space |S|. Consequently there are suggested four methods to

solve the problem.

Firstly it is proposed to take advantage of |S| factorization into vector C of prime compo-

nents. The detailed procedure is given in the Algorithm 2. The algorithm at the beginning com-

putes sequence of prime numbers that are greater or equal to 2 and less or equal to
⌊√
|S|
⌋

. The

components greater than
⌊√
|S|
⌋

need not to checked, because if they exist, they are implicitly

tested by lower prime numbers. Let us draft a proof, if there is prime component q such that

q >
√
|S| ≥

⌊√
|S|
⌋

, there must be related component q′ = |S|
q <

√
|S|. If q′ is prime number, the

q has been already checked by smaller q′, else if q′ is composite number, it is built upon smaller

prime numbers that indirectly have checked q already, otherwise the q is not component of |S|.
The sequence of prime numbers can be produced by any algorithm. The currently known most ef-

ficient algorithm for that purpose is Sieve of Atkin [6] with O
(

N
log(log(N))

)
time complexity, where

N is the maximal number to which primes must be found. For our use, where primes are less

than 1 million, the simpler Eratosthenes Sieve algorithm is sufficient. For comparison, its time

complexity is O(N× log(log(N))).

It is worth noting, that the factorization process returns arbitrary number |C| of prime com-

ponents. Therefore it can be greater or less than desired d. If the number is greater, the situation

is simple. In each step the repair procedure chooses two the smallest components c1,c2 ∈C and

replaces them by their multiplication C←C\{c1,c2}∪{c1×c2}. The procedure terminates when

cardinality of |C| is equal to desired d. In this case it is guaranteed that there is no free place left

in the hyperrectangle and the sizes of dimensions are being balanced as much as possible. On the

contrary, if number of returned components is less than desired d, some components must be artifi-

cially created. However it is trivial to add ones for missing values, these ones represent dimensions

36

4.3. Shape optimization of metainstruction space

that are degenerated and consequently useless. To work around the issue, the following repairing

procedure is proposed. Take the maximum c ∈C and remove it from the component vector. Then

factorize number c+1 into new component vector C′. Afterwards add all components c′ ∈C′ into

vector C. Repeat the procedure while |C|< d. If |C|> d then apply repairing procedure from the

first case. Choice of the biggest c guarantees that there are added as less as possible free places.

The procedure in one step adds ∏c′∈C\{c} c′ new places to the rectangle. Therefore the product is

the smallest, when choosing maximum c. Moreover if c≥ 3, the procedure guarantees there will

be added at least one component in particular step.

Someone may ask why not to add one to the |S| instead of c – the number of wasted places

would be increased by only one. That is true, but dramatically increases time complexity of entire

procedure and does not guarantee improvement. For example consider |S| = 9 and d = 3. The

factorization returns vector C = [3,3]T . Factorizing |S|= 10 will result in C = [2,5]T , as you see

the numbers totally changed, but that is not a problem, there are still two components. Let us

again add one to the |S|. Now factorization returns only one number C = [11]T . It is clear that this

method does not guarantee that there would be added an component in single run, moreover the

deterioration in results is possible. Additionally it highly increases computation times.

The factorization method produces dimensions that are prime (or composed from low number

of primes after postprocessing). This is not crucial property from program space point of view.

Therefore let us involve mathematical programming problem that does not make any assumptions

about primality. Our objective is to minimize vacancy in the hyperrectangle of given dimensional-

ity d. The number of required places |S| is given as previously. Therefore the vacancy is provided

by expression ∏
d
i=1 ni− |S|, where ni states for length of i-th dimension, which must be at least

2 in order to produce right dimension. Moreover let us reduce the search space by requiring the

lengths of dimensions to be ordered. This constraint removes from the search space almost all

permutations of dimension lengths of certain solution, leaving only permutations containing two

or more equal numbers. In consequence this constraint lowers size of the search space about d!

times. Let us define the problem as follows:

(min)
d

∏
i=1

ni−|S| (4.3)

d

∏
i=1

ni ≥ |S| (4.4)

∀
i=2..d

ni−1 ≤ ni (4.5)

∀
i=1..d

2≤ ni ≤ |S|∧ni ∈ N (4.6)

As you see, the problem is neither linear or even quadratic, therefore it can be converted to

linear form by taking an logarithm from both sides of problematic equations, but it will lead us

to loss of some (maybe optimal) solutions. Consequently it is proposed to take advantage of

constraint programming (CP) solver. The above problem definition can be directly transferred

into the CP form without modification. It is important to note here, that constraint programming

optimization is NP-hard problem, moreover even linear programming with integer constraints is

37

Automatic Design of Semantically Smooth Instruction Spaces

NP-hard. Therefore the only algorithm that guarantees finding of global optimum is exhaustive

search, with all its variations, like branch & bound. Despite the computation complexity, it is

possible to speed up the process hundred times. The clue is hidden in selection of proper search

strategy. For example the values can be assigned to variables from the lowest to the highest in

range or in reverse order, the sequence of variable assigning can be altered and additional heuristics

can be used to change branching order. The implementation that takes part in this master’s thesis

will be described later in Section 5.1.1.

The above methods have common unwanted property of constructing unbalanced dimensions.

That is, it is typical to them to produce values that vary even a hundreds orders of magnitude.

The very unbalanced list of dimensions usually contains multiple low values. These low values

have serious impact to the size of the program neighborhood. Consider the neighborhood relation

N(p) defined as Hamming distance from program p less or equal to 1. Therefore the dimension

of toroidal space with length 2 causes the neighborhood to wrap around and consequently cover-

ing place of another program twice. It has effective consequences in dropping of neighborhood

size and therefore may reduce performance of locality optimization algorithm. For factorization

method, the cause for unbalanced results is hidden in the nature of numbers. The low components

are very common, but the higher ones are rare. Although factorization looks for vector of only

prime numbers. Therefore in sequence of twos and threes a value greater than one hundred may

occur once or twice. In the CP problem formulated as above, orders of variables and values as-

signing are crucial. Unfortunately there are no easy way to define a good strategy. Therefore the

following modifications of above CP problem are proposed.

Consider the most balanced, in terms of dimension length, hyperrectangle. It reduces to the

hypercube, a structure where each dimension has equal integral length n. Thus the number of

places in the d-dimensional hypercube can be easily computed as nd . Consequently, for given

number of programs |S|, the optimal continuous hypercube would have dimension of size d
√
|S|.

This is the starting point for our balancing formula. Of course this is very unlikely to obtain the

program number that produces integer d
√
|S|. If do that, the solution is clear, let pack program

space into the d-D hypercube of dimension length d
√
|S|. Otherwise an error formula must be

defined and error must be minimized. For our purposes, a sum of square errors (SSE) will be

used. The error is defined here as difference between size of dimension ni and its optimal, but

unreal, value d
√
|S|. It is clear that the constraints must remain unchanged due to they define the

allowed shape for the hyperrectangle. The CP problem is defined as follows:

(min)
d

∑
i=1

(
ni− d

√
|S|
)2

(4.7)

d

∏
i=1

ni ≥ |S| (4.8)

∀
i=2..d

ni−1 ≤ ni (4.9)

∀
i=1..d

2≤ ni ≤ |S|∧ni ∈ N (4.10)

The above definition leads CP solver to leave many places empty. Currently it is clear that

38

4.3. Shape optimization of metainstruction space

there need to be taken into account both dimension balancing and minimization of wasted space.

Therefore the problem turns into multiobjective optimization problem. There are multiple of

ways to combine optimization objectives. The method that guarantees there is no one objective

that outranks any other, is search for Pareto non-dominated [93] solutions, which lie on the curve

called Pareto front. The solution s1 is non-dominated in Pareto sense if and only if there is no

other solution s2 that is at least as good as s1 on each criterion and is strictly better on at least one

criterion. However the method is impartial, the Pareto front contains plenty of solutions that are

incomparable. It is not good feature for automatic processing of solutions, because there is no way

to select the best one. There were proposed bunch of other methods for aggregating objectives,

such as Lorenz dominance, outranking relation [79] or utility function [84]. For our purposes,

we make use of the last one, due to its simplicity and easiness for choosing the most valuable

solutions. The utility function tends to assign the highest value only to the one solution. It is very

unlikely that two different solutions got the same ranking. However if it happen, the arbitrary

decision must be made, but probability of the situation converges to the zero.

In order to construct the utility function, it is proposed to make a weighted sum of objective

functions from two previous CP problems. The α ∈ [0,1] coefficient is given to the first formula,

that minimizes waste space. On the other hand, the 1−α

d is given to the second one, that minimizes

sum of square errors between length of the resulting dimensions and the optimal one. The divisor d

is attached to the second coefficient, because both formulas usually differ in an order of magnitude,

moreover the divisor turns the SSE into average square error (SE). The new CP problem is defined

below:

(min)α

(
d

∏
i=1

ni−|S|

)
+(1−α)

1
d

d

∑
i=1

(
ni− d

√
|S|
)2

(4.11)

d

∏
i=1

ni ≥ |S| (4.12)

∀
i=2..d

ni−1 ≤ ni (4.13)

∀
i=1..d

2≤ ni ≤ |S|∧ni ∈ N (4.14)

Note that the α coefficient gives us the ability to manipulate weight of the both criterions.

The α = 1 turns the last CP problem into first problem (Equation 4.3) and α = 0 into the second

one (Equation 4.7). Note that the scaling factor 1
d does not have any influence to the optimization

direction and results. For later use, let us arbitrary set α = 0.5, with regard to the notes in the

following paragraph.

In conclusion, the number of programs in the considered program spaces is either unknown

a priori or the space is too large to store it in memory of today’s computer. Therefore in both

cases it is required to build the space upon arbitrary given set of programs. This arbitrary number

of programs may not, especially when it is a prime number, fit any d-dimensional hypercube.

Therefore, there is a need for shape optimization with regard to minimization of wasted places and

dimension balancing. In this section, there were proposed four methods to comply this task. The

detailed performance comparison of all four shape optimization methods as well as for different

39

Automatic Design of Semantically Smooth Instruction Spaces

Algorithm 3 Steepest algorithm for embedding optimization.

