
Int. J. Appl. Math. Comput. Sci., , Vol. , No. , –
DOI:

EVOLVING SMALL-BOARD GO PLAYERS USING COEVOLUTIONARY
TEMPORAL DIFFERENCE LEARNING WITH ARCHIVE

KRZYSZTOF KRAWIEC, WOJCIECH JAŚKOWSKI, MARCIN SZUBERT

Institute of Computing Science
Poznan University of Technology
Piotrowo 2, 60965 Poznań, Poland

e-mail: kkrawiec|wjaskowski|mszubert@cs.put.poznan.pl

We apply Coevolutionary Temporal Difference Learning (CTDL) to learn small-board Go strategies represented as weighted
piece counters. CTDL is a randomized learning technique which interleaves two search processes that operate in intra-game
and inter-game mode. The intra-game learning is driven by gradient-descent Temporal Difference Learning (TDL), a rein-
forcement learning method that updates the board evaluation function according to differences observed between its values
for consecutively visited game states. For the inter-game learning component, we provide coevolutionary algorithm that
maintains a sample of strategies and uses the outcomes of games played between them to iteratively modify the probability
distribution, according to which new strategies are generated and added to the sample. We analyze CTDL’s sensitivity to
all important parameters, including the trace decay constant that controls the lookahead horizon of TDL, and the relative
intensity of intra-game and inter-game learning. We investigate also how the presence of memory (an archive) affects the
search performance, and find out that the archived approach is superior to other techniques considered here, and produces
strategies that outperform a handcrafted weighted piece counter strategy and a simple liberty-based heuristics. This en-
couraging result can be potentially generalized not only to other strategy representations used for small-board Go, but also
to different games and a broader class of problems, because CTDL is generic and does not rely on any problem-specific
knowledge.

Keywords: Temporal Difference Learning, Coevolution, Small-Board Go, Exploration vs. Exploitation, Games

1. Introduction

Despite being a subject of artificial intelligence research
for more than 40 years, the game of Go remains a great
challenge as best computer players continue to yield to
professionals. This is a result of the huge combinato-
rial complexity which is much higher for this game than
for other popular two-player deterministic board games –
there are about 10170 board states and the game tree has
an average branching factor of around 200. These fig-
ures, together with other specific features of Go, make
it impossible to directly adopt techniques that proved
successful in other board games, like chess or checkers
(Mechner, 1998; Johnson, 1997).

Many of canonical Go-playing programs are pre-
cisely tuned expert systems founded on a thorough human
analysis of the game. Such programs typically employ a
multitude of rules elicited from professional Go players in
order to recognize particular board patterns and react to
them. However, this knowledge-based approach is con-

strained by the extent and quality of the available knowl-
edge, and by designer’s ability to articulate it in a playing
program. These shortcomings, which manifest themselves
when applying the knowledge-based methodology to most
games, turn out to be particularly painful for Go.

No wonder that some computer Go researchers aban-
don this cognitive perspective, which aims at mimicking
expert’s reasoning, in favor of a behavioral perspective
that does not care much whether player’s perception of
the game state and internal strategy representation exhibit
analogies to human players. Approaches that belong to
the latter group typically assume that a player has no ini-
tial knowledge about game specifics (apart from the game
definition) and involve some form of learning to automati-
cally harvest it from the outcomes of games played against
opponents. The major differences between the representa-
tives of this trend consist in when (in the course of learn-
ing) are the outcomes of such interactions transformed
into knowledge and how it is done.

2 K. Krawiec, W. Jaśkowski and M. Szubert

Such learning task can be formalized as maximiza-
tion of the expected outcome of the game (or probabil-
ity of winning for binary-outcome games), which is some
function of strategy parameters. The form of that func-
tion is unknown to the learner and, for nontrivial games
like Go, very complex, which precludes any attempts
of solving this problem analytically. Also, the sheer
size of the domain of that function (the search space) is
immense even for simple representations of game strat-
egy. Thus, some form of random sampling of the search
space becomes inevitable, which explains the popularity
of Monte Carlo techniques (MC) in this context (see, e.g.,
Müller, 2009).

The primary contribution of this paper is a method
that assumes the aforementioned behavioral perspective
and employs a randomized search simultaneously in two
different modes: local, intra-strategy, and global, inter-
strategy. To conduct the search in the former mode, it
employs gradient-based temporal difference learning that
works with a single strategy at a time and trains it by
randomized self-play. For the inter-strategy mode, our
method relies on coevolutionary learning that maintains
a population of strategies, makes them play against each
other, and uses the outcomes of games to guide the process
of random sampling of the search space in subsequent it-
erations. The proposed approach, termed Coevolutionary
Temporal Difference Learning (CTDL), hybridizes thus
two radically different techniques that complement each
other in terms of exploration and exploitation of the search
space.

This paper is organized as follows. In Section 2,
we shortly present the game of Go and its customiza-
tion adopted for this study. In Section 3, we detail the
CTDL approach, starting from describing its constituents:
temporal difference learning and coevolutionary learn-
ing. Section 5 presents the results of an extensive com-
putational experiment and their analysis. In Sections 6
and 7, we discuss the results and conclude this contri-
bution. Where appropriate, we refer to and review the
related work; a comprehensive review of all AI meth-
ods applied to computer Go can be found in (Bouzy and
Cazenave, 2001).

2. The Game of Go
The game of Go is believed to have originated about 4000
years ago in Central Asia, which makes it one of the oldest
known board games. Although the game itself is very dif-
ficult to master, its rules are relatively simple and compre-
hensible. For this reason the famous chess player, Edward
Lasker (1960), summarized Go in the following way: The
rules of Go are so elegant, organic and rigorously logical
that if intelligent life forms exist elsewhere in the universe
they almost certainly play Go.

2.1. Original Game Rules. Go is played by two play-
ers, black and white, typically on an 19× 19 board. Play-
ers make moves alternately, blacks first, by placing their
stones on unoccupied intersections of the grid formed by
the board. The player who is to move may pass his turn.
The game ends if both players pass consecutively.

In a broad sense, the objective of the game is to con-
trol more territory than the opponent at the end of the
game. This can be achieved by forming connected stone
groups enclosing as many vacant points and opponent’s
stones as possible. A stone group is a set of stones of the
same color adjacent to each other; empty intersections ad-
jacent to a group constitute its liberties. When a group
loses its last liberty, i.e., becomes completely surrounded
by opponent’s stones or edges of the board, then it is cap-
tured and removed.

A legal move consists of placing a piece on an
empty intersection and capturing enemy groups which are
left without liberties. Additional restrictions on making
moves concern suicides and the ko rule. A suicide is a
potential move that would reduce the number of liberties
of player’s own group to zero. Moves leading to suicides
are illegal. The ko rule states that a move that recreates
a previous board state (i.e., the arrangement of stones on
the board) is not allowed either.

The winner is the player who scores more points at
the end of the game. The scores are determined using a
scoring system agreed upon before the game; the two pop-
ular systems include area counting (Chinese) and territory
counting (Japanese). Both ways of calculating the score of
a player take into consideration the number of empty in-
tersections surrounded by the player (player’s territory).
This figure is augmented by the number of player’s stones
on the board in the area counting system, or by the num-
ber of captured stones (prisoners) in the territory count-
ing system. Throughout this study we assume using the
Chinese scoring scheme with no komi (i.e., points given
in advance to one of the players). The reader interested
in more detailed description of Go rules is referred to the
book by Bozulich (1992).

