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Abstract

The goal of this thesis was to propose a novel approach to the estimation of an

individual’s fitness during the evolutionary process in tree-based Genetic Program-

ming, a variant of evolutionary computation where solutions encode programs to

be executed, for the case when desired output values of the individual are defined

for all fitness cases. The area of application of this new approach is restricted to

boolean functions. The standard fitness function used in GP usually calculates the

individual’s current fitness, that is, how well the output values produced by the in-

dividual conform to the provided sample outputs for every fitness case. As opposed

to this, the method presented in this thesis, further referred to as potential fitness,

attempts to estimate the fitness of the individual’s direct offspring.

To estimate potential fitness, the effect of tree-replacing recombination oper-

ations on the individual’s semantics (output values) is analyzed. The fitness is

calculated based on solely the subset of fitness cases where the individual’s out-

put is invariant to recombination operations (such as crossover, mutation). The

individual is rewarded for each such fitness case for which its output is consistent

with training data, and penalized for fitness cases where its output value and the

provided output value differ. Fitness cases for which the individual’s output is not

fixed (i.e. is affected by recombination operations) are not taken into account, as

we cannot know in what way the recombination operators will alter the individual,

and thus what values will be produced.

The potential fitness approach was implemented using the Java programming

language, as an extension to the existing Evolutionary Computations in Java (ECJ)

package. It was then tested on the following boolean benchmark problems:

• Odd Parity: 4-bit,5-bit,6-bit

• Multiplexer: 6-bit,11-bit

• Comparator: 4-bit,6-bit

The results were than compared to those obtained using standard Genetic Program-

ming. All calculations were performed using the standard Koza-I settings.

Analysis of the results indicates that there is a statistically significant difference

between the two sets of results, clearly showing that the Potential Fitness approach
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is in most cases superior to, and in all cases not worse than standard Genetic

Programming, in terms of both success rate and mean quality of best obtained

individual per evolutionary run. However, this improvement in quality comes at the

expense of longer running times. On average (across all the considered problems),

the increase in running times is about 200% as compared to standard GP.



Streszczenie

Celem pracy było zaproponowanie nowego podejścia do obliczania wartości funkcji

przystosowania osobników podczas ewolucji w opartym na drzewach programowaniu

genetycznym (GP), odmianie obliczeń ewolucyjnych, w której osobniki kodują nie

dane, lecz programy. Zakres zastosowania omawianego podejścia jest ograniczony

do problemów boolowskich, w których znane są pożądane wartości wyjściowe dla

wszystkich kombinacji wartości zmiennych wejściowych (przypadków użyteczności,

ang. fitness case). Standardowa funkcja przystosowania używana w programowa-

niu genetycznym (GP) zwykle oblicza obecną użyteczność osobnika, tj. stopień, w

jakim wartości wyjściowe rozważanego osobnika (drzewa) odpowiadają wartościom

pożądanym (dla wszystkich przypadków użyteczności). Metoda zaprezentowana w

tej pracy, nazywana dalej potencjalną użytecznością, próbuje ocenić użyteczność

bezpośrednich potomków ocenianego osobnika.

Aby ocenić potencjalną użyteczność, analizowany jest wpływ operacji rekom-

binacji (zamieniających poddrzewa) na wartości wyjściowe osobnika. Potencjalna

użyteczność jest obliczania względem podzbioru tylko tych przypadków użyteczności,

dla których odpowiedź osobnika jest niezmiennicza względem operacji rekombinacji

(krzyżowanie, mutacja). Osobnik jest nagradzany za każdy przypadek użyteczności,

dla którego jego wartość wyjściowa jest zgodna z wartością pożądaną, oraz karany

dla wszystkich tych przypadków użyteczności, dla których wartość pożądana i wartość

wyjściowa osobnika różnią się. Przypadki użycia, dla któych wartość wyjściowa os-

obnika może zmienić się pod wpływem operacji rekombinacji, nie są brane pod

uwagę, ponieważ niemożliwe jest przewidzenie, w jaki sposób operacje rekombinacji

zmienią drzewo, a więc także jakie wartości wyjściowe będą ostatecznie zwrócone

przez osobnika.