1. Let u be a random permutation of metainstructions from Ik

2. Let bestRunJ, bestRunGain, prevL be an auxiliary variables

3. For each metainstruction i ∈ Ik do

4. bestRunGain← 0

5. For each metainstruction j ∈ N(i) do

6. prevL← u[i]+u[j]

7. Swap metainstructions u[i] and u[j]

8. If l(u[i])+ l(u[j])− prevL > bestRunGain then

9. bestRunGain← l(u[i])+ l(u[j])− prevL

10. bestRunJ← j

11. Revert metainstructions u[i] and u[j]

12. If bestRunGain > 0 then

13. Swap metainstructions u[i] and u[bestRunJ]

14. Go to step 4

15. Else

16. Go to step 3

17. Return u

α coefficients can be found in Section 5.2.

4.4 Locality optimization of metainstruction space

Previously there has been discussed the learnable embedding of program spaces. The embed-

ding in its assumptions transforms original program space into optimized one with regard to the

semantic locality. However the principle defines optimization objective, it does not indicate the

way to achieve that. Moreover we have proven that the problem is NP-hard. There are plenty

of optimization algorithms suitable for this task, starting from simple local search, through meta-

heuristics and evolutionary algorithms, ending with branch & bound and exhaustive search. Note

that only the last group guarantees finding of the optimal embedding, but computational complex-

ity of the group’s algorithms is unacceptable for practical embedding sizes. However for our use,

the program space is reduced to space of metainstructions, the reduction does not result in loss of

generality. The same optimization algorithms, as for program space, can take part here.

It is proposed to take advantage of steepest algorithm for optimization of embedding locality

task. The algorithm belongs to the class of local search heuristics. All algorithms from that class

starts from a given (or random) solution, analyze its neighborhood and then advances to the better

40

4.5. Search in optimized metainstruction space

position in it or terminates if there is no such position. The way how the procedure chooses the

neighboring solution depends on algorithm itself. The steepest algorithm altered to our optimiza-

tion task is shown in Algorithm 3. It starts from a random embedding u of metainstruction space Ik

in prespace X . The embedding is represented as a permutation of metainstruction representatives

indeed. Since the permutation is single-dimensional structure and the space is multidimensional,

there is a need to apply an arbitrary ordering of linear addresses of places in the space. In order to

convert d-dimensional address into linear one, each position a in d-tuple is multiplied by product

of lengths of previous hyperrectangle dimensions counting from right to left (∏d
i=a+1 ni) and then

the products are sum up together linear = ∑
d
a=1 addressa×∏

d
i=a+1 ni. Therefore the address is

encoded in Big Endian manner. The address converting routine can be computed in O(d) time

involving Horner scheme.

The steepest algorithm checks whole 2-swap neighborhood of current solution and then moves

to the best found neighbor or terminates if there is no one with better locality value. Because the

entire space locality L (see Equation 3.3) is defined additively, the optimization process can be de-

composed, with no change in search strategy, into sequence of neighborhood locality l optimiza-

tion tasks for each metainstruction r separately. Consequently there is no need to globally recal-

culate L and the search process becomes sped up multiple times. Moreover the algorithm is made

effective even for very big program spaces. Since the computation of locality in neighborhood

l(NX ,r,s ◦ u) for single metainstruction r requires O(|NX |) time, the full scan of all 2-swaps for

single metainstruction requires O(|Ik|) operations, there are j improvements in worst case for each

metainstruction, and there are |Ik| metainstructions, the algorithm complexity is O(j|Ik|2|NX |). It

is worth noting, that the most resource demanding part of the algorithm is calculation of semantic

distance between metainstructions. Therefore it is crucial to cache the distances in order to lower

the computation times. However the cache lowers computation times significantly, it requires ad-

ditional O(|Ik|2) bits of memory. It can be effectively implemented as half of the distance matrix,

although the metainstruction addresses must be given in arbitrary order and swapped if the order

is wrong.

In this section, there was proposed the way to optimize program space with regard to locality

measure L. It was also noted that metainstruction space optimization task can be directly trans-

formed into program space optimization problem with no change in its definition. Additionally

there was proposed the local search algorithm to suboptimally solve this problem. Empirical anal-

ysis of the proposed approach will be discussed later in Section 5.3.

4.5 Search in optimized metainstruction space

Previously there have been introduced the concept of learnable embeddings of program spaces

and the way to optimize this space with respect to the semantic locality. Currently it is time

to discuss the practical applications of this approach. As mentioned previously, for this paper

scope, the program space is reduced to space of metainstructions. The metainstruction space

optimization directly highers semantics – distance correlation between metainstructions and in

consequence indirectly highers the fitness – distance correlation between entire programs. One

may ask why not to optimize program space instead. The answer is in the giant cardinality of the

space. Therefore it is expected that indirect improvement of the locality in program space can be

41

Automatic Design of Semantically Smooth Instruction Spaces

utilized in order to improve the efficiency of space search algorithm. However smoothness of the

space should improve performance of any non-random search algorithm, it is proposed to guide

the process, as discussed below, to unlock the full potential of the method.

In order to apply current methodology to the world of Genetic Programming, it is proposed

to take advantage of successful GP algorithm scheme as search procedure. This decision requires

some preliminary work to adapt the GP concept to use features of optimized space. Firstly, there

was in Section 4.2.2 mentioned, that the program has binary neural network structure. Each neuron

with k inputs is implemented as a metainstruction of depth k. Therefore first layer of the network

accepts whole input vector of bits and last layer returns output of entire program. The network

can be constructed from either homogeneous or heterogeneous set of metainstructions, nonethe-

less each of them belongs to a space that has been optimized. If the network is heterogeneous,

metainstruction sets must optimized separately due to different lengths of their semantics. The

standard GP crossover and mutation operators may be ineffective to this program specification,

because they do not pay attention to the instruction coordinates in the optimized space. Conse-

quently it is proposed to design new simple genetic operators for both crossover and mutation.

The both operators work in per – metainstruction manner. It means that they replace whole

neuron in the network, although the way to achieve that differs in both cases. Let us define the

crossover operator. It takes two parent programs p1, p2 as inputs and for each network element it

draws with certain probability βc ∈ [0,1] whether to interbreed the neuron r1 of one parent with

corresponding neuron r2 of the second parent or not. The operation of mixing neurons takes into

account vectors of their d-dimensional coordinates in optimized space of metainstructions. Note

that the neurons belongs to the same space, since they must have the same depth. However it is

intuitive to calculate average position between both parent’s metainstructions and then choose the

indicated routine as mixture of them, the average of coordinates favors metainstructions located in

the center of the metainstruction space over the outside ones. Moreover it does not take advantage

of toroidal nature of the space. The problem is illustrated in the Figure 4.3. To cope with the

issue, it is proposed to introduce slight modifications to the averaging principle. To describe these

modifications, let us move first parent subtree r1 in sequence by each combination of lengths of

space dimensions in both directions, forward and backward. In each step compute the Euclidean

distance between the moved metainstruction r1 and the second unmoved metainstruction r2. Fi-

nally select position that minimizes the distance and choose average between that position and

metainstruction r2 as new neuron. To clear naming, let us call this method toroidal crossover.

Note that, the crossover defined in this way works similarly to uniform crossover, because it in-

terbreeds program elements separately with certain probability. Therefore it preserves position of

genes and maintains uniform distribution of children.

Once there have been defined crossover operator, let us define the mutation one. It, similarly

to the above crossover method, iterates over elements of the network and chooses with certain

probability βm ∈ [0,1] whether to mutate the metainstruction or not. It is proposed to replace the

metainstruction by randomly chosen one from the same metainstruction space. Because mutation

defined in that way is very destructive, it is proposed to set βm probability to low values. Nev-

erthless of its damaging behavior, the characteristics can be very helpful in escaping from local

optima and premature convergence of search algorithm.

In conclusion, there was proposed the way to involve successful GP scheme to build programs

42

4.5. Search in optimized metainstruction space

0 10 20 30 40
0

5

10

15

20

25

Dimension 1

D
im

en
si

on
2

0 10 20 30 40
0

5

10

15

20

25

Dimension 1

FIGURE 4.3: Probability distribution of metainstruction selection for two crossover types
in 2-dimensional toroidal hyperrectangle of dimensions {50,30}. The darker areas indicate
higher probability, the brighter lower probability. Left plot corresponds to the simple averag-
ing of coordinates of parent’s subtrees, the right one is related to toroidal crossover.

by searching through optimized metainstruction space for proper instruction coordinates. How-

ever proposed program representation was especially designed for task of logic function synthesis,

the metainstruction, or more generally binary decision diagram, can take part in many other appli-

cations, such as decision supporting, classification and industrial process or robot controlling. The

general GP scheme does not change in all these applications, moreover the proposed genetic oper-

ators may give rise to new ones aimed at different structure of program. The search performance

will be analysed later in Section 5.4.

43

Chapter 5

Empirical Results

5.1 The experiment

While Chapter 4 introduced the concept of automatic design of semantically smooth instruction

spaces for Genetic Programming, in this chapter, an experiment illustrating the entire approach on

nontrivial-scale problems will be performed and described. Before the experiment, there is a need

for a few preliminary steps. Firstly, the set of metainstructions must be chosen. For our purposes,

three instruction sets built upon OBDDs of depth 3,4 and 5 will take part in the experiment.

Then, the semantic vectors of all metainstructions will be computed, in order to calculate semantic

distance between each pair of them in the next step. Finally, when the distance matrix is ready, we

will launch the main experiment.

The space of metainstructions will be packed into d-dimensional hyperrectangle, as mentioned

in Section 4.3. Because the number of metainstructions is arbitrary given, there may not exist

a hyperrectangle such that the metainstruction space fits it perfectly (i.e., of the same cardinality).

Therefore, there is a need for optimization of lengths of particular space dimensions aimed at

minimizing the unused space. Comparison of four methods solving this task can be found in

Section 5.2.