2.2. Adopted Computer Go Rules. There are a few
noteworthy issues about the rules of Go that make devel-
oping computer players particularly difficult. For this rea-
son, we restrict our research to the following, simplified
version of Go.

First of all, the immense cardinality of the state space
and the large branching factor mentioned in the Introduc-
tion render the 19× 19 board Go intractable for many al-
gorithms. Fortunately, the game rules are flexible enough
to be easily adapted to smaller boards without loss of the
underlying ‘spirit’ of the game, so in a great part of stud-
ies on computer Go the board is downgraded to 9 × 9 or
5 × 5. Following Lucas and Runarsson (2006) and Lub-
berts and Miikkulainen (2001), we consider playing Go

Evolving Small-Board Go Players using Coevolutionary Temporal Difference Learning with Archive 3

Fig. 1. The small-board version of Go.

on a 5 × 5 board (see Fig. 1). Although the small-board
version is significantly different from the original, it still
can be used for educational purposes and to demonstrate
basic concepts of the game.

A more subtle difficulty in adopting Go rules to com-
puter programs concerns the fact that human players end
a game after they agree that they can gain no further ad-
vantages. In such situations they use a substantial amount
of knowledge to recognize particular intersections as im-
plicitly controlled. According to the game rules, if it is
impossible to prevent a group from being captured, it is
not necessary to capture it explicitly in order to gain its
territory. Such a group is considered as dead and it is re-
moved at the end of the game when both players decide
which groups would inevitably be captured. Because de-
termining which stones are dead is nontrivial for computer
Go players, we assume that all groups on the board are
alive and that capturing is the only way to remove an op-
ponent’s group. As a consequence, games are continued
until all intersections are explicitly controlled and, thus,
are much longer than those played by humans.

Finally, in some rule sets (including Chinese rules
that we employ), the ko rule is superseded by super-ko
that forbids repetition of board states across a single game.
Recurrently appearing states imply cycling and, theoreti-
cally, an infinite game. However, strict implementation of
super-ko requires storing all previous board configurations
and comparing each of them to the current state. Since
most of possible cycles are not longer than 3, we use a
reasonable approach in which we remember just two pre-
vious board configurations. However, longer cycles can
still occur, so to ensure that the game ends, an upper limit
of 125 on the total number of moves is additionally im-
posed. Exceeding this limit results in declaring game’s
result as a draw (Lubberts and Miikkulainen, 2001).

3. Methods
All players considered in the remaining part of this paper
rely on weighted piece counter (WPC) to represent their
strategies. WPC is a matrix (unrolled here to a vector for
brevity) that assigns a weightwi to each board intersection
i and uses scalar product to calculate the utility f of a
board state b:

f(b) =

s×s∑
i=1

wibi, (1)

where s is the board’s size and bi is +1, −1, or 0 if, re-
spectively, intersection i is occupied by the black player,
the white player, or remains empty. It means that we em-
ployed the simplest form of direct coding of the board
state termed as Koten board representation by Mayer
(2007), in which exactly one input for each intersection
is provided to the evaluation function f . Although such
an input signal does not carry information about the states
of neighboring intersections, which seems to be essential
in Go, the direct board encoding is frequently used in re-
lated studies (Runarsson and Lucas, 2005; Schraudolph
et al., 2001). While Go board has eight axes of symmetry
and WPC could be simplified to cover just 1

8 of the board,
we do not reveal this fact to the learners and let them learn
WPC for the entire board, following the behavioral per-
spective mentioned in the Introduction. The players inter-
pret the values of f in a complementary manner: the black
player prefers moves leading to states with larger values,
while smaller values are favored by the white player. Al-
ternatively, WPC may be viewed as an artificial neural net-
work comprising a single linear neuron with inputs con-
nected to board intersections.

The fact that WPC weighs occupancy of each board
intersection independently make it probably the least so-
phisticated strategy representation for board games. One
can also argue whether WPC is appropriate for the rather
weakly-positional game of Go (as compared to, e.g., Oth-
ello). Therefore, in objective terms we do not anticipate
the strategies elaborated in the following experiment to
beat the top-ranked computer players. However, in the
context of this study this should not be perceived as a
hindrance, as our primary goal is to investigate the in-
terplay between coevolutionary learning and TDL in the
hybridized approach, and the potential impact it has on
player’s performance as measured against the constituent
strategies, with a hope that at least some of the conclusions
can be generalized to more sophisticated strategy repre-
sentations.

Still, WPC’s simplicity and its positional character
bring substantial advantages, fast board evaluation being
the most prominent one. WPC strategies can be also easily
interpreted and compared by inspecting the weight values.
For instance, Table 1 presents the weight matrix of an ex-
emplary player for 5×5 Go that clearly aims at occupying
the center of the board while avoiding the corners.

4 K. Krawiec, W. Jaśkowski and M. Szubert

Table 1. The WPC strategy of the heuristic player.

−0.10 0.20 0.15 0.20 −0.10
0.20 0.25 0.25 0.25 0.20
0.10 0.30 0.25 0.30 0.10
0.20 0.25 0.25 0.25 0.20
−0.10 0.20 0.15 0.20 −0.10

3.1. Temporal Difference Learning. Since the influ-
ential work of Tesauro (1995) and the success of his TD-
Gammon player learned through self-play, Temporal Dif-
ference Learning (TDL) has become a well-known ap-
proach for elaborating game strategies with little or no
help from human knowledge or expert strategies given
a priori. TDL is a method proposed by Sutton (1988),
but its origins reach back to the famous checkers play-
ing program by Samuel (1959) (however Bucci (2007)
suggests that it was rather the first example of coevo-
lution). Impressive results obtained by temporal dif-
ference (TD) methods applied to reinforcement learning
(RL) problems have triggered off a lot of research in-
cluding their applications to computer Go (Schraudolph
et al., 2001; Lubberts and Miikkulainen, 2001; Lucas and
Runarsson, 2006; Mayer, 2007).

The use of RL techniques for learning game strate-
gies stems from modeling a game as a sequential decision
problem, where the task of the learner is to maximize the
expected reward in the long run (game outcome). The es-
sential feature of this scenario is that the actual (true) re-
ward is not known before the end of the game, so some
means are necessary to propagate that information back-
wards through the series of states, assign credit to partic-
ular decisions, and guide the intra-game learning.

Though the two most popular RL approaches, Monte
Carlo (MC) and temporal difference methods (particu-
larly, the TD(0) algorithm) represent two extremities in
implementing this process (Sutton and Barto, 1998), they
share the underlying idea of estimating chances of win-
ning for particular states i.e., finding state value function)
using the sample of experience. In MC-based methods it
is indispensable to wait until the end of the game when
its exact outcome is known and can be back-propagated to
contribute to the predictions made for encountered states.
TD(0), on the contrary, looks only one step ahead, ana-
lyzes the differential information about the values of the
both states (the error between temporally successive pre-
dictions), and uses it to update the estimate of current
state’s value.