Podejście z potencjalną użytecznością zostało zaimplementowane w języku pro-

gramowania Java, jako rozszerzenie do pakietu Evolutionary Computations in Java

(ECJ). Następnie zostało przetestowane na następujących problemach boolowskich:

• Odd Parity: 4-bit,5-bit,6-bit

• Multiplexer: 6-bit,11-bit

• Comparator: 4-bit,6-bit
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Wyniki zostały porównane do wyników uzyskanych przy użyciu standardowego pro-

gramowania genetycznego. Wszystkie obliczenia było prowadzone ze standardowymi

ustawieniami Koza-I.

Na podstawie analizy wyników stwierdzono, że istnieje istotna statystycznie

różnica pomiędzy wynikami obu metod. Podejście z potencjalną użytecznością

okazało się być w większości przypadków lepsze, a we wszystkich nie gorsze niż

standardowe programowanie genetyczne, pod względem zarówno częstotliwości zna-

jdowania optymalnych rozwiązań, jak i średniej jakości najlepszego osobnika otrzy-

manego w pojedynczym przebiegu ewolucji. Ceną, jaką trzeba zapłacić za wzrost

jakości wyników, są dłuższe czasy obliczeń. Uśredniając po wszystkich rozważanych

problemach, stwierdzono, że zastosowanie omawianego podejścia powoduje średnio

zwiększenie czasu obliczeń o 200% w stosunku do standardowego programowania

genetycznego.
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Chapter 1

Scope of the thesis

The objective of this thesis is to investigate the properties of a novel method of

calculating an individual’s fitness in Genetic Programming (GP), a variant of evo-

lutionary computation where solutions encode programs to be executed, applied to

boolean function learning. This method will be further referred to as Potential Fit-

ness (PF). In particular, the impact of the use of Potential Fitness as the evaluation

function on the quality of results obtained using Genetic Programming-driven evo-

lution will be examined. Also, a possibly efficient method of calculating Potential

Fitness will be proposed. In order for this objective to be satisfied, the following

subgoals will be achieved:

• comparison of the Potential Fitness-based evaluation method to the standard

evaluation method in terms of success rate and average solution quality

• design of an efficient exact method for calculating Potential Fitness

• analysis of the performance of the exact method in terms of execution speed

• design of a heuristic method for obtaining a good estimate of the actual Poten-

tial Fitness value while substantially reducing the computational effort com-

pared to the exact method

• analysis of the performance of the heuristic method in terms of execution speed

and solution quality.
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Chapter 2

Evolutionary algorithms and
genetic programming

2.1 Introduction

Since the introduction of the concept of NP-complete problems after a series of

articles in the early 1970s [7], the hypothesis that certain combinatorial problems

cannot be solved on a Deterministic Turing Machine (DTM) in polynomial time has

been gaining support. Today, the number of problems shown to be NP-complete

has grown immensely, from the original 21 presented in Karp’s 1972 article [21],

to many thousands. Many of these problems are of key importance in real-world

industrial, financial, medical and other applications. Therefore a lot of effort and

resources have been allocated in order to find algorithms which provide optimal so-

lutions while not exceeding reasonable running time bounds. However, an efficient

(polynomial) algorithm for solving any NP-complete problem has yet to be discov-

ered, making it impossible to find exact solutions to NP-complete problem instances

even of moderate size.

Such a situation gave rise to alternate approaches to problem solving. The

key difference was relaxing the constraint on solution optimality, instead seeking

a tradeoff between solution quality and running time of the algorithm. This time

marks the rapid development of heuristic and approximation algorithms.

One of the first of the new class of approximation algorithms was Christofides’

algorithm for the Traveling Salesman Problem [5]. Christofides did not only provide

the algorithm, but also proved that in a worst-case scenario the tour calculated by

it would be no more than 1.5 times longer than the optimal tour. In contrast, there

exist problems for which it has been proved impossible to find an algorithm with

a constant performance guarantee, such as the Maximum Clique Problem. Such

theoretical results increased the demand for heuristics which would still be able to

provide good results, although without any theoretical guarantee.

7



2.2. Metaheuristics 8

An excellent example of such a heuristic is the Lin-Kernighan algorithm for the

Traveling Salesman Problem. This local-search-based routine, and its refinements,

has been known to produce outstanding results. Helsgaun reports solving every

TSP instance available as part of the TSPLIB set to optimality [17].

The main disadvantage of standard heuristics is the fact that they largely remain

problem-specific. Moreover, it is often difficult to design adequate heuristics for a

given combinatorial problem. Therefore the task of finding more universal methods

of problem solving has received much attention.