Once the metainstruction space got its shape, the main part of the experiment begins. It in-

volves smoothing of the space by maximization of the semantic locality metric. The direct con-

sequence of the optimization is a rearrangement of metainstruction positions such that the seman-

tically similar metainstructions lie in compact clusters, while semantically different metainstruc-

tions are placed far away from each other. Since the optimization problem is NP-hard, using an

exhaustive search algorithm is futile. Therefore the analysis of steepest local search heuristics will

be discussed later in Section 5.3.

Finally, the optimized metainstruction space takes part in a search for a program built upon

this set of instructions. Since the optimization process tends to increase fitness-distance correla-

tion between instructions, any non-random search algorithm that utilizes an optimized (smooth)

instruction space should achieve better results than the same algorithm working on non-optimized

space. It is worth noting, that the space embedding must be done only once and then the optimized

space can be used in multiple applications with no need for recomputation. Therefore it should

be considered as advantageous to spend additional time under space optimization process in order

to achieve better results. Performance comparison of a Genetic Programming algorithm solving

45

Empirical Results

logic problems using both optimized and non-optimized metainstruction spaces will be analyzed

in Section 5.4.

5.1.1 Implementation

The experimental software for this paper has been written in Java, involving Eclipse as the devel-

opment environment. The choice of Java was dictated by availability of a very good framework

called Evolutionary Computation in Java (ECJ) [82] for this platform. The ECJ comes with a wide

range of GP tools like automatic, parametrized GP tree builder, variety of genetic operators, avail-

ability of typed and non-typed instruction sets, and support for multiple trees per individual, in

particular for automatically defined functions [44]. Moreover the framework gives us ability to

define an entire experiment in easy-to-write parameter files. The file contains information about

the instruction set to be used, the constraints for the instructions, particularly helpful with strongly-

typed GP, and the definition of evolution pipeline. The pipeline defines control flow of the whole

evolution process, making it possible to redefine and extend the steps of the canonical GP algo-

rithm. Additionally, each part of the pipeline is fully configurable and replaceable. Furthermore,

the same format as ECJ parameter files has been used to store computation results of the experi-

ments.

The task of shape optimization of metainstruction space involves solving constraint program-

ming (CP) problems, therefore from the wide repertoire of CP solvers for Java, the CHOCO

Solver [23] has been chosen. The CHOCO solver distinguishes itself from the others in sup-

porting floating-point constants and variables, which is a unique feature among open source and

freeware CP solvers. This feature is crucial for our purposes due to definition of the dimension

balancing problem (see Equation 4.7) and the weighted sum problem (Equation 4.11). Moreover,

the solver provides an ability to define an entire strategy of solution search process and limits to

be imposed on the execution time as well as on the number of analyzed nodes or solutions.

Since statistical analysis requires multiple runs of the algorithm with different parameters, sev-

eral PowerShell [64] scrips have been used in order to automate the job. Though PowerShell was

especially developed to perform administrative tasks, it provides convenient way to manipulate

different kinds of files, like XML, CSV and obviously plain text. Additionally PowerShell gives

us unlimited access to full .NET Framework platform, in particular to its useful data structures

and tools. All this functionality makes PowerShell perfect tool for automation of experimental

process and initial analysis of the acquired data.

5.1.2 Runtime environment

All trials were carried out on a single computer equipped with a dual-core Intel Core i5 650

processor clocked at 3.6GHz. The 64-bit Oracle Java Virtual Machine version 6 update 24 running

on Windows 7 x64 was used as execution environment. The JVM process was operating at high

priority.

46

5.2. Shape optimization of metainstruction space

5.2 Shape optimization of metainstruction space

The optimization of program space shape is the first step of methodology described in this mas-

ter’s thesis. It involves finding an optimal vector of dimension lengths for a given number of

dimensionsd such that it decreases the number of unused places or balance of space dimensions.

In Section 4.3, four methods were proposed for this task, each with other characteristics. These

include: factorization and three constraint programming problems: minimization of free space,

dimension balancing and weighted sum of both previous.

The minimization of free space and dimension balancing CP are focused on a certain objective,

therefore these methods produce optimal results with respect to their goals. On the other hand the

factorization method is heuristic, because it does not guarantee finding an optimum in terms of

any considered objective. Since the weighted sum method is also a variant of CP, its solution is

optimal, although not in terms of any single goal, but their composition.

The above separation of method classes reflects in the computation times. A run of factoriza-

tion method lasts less than 10−4s on the test machine. On the other hand, the CP algorithms need

from a few seconds up to a few hours to find the optimum. Therefore, their runs were limited in

time to 10s for both free space minimization and dimension balancing, and 15s for weighted sum,

because of the more complicated objective function. Only the runs that found an optimum within

the assumed time limit are included in the following comparison. The comparison is provided for

dimensionality d ∈ {2,4,6} and cardinality of program space |S| ∈ [1000,5000]. See Figure 5.1

for the charts corresponding to the first three methods and Figure 5.2 for the analysis for the fourth

method, i.e., weighted sum analysis.

From what can be seen in the charts, the factorization and minimization of free space have

both strong preference to minimization of unused places. However the minimization obviously

produces optimal results for each dimensionality, the factorization tends to higher unused space

with rising dimensionality and program number. Note that, for d = 2 the factorization can produce

at most 1 empty place. It happens if and only if |S| is a prime number. Consequently factorization

has equal results as free space minimization for d = 2. However for higher d the factorization

results are worse than minimization results, the computation times are few orders of magnitude

smaller, making factorization the good alternative for free space minimization method. The simi-

lar behavior of the both methods can be also seen in charts of sum of square errors. The results of

both approaches compose to characteristic, overlapping curves. The curves can be approximated

by square function of the longest dimension produced by both of the methods. However the gen-

eral characteristics is similar, in case where factorization produces too low amount of components,

the repairing procedure removes the higher component, causing lowering of the error. Thus the

factorization can be considered as a bit better approach, with regard to sum of square errors, than

minimization of free space. Obviously solving of the dimension balancing problem produces op-

timal results on this objective. Despite of good results, the tests have shown that the dimension

balancing method has the highest computation times of all three methods described here, what

reflects in timing out and therefore low number of chart points for this method. Since the method

optimizes sum of square errors, the results are very bad in terms of unused space. The character-

istic lines can be found in the free space charts. The starting (left) point of each line corresponds

to the situation where |S|−1 matches perfectly some hyperrectangle with dimensions differing at

47

Empirical Results

1,000 2,000 3,000 4,000 5,000

0

20

40

60

80

100

Free space left

d = 2

1,000 2,000 3,000 4,000 5,000

0

1

2

3

4

5

·106 Sum of square errors

d = 2

1,000 2,000 3,000 4,000 5,000

0

200

400

600
d = 4

1,000 2,000 3,000 4,000 5,000

0

1

2

3

4

·105

d = 4

1,000 2,000 3,000 4,000 5,000

0

200

400

600

800

1,000

1,200

Number of programs

d = 6

1,000 2,000 3,000 4,000 5,000

0

1

2

3

·104

Number of programs

d = 6

Factorization Dimension balancing Minimize free space

FIGURE 5.1: Comparison of hyperrectangle shape optimization methods: factorization, free
space minimization and dimension balancing. The left column shows free space character-
istics of each method, the right one refers to the sum of square errors between generated
dimensions and optimal hypercube dimension size d

√
|S|, which usually is not integral value.

Each row represents different dimensionality d ∈ {2,4,6} of the space.

48

5.2. Shape optimization of metainstruction space

most in 1 value with each other, but |S| is too big for that hyperrectangle, therefore the method

produces a bit bigger hyperrectangle by adding 1 to one of dimensions, consequently generating

about |S| d−1
d new places. Generally amount of wasted space increases and sum of square errors de-

creases with rising dimensionality for all methods, except the optimal one for particular criterion.

Moreover average value of both criteria increases with rising number of programs.

The comparison of weighted sum CP problem for different weights α ∈ {0.2,0.5,0.8}, space

dimensionality d ∈ {2,4,6} and number of programs |S| ∈ [1000,4000] is shown in the Figure 5.2.

It is clear that for α = 0.2 the optimization process puts pressure on dimension balancing, on the

other hand for α = 0.8 the process favors lowering of wasted space. Therefore α = 0.5 can be

interpreted as neutral value, although values of both criteria have different sizes, and additionally

they change with rising dimensionality d in opposite directions, consequently the neutral point can

be moved from high α for low dimensionality d to low α for high d. The above considerations

are reflected in computation results in the charts. For α = 0.2 wasted space is the highest and sum

of square errors is the lowest of all methods for all d ∈ {2,4,6}, on the other hand for α = 0.8

the unused space is the smallest, but error is the biggest. Moreover for α = 0.2 and d = 2 di-

mensions the method is clearly dominated by sum of square errors minimization. On the contrary

for α = 0.5 and α = 0.8 and d = 2 dimensions, the results are pretty the same and causes small

values of both measures, but no one criterion significantly dominates. Therefore the true neutral

point must lay somewhere between these two α values. Moreover for α = 1.0 the method trans-

forms into free space minimization, consequently causing lowering of free space and increasing

of error. For higher dimensionality the results of all methods more clearly separate from each

other. In conclusion, for the testing range of parameters, the best weight α that does not favor any

criterion over the remaining is α ≈ 0.5.

It is worth noting that both measures, free space and sum of square errors, are much smaller in

case of weighted sum compared to the single criterion in case when second criterion is optimized

separately. Moreover the results are much better than these produced by factorization. Of course,

these results are paid by the much more computation effort. Therefore the computation times

of the weighted sum method can be unacceptable for greater program spaces. However the time

cost, a suboptimal results can be obtained by breaking computation after desired time limit. These

results can be also better than factorization outputs for ‘high enough’ time limits.

Finally, the experiment compared four methods for shape optimization of program space.

The fastest one is factorization of program number into vector of numbers. The method oper-

ates heuristically, therefore it does not put pressure on any criterion, but quickly produces ‘good

enough’ solutions even for very big space cardinalities. There were also analyzed two constraint

programming problems, one that minimizes the free space and one that minimizes sum of square

errors between generated hyperrectangle dimensions and optimal, but unreal, hypercube dimen-

sions. However both CP problems guarantee finding of global optimum for certain criterion, the

results are not satisfactory, because the criteria are conflicting. Consequently good value on the

first criterion corresponds to the bad value on the second one, and vice versa. This leads us to

combine both CP problems into weighted sum. The analysis of weights has shown that for range

of small dimensionalities, the results are acceptable for equal weights of both criteria. Moreover

the values of both measures are much smaller for the combined problem, than for factorization.