TD(λ) is an elegant umbrella that embraces the above
special cases of TD(0) and MC (which is equivalent to
TD(1)). It makes it possible to smoothly adjust the looka-
head ‘horizon’ by tuning the λ parameter, which refers to
so-called eligibility trace and can be interpreted as a trace
decay factor. Since the acquired knowledge should be

generalized across the space of possible states, the func-
tion approximation in a gradient-descent TD(λ) algorithm
is used to predict state values. Technically, the prediction
of the game outcome Pt at a certain time step t can be con-
sidered as a function of two arguments: current state of the
game and the vector of modifiable weights w, which are
arbitrary parameters modified in the process of learning.
In each step, the weights are updated using the following
rule:

∆wt = α(Pt+1 − Pt)

t∑
k=1

λt−k∇wPk, (2)

where the gradient ∇wPt is the vector of partial deriva-
tives of Pt with respect to each weight. The parameter
α is the learning rate, while the trace decay λ ∈ [0, 1]
determines the rate of ‘aging’ of past gradients, i.e., the
rate at which their impact on current update decays when
reaching deeper into history. This general formulation of
TD takes into account the entire sequence of states and
the corresponding predictions that appeared in the single
game; in case of TD(0), the weight update is determined
only by its effect on the most recent prediction Pt:

∆wt = α(Pt+1 − Pt)∇wPt. (3)

In this case, Pt takes a form of board evaluation func-
tion f computed as a dot product of the board state vector
bt and the WPC weights vector w (see Eq. (1)). The
value returned by f is subsequently squeezed to the in-
terval [−1, 1] using hyperbolic tangent. This mapping is
necessary to obtain the same binary outcome of the game
for multiple, linearly independent final states of the board.
Eventually, Pt is calculated using the following equation:

Pt = tanh(f(bt)) =
2

exp(−2f(bt)) + 1
− 1 (4)

By applying (4) to the TD(0) update rule (3) and
calculating gradient, we obtain the desired correction of
weight wi at time step t:

∆wi,t = α(Pt+1 − Pt)(1− P 2
t)bi (5)

If the state observed at time t+ 1 is terminal, the ex-
act outcome of the game is used instead of the prediction
Pt+1. The outcome is +1 if the winner is black, −1 if
white, and 0 when the game ends in a draw.

The process of learning consists in applying the
above formula to the WPC vector after each move. The
training data for that process, i.e., a collection of games,
each of them being a sequence of states b1, b2, . . ., is ac-
quired via self-play, as such technique does not require
anything besides the learning system itself.

Go is a deterministic game, thus the course of the
game between a particular pair of deterministic players
is always the same. This feature reduces the number of

Evolving Small-Board Go Players using Coevolutionary Temporal Difference Learning with Archive 5

game trees to be explored and makes learning ineffective.
To remedy this situation, at each turn, a random move
is forced with a certain probability. Thanks to random
moves, players are confronted with a wide spectrum of
possible behaviours of their opponents, including the quite
unexpected ones, which makes them more robust and ver-
satile.

3.2. Coevolutionary Learning. Temporal difference
learning approach presented above is a gradient-based lo-
cal search method that maintains a single model of the
learned phenomenon and as such has no built-in mech-
anisms for escaping from local minima. Evolutionary
computation, a global search neo-Darwinian methodology
of solving learning and optimization problems, has com-
pletely opposite characteristics: it lessens the problem of
local minima by maintaining a population of candidate so-
lutions (individuals), but has no means for calculating in-
dividually adjusted corrections for each solution parame-
ter. Therefore, it seems an attractive complementary alter-
native for TD for learning game strategies.

However, one faces substantial difficulty when de-
signing a fitness function, an indispensable component of
an evolutionary algorithm that drives the search process,
for the task of learning game strategies. To properly guide
the search, the fitness function should objectively assess
the utility of the evaluated individual, which, in case of
games, can be done only by playing against all possible
opponents strategies. For most games such an approach
is computationally intractable. Considering instead only
a limited sample of opponents lessens the computational
burden, but biases the search. For this reason, a much
more appealing alternative from the viewpoint of game
learning is coevolution, where individual’s fitness depends
on the results of interactions with other individuals from
the population. In learning game strategies, such inter-
action consists in playing single game, and its outcome
increases the fitness of the winner while decreasing the
fitness of the loser. This evaluation scheme is typically
referred to as competitive coevolution (Angeline and Pol-
lack, 1993; Azaria and Sipper, 2005).

Coevolutionary Learning (CEL) of game strategies
follows the competitive evaluation scheme and typically
starts with generating a random initial population of
player individuals. Individuals play games with each
other, and the outcomes of these confrontations deter-
mine their fitness values. The best performing strate-
gies are selected, undergo genetic modifications such as
mutation or crossover, and their offspring replace some
of (or all) former individuals. In practice, this generic
scheme is supplemented with various details, some of
which relate to evolutionary computation (population size,
variation operators, selection scheme, etc.), while some
others pertain specifically to coevolution (the way the
players are confronted, the method of fitness estimation,

etc.). CEL embraces a broad class of algorithms that have
been successfully applied to many two-person games, in-
cluding Backgammon (Pollack and Blair, 1998), Chess
(Hauptman and Sipper, 2007), Checkers (Fogel, 2002),
Othello (Lucas and Runarsson, 2006), NERO (Stanley
et al., 2005), Blackjack (Caverlee, 2000), Pong (Monroy
et al., 2006), and AntWars (Jaśkowski et al., 2008a;
Jaśkowski et al., 2008b). In particular, Runarsson and Lu-
cas (2005) used (1 + λ) and (1, λ) Evolution Strategies to
learn a strategy for the game of small-board Go.

3.3. Coevolutionary Learning with Archives. As the
set of opponent strategies that an individual faces is lim-
ited by the population size, the evaluation scheme used in
pure CEL is still only a substitute for the objective fitness
function. The advantage of this approach when compared
to evolution with fitness function based on a fixed sample
of strategies is that the set of opponents changes with time
(from one generation to another), so that individuals be-
longing to a particular lineage can together face more op-
ponents. In this way, the risk of biasing the search towards
an arbitrary direction is expected to be reduced. However,
without some extra mechanisms there is no guarantee that
the population will change in the desired direction(s) or
change at all. The latter scenario, lack of progress, can
occur when, for instance, player’s opponents are not chal-
lenging enough or much too difficult to beat. These and
other undesirable phenomena, jointly termed coevolution-
ary pathologies, have been identified and studied in the
past (Watson and Pollack, 2001; Ficici, 2004).

In order to deal with coevolutionary pathologies, co-
evolutionary archives that try to sustain progress were
introduced. A typical archive is a (usually limited in
size, yet diversified) sample of well-performing strategies
found so far. Individuals in a population are forced to play
against the archive members, who are replaced occasion-
ally, typically when they prove inferior to some popula-
tion members. Of course, an archive still does not guaran-
tee that the strategies found by evolution will be the best
in the global, objective sense, but this form of long-term
search memory enables at least some form of historical
progress (Miconi, 2009).

In this study we use Hall of Fame (HoF, Rosin and
Belew, 1997), one of the simplest forms of archive. HoF
stores all the best-of-generation individuals encountered
so far. The individuals in population, apart from play-
ing against their peers, are also forced to play against ran-
domly selected players from the archive. In this way, in-
dividual’s fitness is partially determined by confrontation
with past ‘champions’. Additionally, we use the archive
as a source of genetic material: parent solutions used to
breed a new generation come either from the population
or from the archive, with equal probability.

Most of the work referred above involves a sin-
gle homogenous population of players, a setup called

6 K. Krawiec, W. Jaśkowski and M. Szubert

one-population coevolution (Luke and Wiegand, 2002)
or competitive fitness environment (Angeline and Pol-
lack, 1993; Luke, 1998). It is worth to point out that the
latest work on coevolution indicates that, even if the game
itself is symmetric, it can be beneficial to maintain in par-
allel two types of strategies: candidate solutions, which
are expected to improve as evolution proceeds, and tests,
whose main purpose is to differentiate solutions by de-
feating some of them. Recent contributions (Ficici and
Pollack, 2003; de Jong, 2005; de Jong, 2007) demonstrate
that such design can improve search convergence, give
better insight into the structure of the search space, and in
some settings even guarantee monotonic progress towards
the selected solution concept.