2.2 Metaheuristics

Problem-solving methods collectively known as metaheuristics aim to alleviate do-

main specificity and provide a framework which can be used across many unrelated,

structurally different problems. Although metaheuristics provide a general outline

of an algorithm, they usually do not constitute an actual, ready-to-use algorithm

per se. In order to construct a routine which can be applied to a concrete problem,

it is necessary to provide some domain-specific elements. However, in the case of

metaheuristics, it is usually easy to provide these elements, due to the fact that they

are natural components of the problem’s definition, e.g. a function calculating the

quality of a given solution, or a neighbourhood operator transforming the current

solution into a neighbouring one. Therefore it is usually much simpler to obtain an

algorithm from a metaheuristic template by filling in the missing components, than

to develop a dedicated heuristic for the problem from scratch.

2.2.1 Intensification and diversification

Two important concepts in the design of metaheuristics are solution diversification

and intensification. The former is associated with the metaheuristic’s ability to

examine a broad spectrum of candidate solutions, originating from distant regions of

the solution space. The latter concerns the way the algorithm iteratively converges

to better solutions. Both mechanisms combine to form a set of heuristic rules

for creating new, hopefully better solutions on the basis of the ones examined in

previous iterations. These two mechanisms are in a way contrary, because their

goals are different. Usually, the most successful metaheuristics find a good balance

between solution intensification and diversification to ensure best results.

2.2.2 No Free Lunch Theorem

Since metaheuristics are well suited to solving many different classes of problems,

it may seem tempting to look for a single method of solving every class of problem.
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However, Wolpert and Macready have shown in their paper [10] that if certain

general conditions are met, for any algorithm, any elevated performance over one

class of problems is offset by performance over another class. The collection of

theorems, known collectively as No Free Lunch theorems, effectively implies that

a perfect global optimizer cannot exist. Therefore it is likely there will always be

demand for developing new metaheuristics, better suited to a specific subset of

problems.

2.2.3 Performance

Metaheuristics are a versatile tool for solving a broad class of problems. They are

extensible in that it is usually possible to enrich them with domain-specific operators

which are tailored to a given problem. Studies exist which investigate the relation-

ship between how much domain knowledge is incorporated into the algorithm, and

the quality of the obtained result. Not surprisingly, the general purpose operators

usually fall behind hybrid solutions in terms of performance.

As an example, consider the Traveling Salesman Problem. Johnson and Mc-

Geoch [12] performed a comprehensive case study spanning over a broad spectrum

of both dedicated heuristic algorithms and general metaheuristics. Their results

indicate that, given a moderate execution time limit, virtually all standard meta-

heuristic methods are outperformed by the superb dedicated heuristic for the TSP,

the Lin-Kernighan algorithm. As the time limit increases significantly, some meta-

heuristics - Simulated Annealing and Genetic Algorithms - are able to produce

better results than many independent iterations of LK. If time is not a limiting fac-

tor, once again both SA and GA are beaten by a special version of the Iterated LK

heuristic. However, the best results were obtained by combining a genetic algorithm

with the iterated LK algorithm. This means that a background knowledge-enriched

metaheuristic was able to outperform all other approaches given enough time.

As Johnson and McGeoch point out, the Traveling Salesman Problem is some-

what an exception among NP-Hard optimization problems, due to the fact that

it has been studied for a long time, and many dedicated methods have been de-

veloped specifically to deal with this one problem. In contrast, for most problems

which arise in real-world applications there are no known dedicated heuristics with

the excellent execution time and solution quality properties of the Lin-Kernighan

algorithm. Therefore, in many cases designing background knowledge-enriched op-

erators for existing metaheuristics is the most popular course of action for solving

these problems.

An ample example is the Quadratic Assignment Problem. Despite having been

studied for many years since its formulation in 1957, no dedicated heuristic has been

designed as of yet which would produce good results regardless of the structure of the
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concrete QAP instance being solved. Moreover, Queyrane [31] showed that unless

P equals NP, it is impossible to find an approximation algorithm with a constant

performance guarantee even if the instance’s coefficient matrices are guaranteed to

fulfill the triangle inequity. Currently, the best known approaches to solving QAP

are hybrids of tabu search and genetic algorithms enriched with a problem-specific

crossover operator [28].

2.2.4 Popular metaheuristics

In this section, some classic metaheuristic methods will be presented. Although

many years have passed since their introduction into computer science literature,

they still remain widely used as both stand-alone algorithms, and parts of complex

multi-tiered cooperative metaheuristics.