Therefore the weighted sum method is recommended for future use.

49

Empirical Results

1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

20

40

60

80

Free space left

d = 2

1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

100

200

300

400

500

Sum of square errors

d = 2

1,000 1,500 2,000 2,500 3,000 3,500

0

20

40

60

80
d = 4

1,000 1,500 2,000 2,500 3,000 3,500

0

100

200

300

400

500
d = 4

1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

20

40

60

80

Number of programs

d = 6

1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

100

200

300

400

500

Number of programs

d = 6

α = 0.2 α = 0.5 α = 0.8

FIGURE 5.2: Comparison of weighted sum method for hyperrectangle shape optimization
problem for different weights α ∈ {0.2,0.5,0.8}. The left column of charts shows amount of
wasted space produced by each method, the charts to the right correspond to sum of square
errors between optimal hypercube with dimension length d

√
|S|, which usually is not integral

value. Each row represents different dimensionality d ∈ {2,4,6} of the program space.

50

5.3. Locality optimization of metainstruction space

5.3 Locality optimization of metainstruction space

The previous analysis was focused on preliminary step, in which the shape of metainstruction

space is prepared. The main step, which is optimization of the space with regard to the seman-

tic locality, will be studied here. As shape optimization routine, the weighted sum CP problem

with α = 0.5 has been chosen due to its advantageous properties to minimize both number of

unused places and imbalance of dimensions. In each run, the shape optimization routine found the

global optimum in given time limit of 60 seconds. The locality optimization analysis is made for

d ∈ [2,10] dimensions of metainstruction space and k ∈ {3,4,5} decision nodes for each metain-

struction. Since locality optimization problem is NP-hard, as there has been proven in Section 4.1,

the usage of exhaustive search algorithm is futile, therefore the local search steepest algorithm (see

Section 4.4) is involved here. The locality L of entire metainstruction space is computed according

to the Equation 3.3. The measure makes use of metainstruction neighborhood relation NX . In the

following analysis, the neighborhood relation of particular metainstruction r is defined as set of all

instructions, whose positions in the hyperrectangle vary only in 1 in terms of Hamming distance.

Note that, the size of the neighborhood defined in that way is dependent on dimensionality d of the

metainstruction space and it is given by equation |NX(r)|= 2d. The Hamming distance is also in-

volved in measurement of distance between metainstructions, because their semantics are vectors

of zeros and ones. As mentioned previously, the L is defined additively, therefore the computation

time of the algorithm can be effectively reduced by calculating only local changes of locality l

in metainstruction neighborhood according to the Equation 3.1. Even making use of this opti-

mization, the evaluation of objective function is the most computationally demanding part of the

algorithm. The calculation time can be reduced even more by caching of semantic distances be-

tween metainstructions. The cache is implemented as half of distance matrix, consequently its size

depends quadratically on number of programs. The exact size of the matrix is given by statement
|Ik|×(|Ik|−1)

2 ×4B. The matrix rapidly grows in memory with increasing number of metainstructions

and their number rises exponentially with increasing number of decision nodes, in consequence,

requiring us to sample the metainstruction space. Consider k = 4 decision nodes, the distance

matrix would take 224×(224−1)
2 ×4B≈ 8GB, while entire process requires about 10GB of memory.

Due to memory limitation of test computer, we are forced to sample the space for k ≥ 4 decision

nodes. For future use, let us denote Îk as sampled part of entire metainstruction space Ik. The

sample sizes for considered k are shown in the Table 5.1. The table additionally shows number of

available places in generated hyperrectangle. As you can see the numbers produced by weighted

sum shape optimization method are very satisfactory, since the maximum percentage of wasted

space does not exceed 0.58% in each case, except k = 3 and d ≥ 9. In the mentioned case, the

metainstruction space is clearly redundant, since there is no vector of d ≥ 9 integer numbers ≥ 2

that multiplies to 256. Therefore for high d the space is filled by multiple copies of original space.

Computation effort of locality optimization routine is presented in the Table 5.2. The effort

is given in terms of number of objective function evaluations. General observations have shown

that cardinality of the metainstruction space is major factor that influences the effort. Deeper in-

spection has demonstrated that the rising hyperrectangle dimensionality only slightly increases

the computation effort. The effort rises significantly only if the space becomes drastically redun-

dant. The redundancy here comes hand in hand with rising cardinality of the space, therefore the

51

Empirical Results

Number of metainstructions Number of available places in hyperrectangle
k Total Sampled d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10
3 256 256(100%) 256 256 256 256 256 256 256 512∗ 1024∗

4 65536 34406(52.5%) 34408 34410 34425 34425 34425 34425 34496 34496 34560
5 4.29×109 34359 (0.0008%) 34368 34410 34391 34398 34375 34398 34496 34496 34560

TABLE 5.1: Total and sampled cardinality of space of semantically unique metainstructions
for k = {3,4,5} decision nodes. Numbers in braces refer to the percentage of total number
of instructions. Right part of the table refers to numbers of places for metainstructions in
generated hyperrectangle, depending on space dimensionality d ∈ [2,10].

Computation effort
k |Îk| d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10
3 256 1.5×105 1.6×105 1.6×105 1.5×105 1.6×105 1.3×105 1.6×105 5.9×105∗ 2.4×106∗

4 34406 3.0×109 3.2×109 3.2×109 3.4×109 3.6×109 3.7×109 3.4×109 3.4×109 3.4×109

5 34359 2.6×109 2.7×109 2.8×109 2.8×109 2.8×109 2.7×109 2.8×109 2.8×109 2.8×109

TABLE 5.2: Computation effort of steepest algorithm for given number of decision nodes k,
cardinality of sampled metainstruction space |Îk| and space dimensionality d. The effort is
provided as number of objective function evaluations.

k\d 2 3 4 5 6 7 8 9 10
3 0.271 0.270 0.269 0.266 0.267 0.268 0.268 0.267∗ 0.271∗

4 0.269 0.269 0.270 0.269 0.270 0.270 0.270 0.270 0.270
5 0.270 0.269 0.269 0.270 0.270 0.269 0.270 0.270 0.269

TABLE 5.3: Locality L0 of metainstruction space produced by random assignment of metain-
structions to positions in the space. The comparison is made for k ∈ {3,4,5} decision nodes
and d ∈ [2,10] dimensions.
∗– the metainstruction space is redundant, values left for comparison only.

implicit growth of the cardinality is true factor that makes the computation more difficult.

The Table 5.3 shows locality L of entire metainstruction space for hyperrectangle produced

by random assignment of instructions to the empty places in the space. The random assign-

ment becomes start point for locality maximization algorithm, therefore it is referred as L0. All

values oscillate around 0.269. It may be an effect of the standardization of semantic distance,

according to the Equation 3.2, which recalculates average distance to 3 and standard deviation

to 1. The random assignment algorithm commonly tends to have weak results, because it does

not take into account nature of the problem or search space. However the random assignment

sometimes creates very promising results, the same algorithm can produce very unsatisfactory so-

lutions. Thus the common results converge to the average of available score. Assuming normal

distribution of semantic distances and above parameters, the average score is given by equation

L̄ =
´

∞

0
1√
2π

e
−(x−3)2

2 1
1+x dx≈ 0.268, what explains well the obtained results.

The results produced by local search algorithm are very promising. Optimized locality L∗

values varies from 0.385, up to 0.727 and they are from 1.421 to 2.697 times better than randomly

generated solutions. The detailed values are shown in the Tables 5.4 and 5.5. It is worth noting,

that the algorithm achieves better results for small dimensionality of the space. This observation

may be an effect of interplay between two factors. As neighborhood size of metainstruction rises

with space dimensionality, the search algorithm has more opportunities to swap two instructions,

and consequently it can explore greater area of the search space. On the contrary, the higher

neighborhood introduces more interactions between metainstructions, all of which contribute to

52

5.3. Locality optimization of metainstruction space

k\d 2 3 4 5 6 7 8 9 10
3 0.441 0.412 0.382 0.396 0.392 0.385 0.385 0.415∗ 0.444∗

4 0.727 0.638 0.577 0.542 0.541 0.527 0.555 0.557 0.507
5 0.664 0.577 0.524 0.489 0.462 0.464 0.494 0.491 0.456

TABLE 5.4: Optimized locality L∗ of entire metainstruction space for k ∈ {3,4,5} decision
nodes and d ∈ [2,10] dimensions of the hyperrectangle. The best value for each k is bolded.

k\d 2 3 4 5 6 7 8 9 10
3 1.631 1.527 1.421 1.486 1.486 1.434 1.437 1.554∗ 1.637∗

4 2.697 2.370 2.141 2.011 2.004 1.955 2.060 2.067 1.881
5 2.462 2.141 1.947 1.810 1.713 1.721 1.883 1.821 1.692

TABLE 5.5: Locality improvement ratio of optimized space, given by equation L∗
L0

. The best
value for each k is bolded.
∗– the metainstruction space is redundant, values left for comparison only.

the objective function L, consequently making the optimization process harder. However the re-

sults incline us to hypothesize, that the second factor dominates over the first one, the phenomenon

influences distribution of metainstruction semantics in the semantics space S, making the problem

more complex in general. Let us leave it open for now. One may point out that the optimized

locality L∗ increased for k = 3 decision nodes and d ≥ 9 dimensions. What’s more for d = 10 the

L∗ is the greatest of all runs. Although it must be said that the metainstruction space is drastically

redundant in these both cases. Therefore the gain in objective function is paid by much higher

computation effort. Since the results are very similar to these of low dimensions, the additional

efforts may be considered as being wasted here. They can be more effectively utilized by repeti-

tions of steepest algorithm starting from another points. Note that, good results of these two cases

may be quite accidental here and need future investigations.