3.4. Coevolutionary Temporal Difference Learn-
ing. The past results of learning WPC strategies for
small-board Go (Runarsson and Lucas, 2005) and Othello
(Lucas and Runarsson, 2006) demonstrate that TDL and
CEL exhibit complementary features. TDL learns much
faster and converges within several hundreds of games,
but then stucks, and, no matter how many games it plays,
eventually it fails to produce a well-performing strategy.
CEL progresses slower, but, if properly tuned, outper-
forms TDL in the long run. Therefore, it sounds reason-
able to combine these approaches into a hybrid algorithm
exploiting advantages revealed by each method.

To benefit from the complementary advantages of
TDL and CEL we propose a method termed Coevolution-
ary Temporal Difference Learning (CTDL). CTDL main-
tains a population of players and alternately performs TD
learning and coevolutionary learning. In the TD phase,
each player is subject to TD(0) self-play. Then, in the CEL
phase, individuals are evaluated on the basis of a round-
robin tournament. Finally, a new generation of individuals
is obtained using standard selection and variation opera-
tors and the cycle repeats.

We reported our first results with CTDL in (Szubert
et al., 2009), where it was applied to learn strategies of
the game of Othello. The overall conclusion was posi-
tive for CDTL, which produced strategies that, on average,
defeated those learned by TDL and CEL. Encouraged by
those results, we wondered whether CTDL would prove
beneficial also for other purposes, and decided to apply it
to the more challenging game of small-board Go. Pre-
liminary results of these efforts have been presented in
(Krawiec and Szubert, 2010), and this paper provides the
complete account of this endeavor.

Other hybrids of TDL and CEL have been occasion-
ally considered in the past. Kim et al. (2007) trained
a population of neural networks with TD(0) and used
the resulting strategies as an input for a typical genetic
algorithm with mutation as the only variation operator.
Singer (2001) showed that reinforcement learning may
be superior to random mutation as an exploration mech-

anism. His Othello-playing strategies were 3-layer neu-
ral networks trained by interlacing reinforcement learn-
ing phases and evolutionary phases. In the reinforce-
ment learning phase, a round robin tournament was played
200 times with network weights modified after every
move using backpropagation algorithm. The evolutionary
phase consisted of a round-robin tournament that deter-
mined each player’s fitness, followed by recombining the
strategies using feature-level crossover and mutating them
slightly. The experiment yielded a strategy that was re-
ported to be competitive with an intermediate-level hand-
crafted Othello player; however, no comparison with pre-
existing methods was presented. Also, given the propor-
tions of reinforcement learning and evolutionary learning,
it seems that Singer’s emphasis was mainly on reinforce-
ment learning, whereas in our CTDL it is quite the reverse:
reinforcement learning serves as a local improvement op-
erator for evolution.

4. Experimental Setup
In order to evaluate the idea of hybridizing coevolution
with temporal difference learning, several experiments
comparing CTDL, CEL, TDL, and their extensions with
the HoF were conducted. All algorithms were imple-
mented using Evolutionary Computation in Java (ECJ)
framework (Luke, 2009). It was assumed that the utter-
most element influencing the time of training is the time
required to play a game, so the time consumed by such
operations as selection, mutation, evaluation, has been ne-
glected. In other words, our unit of computational effort
is a single game. To provide fair comparison, all runs
were stopped when the number of games played reached
2, 000, 000. For statistical confidence, each experiment
was repeated 25 times.

4.1. Algorithms and setup. For experiments, five
methods were prepared, each being a combination of tech-
niques described in the previous section: CEL, TDL and
HoF. Wherever it was possible, parameters taken directly
from our previous comparison of the same set of methods
(Szubert et al., 2009) were used. Detailed settings follow.

4.1.1. Basic Coevolution (CEL). CEL uses a genera-
tional coevolutionary algorithm with population of 50 in-
dividuals, each being a 5× 5 WPC matrix initialized ran-
domly from the [−1, 1] range. In the evaluation phase,
a round-robin tournament is played between all individ-
uals (including self-plays), with wins, draws, and losses
rewarded by 3, 1, and 0 points, respectively. For each pair
of individuals, two games are played, with players swap-
ping the roles of the black and the white player. The eval-
uated individuals are subject to tournament selection with
tournament size 5, and then, with probability 0.03, their

Evolving Small-Board Go Players using Coevolutionary Temporal Difference Learning with Archive 7

weights undergo Gaussian mutation (σ = 0.25). Next, in-
dividuals mate using one-point crossover, and the result-
ing offspring form the subsequent generation. As each
generation requires 50× 50 games, each run lasts for 800
generations to get the total of 2, 000, 000 games.

4.1.2. Coevolution with archive (CEL + HoF). This
setup extends the previous one with the HoF archive.
Each individual plays games with all 50 individuals from
the population and with 50 randomly selected individu-
als from the archive, so that its fitness is determined by
the outcomes of 100 games scored as in CEL. After each
generation, the individual with the highest fitness joins
the archive. The archive serves also as a source of ge-
netic material, as the first parent for crossover is randomly
drawn from it with probability 0.2. For this algorithm,
2, 000, 000 games translates into 400 generations.

4.1.3. Temporal Difference Learning (TDL). TDL is
an implementation of the gradient-descent temporal dif-
ference algorithm TD(λ) described in Section 3.1. The
weights are initially set to 0 and the learner is trained
solely through self-play, with random moves occurring
with probability 0.1. The learning rate was set to α =
0.01, which is a standard value for this method; the value
of trace decay λ will be determined in Section 5.

4.1.4. Coevolutionary Temporal Difference Learn-
ing (CTDL = TDL + CEL). CTDL combines CEL and
TDL as described in Section 3.4, with the CEL phase pa-
rameters described in 4.1.1 and the TDL phase parame-
ters described in 4.1.3. It alternates the TDL phase and
the CEL phase until the total number of games attains
2, 000, 000. The individuals are initialized randomly like
in CEL. Note that TD(λ) is executed for all individuals in
the population. The exact number of generations depends
on the TDL-CEL ratio, which we define as the number of
self-played TDL games per one generation of CEL. For
example, if the TDL-CEL ratio is 8 (default), there are
50 × 50 + 8 × 50 = 2900 games per generation, which
leads to 690 generations.

4.1.5. Coevolutionary Temporal Difference Learning
with archive (CTDL + HoF = TDL + CEL + HoF).
This setup combines 4.1.2 and 4.1.4 and does not involve
any extra parameters.

4.2. Performance measures. It is widely known that
monitoring the progress of learning in interactive domain
is hard, since, generally (and for Go in particular) there is
no precise and easily computable objective performance
measure. A fully objective assessment requires playing
against all possible opponents, but the sheer number of
them makes this option impossible. Previous researches

have used mainly external players as the reference strate-
gies (Silver et al., 2007; Runarsson and Lucas, 2005).

In this study, to monitor the progress, 50 times per
run (approximately every 40, 000 games), we appoint the
individual with the highest fitness (i.e., the subjectively
best strategy) as the best-of-generation individual and as-
sess its performance (for TDL, the single strategy main-
tained by the method is the best-of-generation by defini-
tion). This individual plays then against two opponents: a
predefined, human-designed WPC strategy, and a simple
non-WPC strategy. In both cases, the best-of-generation
plays 1, 000 games against the opponent strategy (500
as black and 500 as white), and the resulting probability
of winning becomes our estimate of its absolute perfor-
mance. The third performance measure introduced below
gauges the relative progress of particular methods via a
round-robin tournament of representative individuals.