Local search

One of the simplest and most commonly used metaheuristics, Local Search is often

the first step in finding a good algorithm for an NP-hard problem. Also, it has been

the basis for developing more advanced algorithms, like Tabu Search and Simulated

Annealing.

In order to be able to apply Local Search to a problem, a solution neighbourhood

operator needs to be defined. Such an operator transforms a given solution into

a structurally adjacent, or neighbouring, solution. The significance of structural

adjacence is bound to the specific problem. It is up to the algorithm designer

to define a neighbourhood relation on the solution space, taking into account the

extent of structural changes between neighbouring solution, as well as the size of the

neighbourhood. To illustrate this with an example, a sample solution neighbourhood

for the symmetric Traveling Salesman Problem will be defined.

Consider an instance of the Symmetric TSP problem of size N. We are given a

weighted undirected graph G=(V,E), where |V | = N . The goal is to find a simple

cycle within G which minimizes the sum of weights over all edges forming the cycle.

Therefore, any feasible (structurally correct) solution is a sequence of N distinct

cities, corresponding to exactly 1 cycle within G. Now consider a sample solution

with 2 edges removed. What remains are 2 disjoint sequences of vertices, and there

is only one way to assemble these 2 sequences to obtain a tour distinct from the

starting tour (see Fig. 2.1).

This is how the 2-opt neighbourhood operator transforms one solution into an-

other. Since there are N
2

possible ways 2 distinct edges can be chosen from a set of

N edges, the size of the 2-opt neighbourhood is a square function of the number of

vertices in G. This can be generalized to any neighbourhood of dimension k - the

size of a k-opt STSP neighbourhood is O(Nk).
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Figure 2.1: A 2-opt move for the Symmetric TSP

Once a neighbourhood operator is defined, the Local Search iteratively searches

the current solution’s neighbourhood (or its subset) and chooses either the first solu-

tion with a better goal function value (’Greedy’ version) or the best-valued solution

within the examined portion of the neighbourhood (’Steepest’ version) as the basis

for the next iteration. The algorithm stops once there are no more improving moves,

that is no neighbouring solution has a better goal function value than the current

one.

This is a significant weakness of the Local Search algorithm - what follows is

that it can never reach a region in the solution space to which there exists no path

comprised of strictly improving moves. In other words, LS can only find the local

extremum of the goal function in the starting solution’s vicinity - hence its name.

Tabu search

In order to alleviate this weakness of LS, Tabu Search was proposed as a natural

extension. Tabu Search assumes that a special type of short-term memory is main-

tained, the tabu list. Every time a move is performed, the current solution is added

to the tabu list. Following that, the use of this solution is disallowed for k con-

secutive iterations, where k is called the tabu list length. Moreover, the algorithm

can now perform deteriorating moves. These two properties enable it to traverse

the solution space unhindered by irregularities in the fitness landscape. However,

although the tabu list makes it less likely for the algorithm to fall into a solution

loop, it is still possible if the tabu list’s length is too small.

Through the introduction of the tabu list, the Tabu Search metaheuristic pro-



2.2. Metaheuristics 12

vides a basic diversification method. This is an improvement over Local Search,

which did not make use of any explicit mechanism for solution diversification. How-

ever, marking every visited solution as tabu usually results in a search which is

too restrictive, and interesting regions of solution space are overlooked. Therefore,

the tabu list is usually used in conjunction with so-called aspiration criteria, which

override a solution’s tabu status if certain conditions are met. These conditions are

usually connected with solution quality, although other criteria may be used as well.

Tabu search does not by any means guarantee obtaining the holistic optimal

solution, however its performance is usually much superior to that of a standard LS

algorithm. This metaheuristic is extremely popular and has found numerous fields of

application, therefore many different variations have been developed, whose common

denominator is the presence of dynamic, adaptive memory [14].

Simulated annealing

Another metaheuristic building on the foundation provided by Local Search, Simu-

lated Annealing (SA)[22] owes its name to the industrial process of recrystallization

of metals and liquids. In this process, the metal is initially heated to a very high

temperature at which its atoms can move relatively freely. The system is then slowly

cooled down, and the atoms’ ability to move is gradually constrained, which causes

them to find the most stable spatial conformation, i.e. the one that minimizes the

system’s total energy. If the cooling is done too quickly, or the starting temperature

of the melt is too low, some portions of the system may become trapped in local

energy minima.