Let us analyze how embedding of metainstruction space influences geometricity of the space.

Geometricity is property of the space indicating how much instruction coordinates in the program

space correlate to its coordinates in the semantics space. In order to do that, let us introduce the

following geometricity metric:

G =
2

(|Ik|(|Ik|−1))

|Ik|

∑
i=2

i−1

∑
j=1

||s(ri)− s(r j)||
||s(ri)− s(r)||+ ||s(r j)− s(r)||

(5.1)

where Ik is metainstruction space, s(ri) is semantic vector of instruction ri ∈ Ik and s(r) is

semantics of instruction located in center between instructions ri and r j in coordinates of metain-

struction space. The metric is directly connected to the triangle inequality. For each group of

semantics {s(ri),s(r j),s(r)}, it measures how close is triangle based on given semantics to being

degenerated. The closer it is, the semantics s(r) is nearer to the middle of segment between s(ri)

and s(r j). Thus, the degenerated triangle indicates perfect geometricity of that group. The coeffi-

cient at the beginning of the equation acts as averaging operator. Codomain of the metric is [0,1],

1 is achieved only if all triangles produced from semantics are degenerated, or in other words,

the space is perfectly geometrical, 0 is returned if all semantics are the same (there is only one

semantic). Let us use standardized Hamming distance with average of 3 and standard deviation of

53

Empirical Results

k\d 2 3 4 5 6 7 8 9 10
3 0.541 0.557 0.600 0.610 0.616 0.620 0.623 0.599∗ 0.579∗

0.593 0.665 0.698 0.675 0.689 0.689 0.722 0.675 0.660
4 0.531 0.531 0.531 0.532 0.533 0.537 0.534 0.536 0.537

0.531 0.534 0.543 0.558 0.560 0.572 0.547 0.565 0.568
5 0.532 0.532 0.532 0.533 0.534 0.536 0.536 0.537 0.538

0.533 0.534 0.538 0.548 0.557 0.548 0.555 0.557 0.559

TABLE 5.6: Geometricity values of instruction spaces depending on depth of metainstruction
k and dimensionality d of the metainstruction space. The first value represents geometricity
of non-optimized space, the second of optimized space.
∗– the metainstruction space is redundant, values left for comparison only.

1 to measure differences between semantics, because of their binary nature.

The Table 5.6 shows measured values of geometricity metric for k ∈ {3,4,5} decision nodes

and d = [2,10]∩N dimensions of instruction space. First number in each row indicates geo-

metricity of random assignment of instructions and the latter one represents geometricity of the

optimized space. Value of the metric clearly increases with number of dimensions, which could

be connected with decreasing sizes of them and lowering average distance between instructions,

causing the space to be ‘more local’. Since locality optimization is, from its name, local opera-

tion, it is expected that locally measured geometricity can be higher than for more global scope.

The geometricity noticeably decreased for k = 3 and d ∈ {9,10}. It is obviously caused by far

more instructions in these two cases caused by insufficient number of unique instructions with

this depth. Value of the metric slowly decreases with rising depth of instructions. Since for k ≥ 4

the instruction space is sampled, the fall in value could be caused by absent instruction semantics

and need future studies. Moreover the growth in geometricity is smaller for higher k, what can be

caused by exponentially higher cardinality of the space.

The Figure 5.3 illustrates exemplary visualization of distribution of metainstruction semantics

in the space, produced by embedding of 2-dimensional toroidal space containing metainstructions

of depth 3. Since total number of instructions is 256 in that case, the space has 8× 8 structure

with no duplicates inside. The Figure shows pre-optimization state to the left as well as post-

optimization one to the right. Semantics vector is wrapped around and drawn as 4× 2 matrix,

with 1s represented as red squares and 0s as white squares. Each instruction semantics is single

tile and intensity of shading between pairs of tiles represents Hamming distance between them.

General look at the optimized space clearly exposes brighter and darker areas representing instruc-

tions that produces many 1s (darker) and 0s (brighter) output values. Moreover there are visible

boundaries between different areas. On the contrary the non-optimized space resembles white

noise. The closer look at the optimized space proves general observations by similar appearance

of neighboring tiles. On the other hand tiles in the left picture are arranged totally randomly.

In conclusion, the experimental results produced by proposed locality improvement approach

for metainstruction space were described in this section. In particular results of local search steep-

est algorithm were examined for three sets of metainstructions. The sets were built upon OBDDs

of depth 3,4 and 5, and the space was build upon 2 – 10 dimensional hyperrectangle. In two cases

the space was made redundant, since there is no right space with desired dimensionality and as low

as given cardinality. The cardinality of distinct metainstruction space rises rapidly with growing

54

5.3. Locality optimization of metainstruction space

FIGURE 5.3: Visualization of distribution of metainstruction semantics in 2D space built
upon set of OBDDs of depth 3. Left image illustrates state of space before optimization and
right one depicts optimized space. Each tile represents semantics of one metainstruction, the
red color indicates 1 and white 0, vector of semantics is wrapped in half of its length and put
in 4×2 matrix. Shading between tiles is the darker the greater the semantic distance.

k Average distance Max distance Average L0 Average L∗ Average L∗
L0

3 4.000±0.171 8 0.269±0.001 0.406±0.016 1.510±0.057
4 8.000±0.021 16 0.269±0.000 0.575±0.047 2.132±0.175
5 16.000±0.030 31 0.270±0.000 0.513±0.047 1.905±0.174

TABLE 5.7: Summary of locality optimization of metainstruction space. The table shows
average and maximum values of semantic distances between metainstructions, as well as
average values of locality measure for randomly assigned (L0) and optimized (L∗) space. The
values are divided into groups of equal k metainstruction depth. All averages are provided
with 0.05 confidence intervals.

number of decision nodes, therefore there is a need for sampling of the space in order to keep it

in computer memory. Table 5.7 shows average Hamming distance between metainstructions in all

sampled sets and maximum distance. As you can see, in case of k = 5 the maximum distance is

31, while ‘true’ distance in entire space would be 32. It is clearly caused by lack of instruction

samples caused by as low as 0.0008% selection probability. The probability cannot be increased

here, due to memory limitations of the test system. The average distances in all cases are very sim-

ilar to the distances in whole corresponding metainstruction space, whose are respectively 4,8,16.

Additionally the confidence intervals are very thin. These two facts clearly confirm that the spaces

were uniformly sampled. The Table 5.7 also shows, averaged over the space dimensions, values of

locality measure produced by random assignment of instructions and by optimization procedure.

The random assignment behaves very similarly in all cases, causing confidence intervals to be very

tight. Consequently the shape and size of instruction space have no impact on the random search

algorithm. Nevertheless the dimensionality of the space has important meaning to the optimiza-

tion algorithm, which behaved more effectively, in terms of both computational effort and value of

objective function, on low dimensionality than on higher ones. The average locality improvement

ratio varies from about one and a half to more than twice of the original value of non-optimized

space. The ratio is also better for lower dimensionality of the space, than for higher. The number

of decision nodes seems not to have an impact on the locality gain.

55

Empirical Results

5.4 Search using optimized metainstruction space

In this section, a practical application of the optimized metainstruction space is discussed. It is

shown, how much is the impact of the space optimization for performance of a program search

process, particularly in case of standard Genetic Programming algorithm. The performance bench-

mark consists of 9-even- and 9-odd-parity problems. In n-even-parity problem the task is to evolve

function that returns true if the input vector contains even number of ones, on the other hand in

the n-odd-parity problem true is expected if input contains odd number of ones. The binary neural

network of homogeneous architecture and configuration 3×3×1 was used as program represen-

tation. The GP algorithm is equipped with toroidal crossover and mutation operators, discussed

earlier in Section 4.5, in order to take advantage of coordinates in new (optimized) metainstruc-

tion space. Prior to the main run of the algorithm, some preliminary runs have been made with

intention to find parameters for new genetic operators, such that they drive the search process to

good results. All combinations of occurrence likelihood of crossover αc and mutation αm as well

as probability of crossing-over βc and mutation βm of particular gene have been checked within

range [0,1] with step 0.125. Search performance has been analyzed on test set built upon all

combinations of 9-bit input vector and proper program output bit. The set consists of 512 test

cases. The same test set is employed in target search experiment. The parameters have been set

to αc = 0.9, αm = 0.1, βc = 0.5, βm = 0.35. The number of correctly returned values was used

as fitness function. The algorithm driven by that fitness function runs until either ideal solution is

found or limit of 100 generations is reached, whatever comes first. The population size is 2000 in

each trial.

Comparison of search performance of the GP algorithm working on optimized and non-

optimized metainstruction space, as well as canonical problem implementation are illustrated in

the Figure 5.4. The space is built upon metainstructions of depth k = 3 and it is organized as

hyperrectangle. There are three different hyperrectangles involved: 2-dimensional 16× 16, 4-

dimensional 4× 4× 4× 4 and 6-dimensional 2× 2× 2× 2× 4× 4. The choice of that space is

dictated by the maximum OBDD depth studied in Section 5.3, for which the space is complete

(unsampled). The canonical implementation took advantage of Koza-I [44] setup, with population

size altered to 2000 individuals and number of generations to 100 in order to be comparable with

the new method. The figure consists of two charts, one for each variant of 9-odd/even-problem.

The charts show mean and maximum fitness in population over the generations for search in op-

timized and non-optimized metainstruction spaces and for standard implementation. The results

are averaged over 30 runs of algorithm with different random seeds.