It should be emphasized that the interactions taking
place in all assessment methods do not influence the learn-
ing individuals.

4.2.1. Performance against WPC-heuristic. This
performance measure is the probability of winning with
the WPC-heuristic, a fixed player encoded as WPC vector
shown in Table 1. This strategy was loosely based on a
player found by Runarsson and Lucas (2005).

All WPC-based players are deterministic. Thus, in
order to estimate the probability of winning of a given
trained player against WPC-heuristic, we forced both
players to make random moves with probability ε = 0.1;
this allowed us to take into account a reacher repertoire of
players’ behaviors and make the resulting estimates more
continuous and robust. The same technique was applied
in (Lucas and Runarsson, 2006),

4.2.2. Performance against Liberty Player. To pro-
vide another, qualitatively different from WPC benchmark
for developed methods we created a simple game-specific
heuristic strategy based on the concept of liberties (c.f.
Section 2). This strategy, called here Liberty Player, fo-
cuses on maximizing the number of its own liberties and
minimizing the number of opponent’s liberties at the same
time. It looks 1-ply ahead and evaluates a position by sub-
tracting the number of opponent liberties from the number
of its own liberties. Ties are resolved randomly. As with
WPC-heuristic, both players are forced to make random
moves with probability ε = 0.1.

4.2.3. Round-robin tournament between teams of
best individuals. A handcrafted heuristic strategy, even
if randomized, cannot be expected to represent in full the
richness of possible behaviors of Go strategies. In order to
get a more realistic performance estimate, we recruit sets

8 K. Krawiec, W. Jaśkowski and M. Szubert

of diverse opponents composed of best-of-generation indi-
viduals representing particular methods. Technically, each
team embraces all best-of-generation strategies found by
25 runs of a particular method. Next, we play a round-
robin tournament between the five teams representing par-
ticular methods, where each team member plays against
all 4× 25 = 100 members from the opponent teams for a
total of 200 games (100 as white and 100 as black). The
final score of a team is determined as the sum of points
obtained by its players in overall 5, 000 games, using the
scoring scheme presented in Section 4.1.1, thus the maxi-
mum number of points possible to get by a team in a single
tournament is 5, 000× 3 = 15, 000.

Let us notice that the round robin tournament of-
fers yet another advantage: there is no need to randomize
moves (as it was the case when playing against a single ex-
ternal player), since the presence of multiple strategies in
the opponent team provides enough behavioral variability.

5. Results
5.1. Finding the best trace decay λ for TD-based
methods. In order to assure a fair comparison with other
methods, the best value of trace decay λ was first deter-
mined by running TDL with various settings of this pa-
rameter and testing the resulting strategies using the ab-
solute performance measures introduced in Section 4.2.
Technically, because the randomized self-play causes the
performance of the TDL learner to vary substantially with
time, we decided not to rely on the final outcome of
the method alone. To make the estimates more robust,
we sampled each run every 40, 000 games for the last
800, 000 games and averaged the performances of strate-
gies (thus, the performance of each run was estimated us-
ing 20 individuals).

Table 2 shows the results averaged over 25 runs (this
holds for all experiments, unless stated otherwise). For
WPC-heuristic, the winning rate is maximized for λ =
0.98, while for Liberty Player, this happens for λ = 0.95.
Because the influence of λ for Liberty Player is much
smaller than for WPC-heuristic and the differences for
λ ∈ [0.6; 0.99] are very small for Liberty Player, we chose
0.98 as the optimal value for λ to be used in all further ex-
periments.

5.2. Comparison of Coevolutionary Temporal Dif-
ference Learning with other methods. In this exper-
iment, our CTDL and CTDL+HoF were compared with
their constituent methods: CEL, CEL+HoF and TDL. Fig-
ure 2 shows the progress of the methods measured by
the performance against the fixed external players: WPC-
heuristic and Liberty Player. It can be observed that the
relative courses of methods’ performance are similar for
both plots. Both measures agree that, in the long run,
pure coevolution is the worst, producing players that win

Table 2. The probability of winning against WPC-heuristic and
Liberty Player for a player found by TD(λ) for different
trace decays λ. Means and standard deviations calcu-
lated over last 20 sample points of all 25 runs.

λ against WPC-heuristic against Liberty Player
0 0.420 ± 0.129 0.496 ± 0.116
0.2 0.444 ± 0.123 0.532 ± 0.102
0.4 0.465 ± 0.125 0.547 ± 0.104
0.6 0.483 ± 0.130 0.559 ± 0.102
0.8 0.497 ± 0.134 0.560 ± 0.098
0.9 0.543 ± 0.131 0.564 ± 0.093
0.95 0.599 ± 0.140 0.567 ± 0.089
0.96 0.597 ± 0.143 0.557 ± 0.089
0.97 0.613 ± 0.133 0.563 ± 0.086
0.98 0.630 ± 0.148 0.557 ± 0.084
0.99 0.617 ± 0.157 0.554 ± 0.094
1.0 0.545 ± 0.195 0.548 ± 0.109

only about 50% of games. Moreover, CEL learns much
slower than TDL-based methods. Adding the Hall of
Fame archive to CEL makes it learn even slower, and, sur-
prisingly, does not lead to better results.

As expected, the quality of individuals produced
by the TDL-based algorithms in early stages of the run
is higher than of those produced by methods that do
not involve TDL. In particular, CTDL or CTDL+HoF
look superior, as they quickly achieve good performance
and are best in the long run. Interestingly, pure TDL
seems as good as other TDL-based methods when play-
ing with WPC-heuristic, but is significantly worse than
CTDL or CTDL+HoF when crossing swords with Liberty
Player. The best of CTDL and CTDL+HoF players at-
tained around 65% winning rate with both players.

Though the performance of all methods in absolute
terms is rather moderate, this should be attributed, in the
first place, to the simplicity of WPC representation, which
is not suited for the non-positional game of Go. Note also
that the performance of the optimal1 WPC-represented Go
strategy is unknown, so judging the above probabilities as
objectively good or bad would be inconsiderate.

The comparison with external players demonstrates
that the fusion of coevolution with local search can be
beneficial. However, the results presented in Fig. 2 do not
allow to state whether there is any advantage of adding co-
evolutionary archive technique to CTDL, but the compar-
ison with just two external strategies may be not enough.
In order to gain additional insight in the course of learning
of the methods, every 40, 000 games we run the round-
robin tournaments between best-of-generation representa-
tives of each run, as described in Section 4.2.3. The points
earned in the tournaments are plotted in Fig. 3.

1The ‘optimality’ may be defined in many ways, but here Maximal
Expected Utility solution is a reasonable choice (c.f. Ficici, 2004)

Evolving Small-Board Go Players using Coevolutionary Temporal Difference Learning with Archive 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 4 8 12 16 20

p
ro

b
a
b
ili

ty
 o

f
w

in
n
in

g

games played (x 100,000)

CTDL + HoF

CTDL

TDL

CEL + HoF

CEL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 4 8 12 16 20

p
ro

b
a
b
ili

ty
 o

f
w

in
n
in

g

games played (x 100,000)

CTDL + HoF

CTDL

TDL

CEL + HoF

CEL

(a) (b)

Fig. 2. Comparison of learning methods. Average performance of the best-of-generation individuals measured as a probability of
winning against WPC-heuristic (a) and Liberty Player (b).