The Genetic Programming algorithm clearly behaves better on optimized space than on non-

optimized one. Since the even-parity and odd-parity problems are symmetric, there is no meaning-

ful differences between their results. Consequently they are analyzed together. The optimization

of the metainstruction space increased final program fitness from 9% up to 23% comparing with

search in non-optimized space. The fitness gain is dependent on dimensionality of the metainstruc-

tion space and is higher for higher dimensionalities. Although the rising dimensionality generally

impedes the search process and causes worse results. It obviously may be connected with low lo-

cality of high dimensional spaces. In almost all cases both search in optimized and non-optimized

space behaves very similarly in first phase of the trial, then after about 20 generations both series

56

5.4. Search using optimized metainstruction space

0 20 40 60 80

300

400

500

Fi
tn

es
s

9-even-parity

d = 2

0 20 40 60 80

250

300

350

400

450

500

9-odd-parity

d = 2

0 20 40 60 80

300

400

500

Fi
tn

es
s

d = 4

0 20 40 60 80

300

400

500 d = 4

0 20 40 60 80

300

400

500

Generations

Fi
tn

es
s

d = 6

0 20 40 60 80

300

400

500

Generations

d = 6

Optimized: average-of-best-of-generation Optimized: average-of-average-of-generation
Non-optimized: average-of-best-of-generation Non-optimized: average-of-average-of-generation
Canonical: average-of-best-of-generation Canonical: average-of-average-of-generation

FIGURE 5.4: Comparison of search performance of Genetic Programming algorithm work-
ing on optimized and non-optimized d-dimensional metainstruction space and canoni-
cal problem implementation. Charts show fitness of both average-of-best-individual-in-
population and average-of-average-individual-in-population in each generation. Presented
values are averaged over 30 runs of the algorithm, additionally averages-of-best-individual-
in-population are provided with 0.05 confidence intervals.

57

Empirical Results

d Optimized space Non-optimized space Canonical implementation
2 172521.5 398290.9
4 306455.8 ∞ ∞

6 689041.2 ∞

TABLE 5.8: Comparison of computational effort of search in both optimized and non-
optimized space for space dimensionality d ∈ {2,4,6} and canonical implementation solving
9-parity problem.

separate from each other. The search through non-optimized space remains at acquired level, on

the other hand search in the optimized space still improves the results but slower than before. The

point of time when search in optimized space achieves its best results seems to depend on dimen-

sionality of the space. The convergence is faster for lower dimensionalities. It can be explained

by better value of locality measurement achieved for them as well as less complicated metain-

struction neighborhood relation. The canonical implementation of parity problem behaves worse

than others, but its results are more stable, what is represented by 0.05 confidence intervals in the

charts. The difference between best results of canonical method and search in optimized space

oscillates in range from 47% up to 62%.

The Table 5.8 presents computational effort of all three compared methods. The effort is

computed as total number of fitness function evaluations divided by number of successful runs.

The run is considered successful if it found optimal program or in other words it found program,

whose fitness is 29 = 512. Computational effort is the smallest for search in the optimized space,

what was expected, since this method usually finds optimum very quickly. It is worth noting,

that concept of metainstruction itself significantly decreased effort comparing to the canonical

implementation, what can be seen in the table.

It is worth noting, that there were analyzed other neural network architectures like some mod-

ifications of network with all k-ary combinations of n inputs connected to
(n

k

)
neurons in the

first layer and then aggregated by following layers to a single value. Unfortunately none of these

architectures brought significant improvement in performance of the algorithm.

In conclusion, preliminary optimization of metainstruction space with regard to semantic lo-

cality increased performance of search process on parity problem by about one fifth. Additionally

the optimization decreased program search effort and consequently computation times. Further-

more the concept of metainstruction and binary neural network raised values of program fitness

almost one and a half times and noticeably decreased effort required to find the solution.

Finally, it is important to say, that all program search trials were run on single metainstruction

space, optimized in previous step of experiment. Therefore the effort of space optimization can be

distributed on all these search attempts and consequently it disappears in overall cost of the task.

Moreover optimization of huge metainstruction spaces can be done once on high-end machine,

such as a computer grid, and then used multiple times by standard computers performing program

search tasks.

58

Chapter 6

Conclusions and Future Work

This master’s thesis has described the problem of low fitness-distance correlation in Genetic Pro-

gramming, and generally in program spaces. A locality metric to measure the strength of the

correlation was proposed. Furthermore, the concept of learnable embeddings of program spaces

was described, employing given locality measurement in the space optimization process. The op-

timization affects coordinates of programs in that space, so that semantically similar programs are

placed together and different ones are separated from each other. This process smoothes program

fitness landscape and in consequence, emphasizes its global convexity. The noticeable convex-

ity of fitness landscape definitely increases performance of many non-random search algorithms,

because the general way of improvement can be seen from multiple points of the landscape .

Because the space of constructible programs is in general unlimited, we proposed a notion

of metainstruction – a program building block, limited in size and functionality. Therefore, the

task of space optimization was shifted to the space of metainstructions, with hope that searches

involving that space indirectly improve performance of the entire program search process. The

experimental results showed that the locality of the [pre]space can be improved, in acceptable

time, more than two times even by such a simple approach like local optimization algorithm.

Moreover, the successive experiments have proven that search process, which makes use of the

optimized space, can achieve up to one fifth times better results, with even less computational

cost, than the same process working in the non-optimized space. The experiments have shown

also that an alternative representation of instructions as ordered binary decision diagrams gives

better results on logic problems than the canonical approach.

From the wide range of conceivable instruction space topologies, neighborhood relations and

mapping definitions, in this study the hyperrectangle topology, the neighborhood limited to Ham-

ming ball of radius one, and permutation mapping have been chosen. Note that the space of

alternative representations is not limited to this arbitrary selection. For instance, the instruction

space could be organized as a graph and the neighborhood in such a graph can be restricted by the

maximal number of hops from one vertex to another. Moreover, metainstructions were analyzed

on logic problems only, thus other applications need to be investigated. Furthermore, the concept

of program space optimization is innovatory, therefore there are multiple questions that should be

answered. For instance, what is optimal representation of the program space, what is its optimal

dimensionality (assuming it is Cartesian), and what are optimal sizes of space dimensions? Is the

optimal space topology related to the cardinality of semantically unique instructions? What is

59

Conclusions and Future Work

the optimal definition of program neighborhood relation? Does the proposed definition of local-

ity metric provide clear view on the smoothness of fitness landscape, or maybe there are better

measures? Finally, is there a minimal size of the program space for which the proposed approach

remains profitable, given the extra computational overhead involved? These and similar questions

deserve being addressed in future research.

60

Bibliography

[1] Martha Chase A. D. Hershey. Independent functions of viral protein and nucleic acid in

growth of bacteriophage. The Journal of General Physiology, 36:39–56, 1952.

[2] Gene M. Amdahl. Validity of the single processor approach to achieving large scale com-

puting capabilities. In SJCC, 1967.

[3] David Andre and John R. Koza. Parallel genetic programming on a network of transputers.

In Justinian P. Rosca, editor, Proceedings of the Workshop on Genetic Programming: From

Theory to Real-World Applications, pages 111–120, Tahoe City, California, USA, 9 July

1995.

[4] Peter J. Angeline. An investigation into the sensitivity of genetic programming to the fre-

quency of leaf selection during subtree crossover. In John R. Koza, David E. Goldberg,

David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the

First Annual Conference, pages 21–29, Stanford University, CA, USA, 28–31 July 1996.

MIT Press.

[5] Peter J. Angeline. Subtree crossover: Building block engine or macromutation? In John R.

Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and

Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Con-

ference, pages 9–17, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[6] A. O. L. Atkin and Daniel J. Bernstein. Prime sieves using binary quadratic forms. Math.

Comput, 73(246):1023–1030, 2004.

[7] Douglas A. Augusto and Helio J. C. Barbosa. Symbolic regression via genetic programming.

In VI Brazilian Symposium on Neural Networks (SBRN’00), page 173, Rio de Janeiro, RJ,

Brazil, January 22-25 2000. VI Simposio Brasileiro de Redes Neurais.

[8] Wolfgang Banzhaf. Genetic programming for pedestrians. March 1993. ICGA,.

[9] Forrest H Bennett III, John R. Koza, Jessen Yu, and William Mydlowec. Automatic syn-

thesis, placement, and routing of an amplifier circuit by means of genetic programming. In

Julian Miller, Adrian Thompson, Peter Thomson, and Terence C. Fogarty, editors, Evolvable

Systems: From Biology to Hardware Third International Conference, ICES 2000, volume

1801 of LNCS, pages 1–10, Edinburgh, Scotland, UK, 17-19 April 2000. Springer-Verlag.

[10] Bollig and Wegener. Improving the variable ordering of OBDDs is NP-complete. IEEETC:

IEEE Transactions on Computers, 45, 1996.

61

Bibliography

[11] George Boole. An Investigation of the Laws of Thought. Walton, London, 1854. Reprinted

by Dover Books, New York, 1954.

[12] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans-

actions on Computers, C-35:677–691, 1986.

[13] Flor Castillo, Arthur Kordon, Guido Smits, Ben Christenson, and Dee Dickerson. Pareto

front genetic programming parameter selection based on design of experiments and industrial

data. In Maarten Keijzer, Mike Cattolico, Dirk Arnold, Vladan Babovic, Christian Blum,

Peter Bosman, Martin V. Butz, Carlos Coello Coello, Dipankar Dasgupta, Sevan G. Ficici,

James Foster, Arturo Hernandez-Aguirre, Greg Hornby, Hod Lipson, Phil McMinn, Jason

Moore, Guenther Raidl, Franz Rothlauf, Conor Ryan, and Dirk Thierens, editors, GECCO

2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation,

volume 2, pages 1613–1620, Seattle, Washington, USA, 8-12 July 2006. ACM Press.

[14] Kumar Chellapilla. Evolving computer programs without subtree crossover. IEEE Transac-

tions on Evolutionary Computation, 1(3):209–216, September 1997.

[15] M. Conrad. Bootstrapping on the adaptive landscape. BioSystems, 11:167–182, 1979. An-

other discussion of the evolutionary self-facilitation of evolvability.

[16] Ellery Fussell Crane and Nicholas Freitag McPhee. The effects of size and depth limits on

tree based genetic programming. In Tina Yu, Rick L. Riolo, and Bill Worzel, editors, Genetic

Programming Theory and Practice III, volume 9 of Genetic Programming, chapter 15, pages

223–240. Springer, Ann Arbor, 12-14 May 2005.

[17] Charles Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation

of Favoured Races in the Struggle for Life. John Murray, London, 6th ed. edition, 1872.

[18] Patrik D’haeseleer. Context preserving crossover in genetic programming. In International

Conference on Evolutionary Computation, pages 256–261, 1994.