This time, CTDL alone is also good in comparison
to other methods, but CTDL armed with Hall of Fame
archive performs clearly better than it and its superiority
over any other method is undeniable. The TDL compound
of CTLD+HoF makes it very fast, and though it learns
slower than TDL or CTDL, it needs only about 100, 000
games to outperform TDL and another 300, 000 to gain
advantage over CTDL.

Not all our previous conclusions were confirmed
in the relative performance assessment. Most notably,
though TDL was found clearly better than CEL when
gauged using the absolute performance measures, it is
now the worst method in the long run, worse even than
basic coevolution. It may be also observed that adding the
archive to CEL is still profitable.

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 4 8 12 16 20

p
o
in

ts
 i
n
 t
o
u
rn

a
m

e
n
ts

games played (x 100,000)

CTDL + HoF

CTDL

TDL

CEL + HoF

CEL

Fig. 3. Relative comparison of learning methods. Points ob-
tained by teams of best-of-generation players in the
round-robin tournaments that were played 50 times dur-
ing the run. Maximum possible number of points to ob-
tain by a team in a single tournament was 15, 000.

Generally, all three performance measures used in
this study are just estimations of the true performance.
Computing the value of this function is computationally
infeasible for even such a small game as 5 × 5 Go, since
it requires playing with all possible strategies. Despite
the conceptual advantages of using the round-robin tour-
nament as a performance measure (c.f. Section 4.2.3), it is
hard to absolutely state which estimate of the true perfor-
mance measure is the best one. Therefore, we do not claim
any statistical difference between CEL and TDL. On the
other hand, in the light of all three evaluation measures,
CTDL+HoF is superior to other methods.

Table 3 presents the detailed results of a round-robin
tournament of teams the best-of-run individuals, that is,
the best-of-generation individuals found in the last gener-
ation, after 2, 000, 000 games. We interpret the pairwise
match between individuals from different teams as the re-
sult of direct comparison between two methods, thus ob-
taining more points in direct match means that one method
is more likely to be better than the other one. Using this in-
terpretation, the round-robin tournament orders the meth-
ods linearly: CTDL+HoF > CEL+HoF > CTDL > TDL
> CEL, and there are no cycles between methods. Note
that, although CEL+HoF got more points than CTDL in
total, CTDL was slightly better in the direct match (49.2%
to 48.8%).

We also analyzed in detail the results of the round-
robin tournament and determined the best individual strat-
egy evolved in CTDL+HoF, i.e., the one that obtained the
highest number of points when playing with other strate-
gies during the tournament. This strategy, presented in
Table 4, achieved 478 points out of possible 600 (79.7%).
Although the center of the board it is generally preferred
to corners, it is surprising that this strategy exhibits no
clear axes of symmetry.

10 K. Krawiec, W. Jaśkowski and M. Szubert

Table 3. Results of the round-robin tournament for the teams of individuals from the last generations. Each number is the percentage
of points obtained in the tournament; the values may not total 100% since there were 3 points for win and 1 for draw.

CTDL+HoF CTDL CEL+HoF CEL TDL total
CTDL+HoF - 64.3% 60.4% 64.3% 66.0% 63.8%

CTDL 34.3% - 49.2% 56.5% 57.0% 49.3%
CEL+HoF 37.9% 48.8% - 54.4% 57.5% 49.7%

CEL 34.5% 42.5% 44.0% - 53.0% 43.5%
TDL 31.5% 41.0% 40.7% 45.5% - 39.7%

5.2.1. Determining the best TDL-CEL ratio. The
number of TDL games per each evolutionary generation
(the TDL-CEL ratio) seems to be potentially an important
parameter of CTDL and CTLD+HoF methods (we used
eight TDL games per generation in the experiments re-
ported hitherto). We have investigated this issue by run-
ning our best algorithm, CTDL+HoF, for different TDL-
CEL ratios. The probability of the best-of-generation in-
dividual winning against the external players for differ-
ent TDL-CEL ratios is presented in Fig. 5, whereas the
relative performance measured by the round-robin tour-
nament in Fig. 4. Notice that ‘0 games’ is equivalent
to CEL+HoF. Apart from this extreme setting, the plots
do not reveal any substantial differences as far as the fi-
nal performance is concerned. Despite the fact that hav-
ing more TDL games (see ‘games 8’ and ‘games 16’ in
Fig. 4) speeds up the learning, the difference, initially sub-
stantial, becomes rather negligible after several hundreds
of thousands of training games. Based on these results,
we conclude that CTDL+HoF is moderately sensitive to
TDL-CEL ratio and recommend values greater than eight
for this parameter, which confirms our earlier findings for
Othello (Szubert et al., 2009).

5.2.2. Changes observed in genotypic traits. The ag-
gregate results of multiple runs let us draw sound con-
clusions about the superiority of some approaches to oth-
ers, but say little about the actual dynamics of the learn-
ing process. Figure 6 presents genotypes of best-of-
generation individuals taken every 40, 000 games from a
single CTDL+HoF run. The sequence of genotypes starts
in the top-left corner of the figure and should be read row-
wise. Colors correspond to WPC weights (white = −1,
black = 1).

Table 4. The Weighted Piece Counter vector of the best player
evolved by CTDL+HoF.

0.46 −0.05 0.66 1.15 −1.42
0.4 1.54 2.29 1.06 1.67

0.11 1.16 1.44 0.85 0.02
2.02 0.69 1.39 0.54 0.89
−0.51 1.02 −0.22 0.66 −0.22

Despite the fact that CTDL+HoF does not seem to
qualitatively improve against our two external players af-
ter 200, 000 training games (c.f. Fig. 2), the explorative
forces of coevolution apparently continue to substantially
change the genotype. It is striking how qualitatively dif-
ferent are the best genotypes discovered by evolution in
particular stages. It is also surprising that the central sym-
metry, which was found beneficial in various stages of
evolution was eventually abandoned in favor of traces of
axial symmetry or no clear symmetry at all. Although the
final WPC bears some resemblance to our heuristic WPC
player presented in Table 1, the asymmetry makes its
genotype much more different than intuitively presumed.

6. Discussion
An in-depth conceptual analysis of the interplay between
intra-game learning (temporal difference) and inter-game
learning (coevolution) in CTDL reveals that it is more
intricate and sophisticated than it may appear at a first
glance.

Though TDL and CEL employ WPC in exactly the
same way when playing a game, they attach fundamen-

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 0 4 8 12 16 20

p
o
in

ts
 i
n
 t
o
u
rn

a
m

e
n
ts

games played (x 100,000)

0 games

1 game

2 games

4 games

8 games

16 games

Fig. 4. Relative comparison of CTDL+HoF using different
TDL-CEL ratios. Points obtained by teams of best-of-
generation players in the round-robin tournaments that
were played 50 times during the run (approximately ev-
ery 40, 000 games).

Evolving Small-Board Go Players using Coevolutionary Temporal Difference Learning with Archive 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 4 8 12 16 20

p
ro

b
a
b
ili

ty
 o

f
w

in
n
in

g

games played (x 100,000)

0 games

1 game

2 games

4 games

8 games

16 games

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 4 8 12 16 20

p
ro

b
a
b
ili

ty
 o

f
w

in
n
in

g

games played (x 100,000)

0 games

1 game

2 games

4 games

8 games

16 games

(a) (b)

Fig. 5. Comparison of CTDL+HoF using different TDL-CEL ratios. Plots present average performance of the best-of-generation
individuals measured as a probability of winning against WPC-heuristic (a), Liberty Player (b).

tally different interpretation to WPC weights during learn-
ing. TDL attempts to modify the weights so as to faith-
fully model the true value function describing winning
chances for each game state. It does so because its train-
ing formula (3), when applied to the terminal state, sub-
stitutes the actual game outcome (+1, 0, or −1) in place
of the learner’s estimate Pt+1. CEL, on the contrary, does
not refer to any such absolute values, so only the ordering
of state values is relevant for it. In effect, TDL is trying to
solve a bit different, more constrained (and thus presum-
ably more difficult) problem. Technically, for each local
minimum wmin of the error function that the gradient-
descent TDL aims at (including the global minima), there
are infinitely many other WPCs that produce identical be-
havior of the player against any strategy2. Each of such
strategies is equally desirable from the viewpoint of CEL,
but many of them would be considered as completely
worthless by TDL (e.g., because of overestimating the true
state values).

With TDL and CEL guiding the search process in
different directions, their efforts can happen to cancel
each other and render CTDL ineffective. However, the
experimental results clearly demonstrate that this is not
the case, most probably because, in a highly dimensional
search space (25 elements of WPC), it is very unlikely
for TDL and CEL to adopt strictly opposite search di-
rections. TDL, at least on average, benefits from distur-
bances introduced by CEL, which force it to consider so-
lutions that it would not come upon otherwise, and prob-
ably helps it escape local minima. This is parallel to ob-
servations in the field of optimization, where the search
algorithm can benefit from being allowed to consider in-
feasible solutions that do not meet some of assumed con-

2Such strategies can be generated by, e.g., scaling all elements of
wmin by the same factor.

straints, as this opens new ‘shortcuts’ in the search space
(Michalewicz, 1996).

It might be also the case that the loss of performance
resulting from the incompatibility discussed here is com-
pensated by synergy of other features of both methods.
For that instance, TDL, as a gradient-based technique, is
able to link the outcome P of its actions independently to
each parameter of solution (element of WPC matrix) and
calculate the desired correction vector (cf. Eq. 3). It is
also capable to simultaneously update all strategy param-
eters (weights). With this skill, it complements evolution,
which is devoid of such ability.

7. Conclusion
There are at least two general lessons that can be learned
from this study. Firstly, we can conclude that different
modes of adopting Monte Carlo methodology in a learn-
ing algorithm can lead to fundamentally different dynam-
ics of the learning process and final outcomes. Secondly,
using qualitatively different modes of randomization can
be synergetic, leading to substantially better performance
when compared to the constituent methods (and random-
ization modes).

Although our evolved WPC players would most
probably yield to other contemporary strategies that use
more sophisticated representations, we need to empha-
size that our primary objective was to hybridize two al-
gorithms that learn fully autonomously and study the rel-
ative gains that result from their synergy. To quote A.L.
Samuel’s declaration, The temptation to improve the ma-
chine’s game by giving it standard openings or other man-
generated knowledge of playing techniques has been con-
sistently resisted ((Samuel, 1959), p. 215).

This result confirms our former observations made
in (Szubert et al., 2009), where we demonstrated that hy-

12 K. Krawiec, W. Jaśkowski and M. Szubert

Fig. 6. Genotypic changes observed in the best-of-generation individuals of an exemplary CTDL+HoF run sampled every 40, 000
games (the first generation in the upper-left corner, arranged row-wise). Individuals are illustrated as 5× 5 Go boards colored
accordingly to corresponding WPC weights (light red = −1, light green = 1, black = 0). WPCs were scaled using maximum
absolute weight.

Evolving Small-Board Go Players using Coevolutionary Temporal Difference Learning with Archive 13

bridizing coevolution with TD(0) proves beneficial when
learning strategy of the game of Othello. Here, we come to
similar conclusions for the game of small-board Go, and
additionally note that extending the lookahead horizon by
using TD(λ) with λ close to 1 can boost the performance
of CTDL even further. Adding a simple coevolutionary
archive to this mixture makes it even better. Thus, there
is growing evidence to support our claim that hybridizing
coevolution with temporal difference learning can be ben-
eficial.

In the context of games, this result is still prelimi-
nary due to the small board size, and claiming that CTDL
scales well with board size would be premature. Evolv-
ing an effective strategy for larger boards is much more
challenging, in particular for the game of Go, where ab-
solute positions are of minor importance compared to the
‘topology’ of board state. Approaching such a problem
using WPC for strategy representation would not make
sense. Note however that CTDL is a generic coevolu-
tionary metaheuristics: none of its constituent methods is
aware of strategy encoding, as they simply process vec-
tors of numbers (strategy parameters). Thus, CTDL can
be applied to other strategy representations that can be en-
coded by vectors, including representations that already
proved successful on selected games (like n-tuples). We
look forward to investigate such scenarios, presuming that
for problems and representations on which TDL and CEL
alone perform well, CTDL could act in a synergetic way.

Apart from being encouraging from the practical
viewpoint, CTDL seems to rise also interesting theoret-
ical issues that deserve further research. One of them
pertains to the way CTDL performs the local search. In
essence, by relying on a randomly perturbed self-play, TD
serves only as a substitute for local search, as it has no
access to the objective fitness function. Nevertheless, it
positively contributes to our hybrid. Thus, it turns out
that we can do a kind of local search without objective in-
formation about solution performance. This sounds both
puzzling and appealing, as normally an objective quality
measure is an indispensable prerequisite for local search.
By analogy to the terms Memetic Algorithms and Lamar-
ckian Evolution that are usually used to refer to various
hybrids of evolution and local search, which typically al-
ternate genetic search for the population and local search
for individual solutions, this paradigm can be termed Co-
evolutionary Memetic Algorithm or Lamarckian Coevo-
lution. We plan to elaborate on this observation in fur-
ther research and hypothesize that some findings from the
Memetic Algorithms literature are potentially applicable
to our approach.

Acknowledgment
This work has been supported by the Ministry of Science
and Higher Education, grant no. N N519 441939.

References
Angeline, P. J. and Pollack, J. B. (1993). Competitive Environ-

ments Evolve Better Solutions for Complex Tasks, Pro-
ceedings of the 5th International Conference on Genetic
Algorithms, Vol. 270, pp. 264–270.

Azaria, Y. and Sipper, M. (2005). GP-Gammon: Genetically
Programming Backgammon Players, Genetic Program-
ming and Evolvable Machines 6(3): 283–300.

Bouzy, B. and Cazenave, T. (2001). Computer Go: an AI Ori-
ented Survey, Artificial Intelligence 132(1): 39–103.

Bozulich, R. (1992). The Go Player’s Almanac, Ishi Press,
Tokyo.

Bucci, A. (2007). Emergent Geometric Organization and In-
formative Dimensions in Coevolutionary Algorithms, PhD
thesis, Brandeis University, Waltham, MA, USA.

Caverlee, J. B. (2000). A Genetic Algorithm Approach to Dis-
covering an Optimal Blackjack Strategy, Genetic Algo-
rithms and Genetic Programming at Stanford, Stanford
Bookstore, pp. 70–79.

de Jong, E. D. (2005). The MaxSolve algorithm for coevolu-
tion, Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, GECCO 2005, pp. 483–489.

de Jong, E. D. (2007). A Monotonic Archive for Pareto-
Coevolution, Evolutionary Computation 15(1): 61–93.

Ficici, S. G. (2004). Solution Concepts in Coevolutionary Al-
gorithms, PhD thesis, Brandeis University, Waltham, MA,
USA.

Ficici, S. and Pollack, J. (2003). A Game-Theoretic Memory
Mechanism for Coevolution, Proceedings of the 2003 In-
ternational Conference on Genetic and Evolutionary Com-
putation, GECCO’03, pp. 286–297.