[19] Edsger Wybe Dijkstra. On the cruelty of really teaching computing science. Circulated

privately, December 1988.

[20] J. D. Watson F. H. C. Crick. The complementary structure of deoxyribonucleic acid. 1953.

[21] J. D. Watson F. H. C. Crick. A structure for deoxyribose nucleic acid. Nature, 171:737–738,

1953.

[22] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated Evolu-

tion. John Wiley, New York, USA, 1966.

[23] Guillaume Rochart Hadrien Cambazard Charles Prud’homme Arnaud Malapert

Julien Menana Francois Laburthe, Narendra Jussien. CHOCO Solver. http:

//www.emn.fr/z-info/choco-solver/.

62

http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/

[24] Edgar Galvan-Lopez, James McDermott, Michael O’Neill, and Anthony Brabazon. Defining

locality in genetic programming to predict performance. In 2010 IEEE World Congress on

Computational Intelligence, pages 1828–1835, Barcelona, Spain, 18-23 July 2010. IEEE

Computational Intelligence Society, IEEE Press.

[25] Edgar Galvan-Lopez, James McDermott, Michael O’Neill, and Anthony Brabazon. Towards

an understanding of locality in genetic programming. In Juergen Branke, Martin Pelikan,

Enrique Alba, Dirk V. Arnold, Josh Bongard, Anthony Brabazon, Juergen Branke, Martin V.

Butz, Jeff Clune, Myra Cohen, Kalyanmoy Deb, Andries P Engelbrecht, Natalio Krasnogor,

Julian F. Miller, Michael O’Neill, Kumara Sastry, Dirk Thierens, Jano van Hemert, Leonardo

Vanneschi, and Carsten Witt, editors, GECCO ’10: Proceedings of the 12th annual confer-

ence on Genetic and evolutionary computation, pages 901–908, Portland, Oregon, USA,

7-11 July 2010. ACM.

[26] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used

in genetic algorithms. In Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms,

pages 69–93, San Mateo, 1991. Morgan Kaufmann.

[27] D.E. Goldberg and K. Grygiel. Algorytmy genetyczne i ich zastosowania. Wydawnictwa

Naukowo-Techniczne, 1995.

[28] Kim Harries and Peter Smith. Exploring alternative operators and search strategies in genetic

programming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max

Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings

of the Second Annual Conference, pages 147–155, Stanford University, CA, USA, 13-16

July 1997. Morgan Kaufmann.

[29] Nguyen Xuan Hoai, R. I. (Bob) McKay, and Daryl Essam. Representation and struc-

tural difficulty in genetic programming. IEEE Transactions on Evolutionary Computation,

10(2):157–166, April 2006.

[30] J.H. Holland and J.H. Holland. Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control, and artificial intelligence. University of

Michigan Press, 1975.

[31] Daniel Howard, Simon C. Roberts, and Richard Brankin. Target detection in SAR imagery

by genetic programming. Advances in Engineering Software, 30(5):303–311, May 1999.

[32] Colin Johnson. Genetic programming crossover: Does it cross over? In Leonardo Vanneschi,

Steven Gustafson, Alberto Moraglio, Ivanoe De Falco, and Marc Ebner, editors, Proceedings

of the 12th European Conference on Genetic Programming, EuroGP 2009, volume 5481 of

LNCS, pages 97–108, Tuebingen, April 15-17 2009. Springer.

[33] Terry Jones. Crossover, macromutation, and population-based search. In Larry Eshelman,

editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 73–

80, San Francisco, CA, 1995. Morgan Kaufmann.

[34] M. A. Kaboudan. Genetic programming prediction of stock prices. 2000.

63

Bibliography

[35] Tatiana Kalganova. An extrinsic function-level evolvable hardware approach. In Riccardo

Poli, Wolfgang Banzhaf, William B. Langdon, Julian F. Miller, Peter Nordin, and Ter-

ence C. Fogarty, editors, Genetic Programming, Proceedings of EuroGP’2000, volume 1802

of LNCS, pages 60–75, Edinburgh, 15-16 April 2000. Springer-Verlag.

[36] M. Karnaugh. The map method for synthesis of combinational logic circuits. AIEE Trans-

actions, Part I Communication and Electronics, 72:593–599, November 1953.

[37] Ahmad Kattan and Riccardo Poli. Evolutionary lossless compression with GP-ZIP. In Jun

Wang, editor, 2008 IEEE World Congress on Computational Intelligence, pages 2468–2472,

Hong Kong, 1-6 June 2008. IEEE Computational Intelligence Society, IEEE Press.

[38] Maarten Keijzer. Scaled symbolic regression. Genetic Programming and Evolvable Ma-

chines, 5(3):259–269, September 2004.

[39] Kenneth E. Kinnear, Jr. Evolving a sort: Lessons in genetic programming. In Proceed-

ings of 1993 IEEE International Conference on Neural Networks (Joint FUZZ-IEEE’93 and

ICNN’93 [IJCNN93]), volume II, pages 881–888, San Francisco, California, March-April

1993. IEEE/INNS. SunSoft.

[40] Kenneth E. Kinnear, Jr. Fitness landscapes and difficulty in genetic programming. In Pro-

ceedings of the 1994 IEEE World Conference on Computational Intelligence, volume 1,

pages 142–147, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[41] Miha Kovacic and Joze Balic. Evolutionary programming of a CNC cutting machine. In-

ternational journal for advanced manufacturing technology, 22(1-2):118–124, September

2003.

[42] John R. Koza. Hierarchical genetic algorithms operating on populations of computer pro-

grams. In IJCAI, pages 768–774, 1989.

[43] John R. Koza. Genetic programming: A paradigm for genetically breeding populations of

computer programs to solve problems. Technical Report STAN-CS-90-1314, Department of

Computer Science, Stanford University, Stanford, California 94305, June 1990.

[44] John R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[45] John R. Koza, David Andre, Forrest H Bennett III, and Martin A. Keane. Use of automat-

ically defined functions and architecture-altering operations in automated circuit synthesis

using genetic programming. In John R. Koza, David E. Goldberg, David B. Fogel, and

Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Con-

ference, pages 132–149, Stanford University, CA, USA, 28–31 July 1996. MIT Press.

[46] Krzysztof Krawiec. Evolutionary Feature Programming: Cooperative learning for knowl-

edge discovery and computer vision. Number 385 in . Wydawnictwo Politechniki Poznan-

skiej, Poznan University of Technology, Poznan, Poland, 2004.

64

[47] Krzysztof Krawiec. Learnable embeddings of program spaces. In Sara Silva, James A.

Foster, Miguel Nicolau, Mario Giacobini, and Penousal Machado, editors, Proceedings of

the 14th European Conference on Genetic Programming, EuroGP 2011, volume 6621 of

LNCS, pages 167–178, Turin, Italy, 27-29 April 2011. Springer Verlag.

[48] Krzysztof Krawiec and Pawel Lichocki. Approximating geometric crossover in semantic

space. In Guenther Raidl, Franz Rothlauf, Giovanni Squillero, Rolf Drechsler, Thomas

Stuetzle, Mauro Birattari, Clare Bates Congdon, Martin Middendorf, Christian Blum, Carlos

Cotta, Peter Bosman, Joern Grahl, Joshua Knowles, David Corne, Hans-Georg Beyer, Ken

Stanley, Julian F. Miller, Jano van Hemert, Tom Lenaerts, Marc Ebner, Jaume Bacardit,

Michael O’Neill, Massimiliano Di Penta, Benjamin Doerr, Thomas Jansen, Riccardo Poli,

and Enrique Alba, editors, GECCO ’09: Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, pages 987–994, Montreal, 8-12 July 2009. ACM.

[49] Vladik Kreinovich and R. Kearfott. Beyond convex? global optimization is feasible only for

convex objective functions: A theorem. Journal of Global Optimization, 33:617–624, 2005.

10.1007/s10898-004-2120-1.

[50] W. B. Langdon. The evolution of size in variable length representations. In 1998 IEEE In-

ternational Conference on Evolutionary Computation, pages 633–638, Anchorage, Alaska,

USA, 5-9 May 1998. IEEE Press.

[51] W. B. Langdon. Size fair and homologous tree crossovers for tree genetic programming,

2000.

[52] William B. Langdon and Peter Nordin. Evolving hand-eye coordination for a humanoid robot

with machine code genetic programming. Lecture Notes in Computer Science, 2038:313–??,

2001.

[53] William B. Langdon and Riccardo Poli. On turing complete T7 and MISC F–4 program

fitnes landscapes. In Dirk V. Arnold, Thomas Jansen, Michael D. Vose, and Jonathan E.

Rowe, editors, Theory of Evolutionary Algorithms, number 06061 in Dagstuhl Seminar Pro-

ceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs- und Forschungszentrum

für Informatik (IBFI), Schloss Dagstuhl, Germany.

[54] William B. Langdon, Terry Soule, Riccardo Poli, and James A. Foster. The evolution of

size and shape. In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J. An-

geline, editors, Advances in Genetic Programming 3, chapter 8, pages 163–190. MIT Press,

Cambridge, MA, USA, June 1999.

[55] Ricky D. Ledwith and Julian F. Miller. Introducing flexibility in digital circuit evolution:

Exploiting undefined values in binary truth tables. In Gianluca Tempesti, Andy M. Tyrrell,

and Julian F. Miller, editors, Proceedings of the 9th International Conference Evolvable

Systems: From Biology to Hardware, ICES 2010, volume 6274 of Lecture Notes in Computer

Science, pages 25–36, York, September 6-8 2010. Springer.

65

Bibliography

[56] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell System

Technical Journal, 38:985–999, July 1959.

[57] Joanna Lis. Genetic algorithm with the dynamic probability of mutation in the classification

problem. Pattern Recognition Letters, 16:1311–1320, 1995.

[58] Jason D. Lohn, Gregory Hornby, and Derek S. Linden. Human-competitive evolved anten-

nas. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 22(3):235–

247, 2008.

[59] Moshe Looks. Competent Program Evolution. Doctor of science, Washington University,

St. Louis, USA, 11 December 2006.