Fogel, D. B. (2002). Blondie24: Playing at the Edge of AI, Mor-
gan Kaufmann Publishers, San Francisco, CA, USA.

Hauptman, A. and Sipper, M. (2007). Evolution of an Efficient
Search Algorithm for the Mate-In-N Problem in Chess,
Proceedings of the 10th European Conference on Genetic
Programming, EuroGP’07, pp. 78–89.

Jaśkowski, W., Krawiec, K. and Wieloch, B. (2008a). Evolving
Strategy for a Probabilistic Game of Imperfect Informa-
tion using Genetic Programming, Genetic Programming
and Evolvable Machines 9(4): 281–294.

Jaśkowski, W., Krawiec, K. and Wieloch, B. (2008b). Winning
Ant Wars: Evolving a Human-Competitive Game Strategy
using Fitnessless Selection, Genetic Programming 11th
European Conference, EuroGP 2008, pp. 13–24.

Johnson, G. (1997). To Test a Powerful Computer, Play an An-
cient Game, The New York Times 29.

Kim, K.-J., Choi, H. and Cho, S.-B. (2007). Hybrid of Evolution
and Reinforcement Learning for Othello Players, IEEE
Symposium on Computational Intelligence and Games,
CIG 2007 pp. 203–209.

Krawiec, K. and Szubert, M. (2010). Coevolutionary Temporal
Difference Learning for Small-Board Go, IEEE Congress
on Evolutionary Computation, pp. 1–8.

14 K. Krawiec, W. Jaśkowski and M. Szubert

Lasker, E. (1960). Go and Go-Moku: The Oriental Board
Games, Dover Publications.

Lubberts, A. and Miikkulainen, R. (2001). Co-Evolving a Go-
Playing Neural Network, Coevolution: Turning Adaptive
Algorithms Upon Themselves, Birds-of-a-Feather Work-
shop, Genetic and Evolutionary Computation Conference,
GECCO 2001, pp. 14–19.

Lucas, S. M. and Runarsson, T. P. (2006). Temporal Difference
Learning Versus Co-Evolution for Acquiring Othello Posi-
tion Evaluation, IEEE Symposium on Computational Intel-
ligence and Games, CIG 2006, IEEE, pp. 52–59.

Luke, S. (1998). Genetic Programming Produced Competitive
Soccer Softbot Teams for RoboCup97, Genetic Program-
ming 1998: Proceedings of the 3rd Annual Conference,
pp. 214–222.

Luke, S. (2009). ECJ 19 - A Java-based Evolutionary Computa-
tion Research System.

Luke, S. and Wiegand, R. (2002). When Coevolutionary Algo-
rithms Exhibit Evolutionary Dynamics, Workshop on Un-
derstanding Coevolution: Theory and Analysis of Coevo-
lutionary Algorithms (at GECCO 2002), pp. 236–241.

Mayer, H. A. (2007). Board Representations for Neural Go Play-
ers Learning by Temporal Difference, IEEE Symposium on
Computational Intelligence and Games, CIG 2007, IEEE,
pp. 183–188.

Mechner, D. A. (1998). All Systems Go, The Sciences 38(1): 32–
37.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures
= Evolution Programs, Springer-Verlag, London, UK.

Miconi, T. (2009). Why Coevolution Doesn’t ”Work”: Supe-
riority and Progress in Coevolution, Proceedings of the
12th European Conference on Genetic Programming, Eu-
roGP’09, pp. 49–60.

Monroy, G. A., Stanley, K. O. and Miikkulainen, R. (2006).
Coevolution of neural networks using a layered pareto
archive, Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2006,
pp. 329–336.

Müller, M. (2009). Fuego at the Computer Olympiad in Pam-
plona 2009: a Tournament Report, Technical report, Uni-
versity of Alberta.

Pollack, J. B. and Blair, A. D. (1998). Co-Evolution in the
Successful Learning of Backgammon Strategy, Machine
Learning 32(3): 225–240.

Rosin, C. D. and Belew, R. K. (1997). New Methods for Com-
petitive Coevolution, Evolutionary Computation 5(1): 1–
29.

Runarsson, T. P. and Lucas, S. (2005). Coevolution versus Self-
Play Temporal Difference Learning for Acquiring Position
Evaluation in Small-Board Go, IEEE Transactions on Evo-
lutionary Computation 9(6): 628–640.

Samuel, A. L. (1959). Some Studies in Machine Learning Us-
ing the Game of Checkers, IBM Journal of Research and
Development 3(3): 210–229.

Schraudolph, N. N., Dayan, P. and Sejnowski, T. J. (2001).
Learning to Evaluate Go Positions via Temporal Difference
Methods, Computational Intelligence in Games, Vol. 62 of
Studies in Fuzziness and Soft Computing, Springer Verlag,
Berlin, chapter 4, pp. 77–98.

Silver, D., Sutton, R. and M
”uller, M. (2007). Reinforcement Learning of Local Shape
in the Game of Go, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pp. 1053–1058.

Singer, J. A. (2001). Co-evolving a Neural-Net Evaluation Func-
tion for Othello by Combining Genetic Algorithms and Re-
inforcement Learning, International Conference on Com-
putational Science, pp. 377–389.

Stanley, K., Bryant, B. and Miikkulainen, R. (2005). Real-Time
Neuroevolution in the NERO Video Game, IEEE Transac-
tions on Evolutionary Computation 9(6): 653–668.

Sutton, R. S. (1988). Learning to Predict by the Methods of
Temporal Differences, Machine Learning 3(1): 9–44.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning:
An Introduction, The MIT Press.

Szubert, M., Jaśkowski, W. and Krawiec, K. (2009). Coevolu-
tionary Temporal Difference Learning for Othello, IEEE
Symposium on Computational Intelligence and Games,
CIG 2009.

Tesauro, G. (1995). Temporal Difference Learning and TD-
Gammon, Communications of the ACM 38(3): 58–68.

Watson, R. A. and Pollack, J. B. (2001). Coevolutionary Dy-
namics in a Minimal Substrate, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2001,
pp. 702–709.

Krzysztof Krawiec (Ph.D. 2000, Hab. 2005)
is an Associate Professor at Poznan University
of Technology, Poland, working mainly on top-
ics related to evolutionary computation and pat-
tern recognition. His recent work includes: evo-
lutionary computation for machine learning, pri-
marily for learning game strategies and for evo-
lutionary synthesis of pattern recognition sys-
tems; the role of program semantics in genetic
programming, particularly in problem decompo-

sition and operator design; coevolutionary algorithms, mainly extrac-
tion of coordinate systems from test-based problems. More details at
www.cs.put.poznan.pl/kkrawiec.

Wojciech Jaśkowski is Ph.D. student and as-
sistant researcher at the Laboratory of Intelligent
Decision Support Systems, Institute of Comput-
ing Science, Poznan University of Technology,
Poland. He is an author of more than 20 publica-
tions in computational intelligence. His main re-
search addresses co-optimization, co-evolution,
genetic programming, and learning strategies for
interactive domains and games.

Evolving Small-Board Go Players using Coevolutionary Temporal Difference Learning with Archive 15

Marcin Szubert received the M.Sc. degree
in computer science from Poznan University of
Technology in 2009. Since then he has been pur-
suing his Ph.D. in the Laboratory of Intelligent
Decision Support Systems, Institute of Comput-
ing Science at the same university. His research
interests primarily cover the area of computa-
tional intelligence and machine learning with ap-
plications to game playing. Particularly, he works
on hybridizing reinforcement learning methods

and coevolutionary algorithms for developing artificial neural networks.