[60] Sean Luke and Lee Spector. A comparison of crossover and mutation in genetic program-

ming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,

Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Sec-

ond Annual Conference, pages 240–248, Stanford University, CA, USA, 13-16 July 1997.

Morgan Kaufmann.

[61] Steven Manos, Maryanne C. J. Large, and Leon Poladian. Evolutionary design of single-

mode microstructured polymer optical fibres using an artificial embryogeny representation.

In Peter A. N. Bosman, editor, Late breaking paper at Genetic and Evolutionary Compu-

tation Conference (GECCO’2007), pages 2549–2556, London, United Kingdom, 7-11 July

2007. ACM Press.

[62] Nicholas Freitag McPhee and Justin Darwin Miller. Accurate replication in genetic pro-

gramming. In Larry Eshelman, editor, Proceedings of the Sixth International Conference on

Genetic Algorithms, pages 303–309, San Francisco, CA, 1995. Morgan Kaufmann.

[63] Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison. Semantic building blocks in

genetic programming. Working Paper Series Volume 3 Number 2, University of Minnesota

Morris, 600 East 4th Street, Morris, MN 56267, USA, 12 December 2007.

[64] Microsoft. Windows PowerShell. http://www.microsoft.com/powershell.

[65] Julian F. Miller. An empirical study of the efficiency of learning boolean functions using a

cartesian genetic programming approach, 1999.

[66] Julian F. Miller and Stephen L. Smith. Redundancy and computational efficiency in cartesian

genetic programming. IEEE Trans. Evolutionary Computation, 10(2):167–174, 2006.

[67] David J. Montana. Strongly typed genetic programming. Evolutionary Computation,

3(2):199–230, 1995.

[68] Peter Nordin and Wolfgang Banzhaf. Programmatic compression of images and sound. In

John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic

Programming 1996: Proceedings of the First Annual Conference, pages 345–350, Stanford

University, CA, USA, 28–31 July 1996. MIT Press.

66

http://www.microsoft.com/powershell

[69] Tim Perkis. Stack-based genetic programming. In Proceedings of the 1994 IEEE World

Congress on Computational Intelligence, volume 1, pages 148–153, Orlando, Florida, USA,

27-29 June 1994. IEEE Press.

[70] Alan Piszcz and Terence Soule. Genetic programming: Analysis of optimal mutation rates

in a problem with varying difficulty. In Geoff C. J. Sutcliffe and Randy G. Goebel, editors,

Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society

Conference, pages 451–456, Melbourne Beach, Florida, USA, May 11-13 2006. American

Association for Artificial Intelligence.

[71] R. Poli, W. B. Langdon, and Stephen Dignum. On the limiting distribution of program sizes

in tree-based genetic programming. Technical Report CSM-464, Department of Computer

Science, University of Essex, December 2006.

[72] Riccardo Poli. Discovery of symbolic, neuro-symbolic and neural networks with parallel dis-

tributed genetic programming. In George D. Smith, Nigel C. Steele, and Rudolf F. Albrecht,

editors, Artificial Neural Nets and Genetic Algorithms: Proceedings of the International

Conference, ICANNGA97, University of East Anglia, Norwich, UK, 1997. Springer-Verlag.

published in 1998.

[73] Riccardo Poli. Parallel distributed genetic programming. In David Corne, Marco Dorigo,

and Fred Glover, editors, New Ideas in Optimization, Advanced Topics in Computer Science,

chapter 27, pages 403–431. McGraw-Hill, Maidenhead, Berkshire, England, 1999.

[74] Riccardo Poli and W. B. Langdon. A new schema theory for genetic programming with

one-point crossover and point mutation. In John R. Koza, Kalyanmoy Deb, Marco Dorigo,

David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming

1997: Proceedings of the Second Annual Conference, pages 278–285, Stanford University,

CA, USA, 13-16 July 1997. Morgan Kaufmann.

[75] Riccardo Poli and William B. Langdon. On the search properties of different crossover op-

erators in genetic programming. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla,

Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hi-

toshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third

Annual Conference, pages 293–301, University of Wisconsin, Madison, Wisconsin, USA,

22-25 July 1998. Morgan Kaufmann.

[76] Riccardo Poli and William B. Langdon. Schema theory for genetic programming with one-

point crossover and point mutation. Evolutionary Computation, 6(3):231–252, 1998.

[77] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field guide

to genetic programming. Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[78] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Reihe Problemata. Frommann-Holzboog, 1973.

67

Bibliography

[79] B. Roy. The outranking approach and the foundations of ELECTRE methods. In C.A Bana e

Costa, editor, Readings in Multiple Criteria Decision Aid, pages 155–183. Springer-Verlag,

Berlin, 1990.

[80] Rafal Salustowicz and Jürgen Schmidhuber. Probabilistic incremental program evolution,

1997.

[81] Rafal Salustowicz, Marco Wiering, and Jürgen Schmidhuber. Learning team strategies: Soc-

cer case studies. Machine Learning, 33(2-3):263–282, 1998.

[82] Gabriel Balan Sean Paus Zbigniew Skolicki Elena Popovici Keith Sullivan Joseph Harrison

Jeff Bassett Robert Hubley Alexander Chircop Jack Compton William Haddon Stephen Don-

nelly Beenish Jamil Joseph Zelibor Eric Kangas Faisal Abidi Houston Mooers Sean Luke,

Liviu Panait and James O’Beirne. Evolutionary Computation in Java. http://cs.gmu.

edu/~eclab/projects/ecj/.

[83] Detlef Sieling. The nonapproximability of OBDD minimization. Inf. Comput, 172(2):103–

138, 2002.

[84] Y. Siskos, E. Grigoroudis, and N.F. Matsatsinis. Uta methods. In J. Figueira, S. Greco,

and M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages

297–344. Springer Verlag, Boston, Dordrecht, London, 2005.

[85] Terence Soule and James A. Foster. Removal bias: a new cause of code growth in tree

based evolutionary programming. In 1998 IEEE International Conference on Evolutionary

Computation, pages 781–786, Anchorage, Alaska, USA, 5-9 May 1998. IEEE Press.

[86] Rainer Storn. On the usage of differential evolution for function optimization. In NAFIPS’96,

pages 519–523. IEEE, 1996.

[87] Rainer Storn and Kenneth Price. Differential evolution: A simple and efficient heuristic

for global optimization over continuous spaces. J. of Global Optimization, 11:341–359,

December 1997.

[88] Walter Alden Tackett. Genetic generation of “dendritic” trees for image classification. In

Proceedings of WCNN93, pages IV 646–649. IEEE Press, July 1993.

[89] Astro Teller. Turing completeness in the language of genetic programming with indexed

memory. In Proceedings of the 1994 IEEE World Congress on Computational Intelligence,

volume 1, pages 136–141, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[90] F. Towhidi, A.H. Lashkari, and R.S. Hosseini. Binary decision diagram (bdd). In Future

Computer and Communication, 2009. ICFCC 2009. International Conference on, pages 496

–499, april 2009.

[91] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, and Bob McKay. The role of

syntactic and semantic locality of crossover in genetic programming. In Robert Schaefer,

68

http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/

Carlos Cotta, Joanna Kolodziej, and Guenter Rudolph, editors, PPSN 2010 11th Interna-

tional Conference on Parallel Problem Solving From Nature, volume 6239 of Lecture Notes

in Computer Science, pages 533–542, Krakow, Poland, 11-15 September 2010. Springer.

[92] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, R. I. McKay, and Edgar Galvan-

Lopez. Semantically-based crossover in genetic programming: application to real-valued

symbolic regression. Genetic Programming and Evolvable Machines. Online first.

[93] Mark Voorneveld. Characterization of pareto dominance. Oper. Res. Lett, 31(1):7–11, 2003.

[94] Klaus Weinert and Marc Stautner. A new view on symbolic regression. In James A. Foster,

Evelyne Lutton, Julian Miller, Conor Ryan, and Andrea G. B. Tettamanzi, editors, Genetic

Programming, Proceedings of the 5th European Conference, EuroGP 2002, volume 2278 of

LNCS, pages 113–122, Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.

[95] S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In

Proceedings of the Sixth Congress on Genetics, volume 1, page 365, 1932.

[96] Taro Yabuki and Hitoshi Iba. Turing-complete data structure for genetic programming. In

IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 3577–

3582, Washington, D.C., USA, 5-8 October 2003. IEEE Press.

69

c© 2011 Tomasz Pawlak

Poznan University of Technology
Faculty of Computing Science
Institute of Computing Science

Typeset using LATEX in Computer Modern.

BibTEX:
@mastersthesis{ key,

author = "Tomasz Pawlak",
title = "{Automated Design of Semantically Smooth Instruction Spaces

for Genetic Programming}",
school = "Poznan University of Technology",
address = "Pozna{\’n}, Poland",
year = "2011",

}

	1 Introduction
	1.1 Motivation
	1.2 Aim of the thesis
	1.3 Organization of the thesis

	2 Genetic Programming Overview
	2.1 Introduction to Genetic Programming
	2.2 Genotype representation
	2.3 Genetic operators
	2.3.1 Selection
	2.3.2 Crossover
	2.3.3 Mutation

	2.4 Applications of Genetic Programming

	3 Challenges for Genetic Programming
	3.1 Typical problems and troubleshooting
	3.1.1 Code bloat
	3.1.2 Other problems in Genetic Programming

	3.2 Locality and global convexity in context of Genetic Programming

	4 Automatic Design of Semantically Smooth Instruction Spaces
	4.1 Embeddings of program spaces
	4.2 Program representation
	4.2.1 Binary Decision Diagrams
	4.2.2 Instruction and program representations

	4.3 Shape optimization of metainstruction space
	4.4 Locality optimization of metainstruction space
	4.5 Search in optimized metainstruction space

	5 Empirical Results
	5.1 The experiment
	5.1.1 Implementation
	5.1.2 Runtime environment

	5.2 Shape optimization of metainstruction space
	5.3 Locality optimization of metainstruction space
	5.4 Search using optimized metainstruction space

	6 Conclusions and Future Work
	Bibliography