Simulated Annealing forms analogies between the cooling of a physical system

and solving a combinatorial problem. The current state is the current solution, the

system’s energy is the goal function value, and the frozen state corresponds to the

global minimum. However, the temperature of the system has no straightforward

counterpart in most optimization problems.

The cooling is simulated by dividing the execution of the algorithm into epochs

which correspond to decreasing values of temperature of the system. The meta-

heuristic then applies the Metropolis Monte Carlo simulation method [27] to traverse

the solution space. All transitions to improving moves are accepted uncondition-

ally, whereas the probability of transition from solution S to a worse solution S’ is

an exponential function of the difference in goal function values (∆f), and current

temperature T of the system : e−
∆f
kT , where k is a constant.

The difficulty in using Simulated Annealing properly concerns finding the right

values for parameters such as:

• initial system temperature
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• number of different temperature levels

• number of steps at each temperature level

These parameters are often domain-specific and they result from the problem’s fit-

ness landscape. Failure to provide good parameter values may lead to poor per-

formance of the algorithm, however if adequate parameters are used, Simulated

Annealing is capable of producing excellent results.

2.3 Biologically inspired computation

A broad group of metaheuristics is based on the observation of natural phenomena.

These phenomena, whether on cellular, specimen or even social level, are linked

by the an interesting common property. Usually it is the case that such biological

systems are comprised of relatively simple entities, or agents, and their interactions,

but the overall behaviour of the system appears to be complex and it is difficult

to explain when considering only a single agent. This behaviour is often the re-

sult of cumulated non-linearities in the interactions between individual components.

Moreover, such systems are able to adapt to changing external conditions, and they

demonstrate a high tolerance for partial loss of inter-component connectivity.

Examples of such systems which are interesting in the context of designing meta-

heuristics include [6]:

• neural networks - an individual neuron can be viewed as a simple element

which integrates electric signals and outputs another electric signal if certain

conditions are met. However, if enough neurons are grouped together, and

they are exposed to the right external conditions for a long enough period,

they form the human brain, which is capable of thinking, learning etc.

• ecosystems - an individual animal may be regarded as a self-oriented agent

whose only goal is to ensure the survival of its species. However, if a sufficiently

long period of time is analyzed, it will become apparent that due to certain

’simple’ mechanisms such as random genetic variation and Darwinian survival-

of-the-fittest selection, the animals are in fact changing in order to better adapt

to the environment they live in.

• marketplace - a trader in a market can be viewed as an agent interested only

in maximizing his profit from the transactions he participates in. Sellers want

to achieve the highest price for their wares, while buyers want to obtain them

at the lowest possible price. This competition between two groups of interest

may, in the right circumstances, lead to the spontaneous regulation of the

traded resource’s price to a level which corresponds to its optimal allocation.
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Moreover, this adjustment occurs without any external supervisor, and if the

conditions (i.e. amount of resource on the market) change, the price readjusts

and moves to a new equilibrium.

The design of biologically-inspired metaheuristics remains largely influenced by the

field known as Artificial Life. The goals of both fields are not the same, as Artificial

Life seeks to answer questions about life itself, rather than try to apply biological

mechanisms to combinatorial optimization. However, advancements in both fields

are connected and any significant result obtained in one is usually beneficial in the

other.

2.3.1 Ant Colony Optimization

Originally proposed by Marco Dorigo [11], this family of metaheuristics is inspired

by the behaviour of ants which search the surroundings of their hive in order to

acquire food. Initially, the ants move around the hive in a random fashion. When

an ant finds some food, it takes the food back to the hive, marking its path with

pheromone, a chemical substance which attracts other ants. After the pheromone

has been laid down, it is less likely for other ants to wander randomly; instead, they

will probably follow the pheromone trail. Moreover, if another ant finds food at

the end of the marked path, it will reinforce the pheromone mark, making it even

more attractive to other individuals (ants). However, the pheromone is subject to

evaporation, therefore its effect on the ants is weakened with time (if not reinforced).

This is an important mechanism, which allows the ants to constantly find shorter

paths to the food. If the pheromone didn’t evaporate, the ants’ paths would have

been greatly determined by the first, random phase. If we regard the process of

gathering food by ants as an optimization problem of finding the shortest path from

the hive to the food, this would mean that the process would be stuck at a local

optimum. The pheromone evaporation allows the process to move to another part

of the solution space.

The Ant Colony Optimization-class (ACO) metaheuristics attempt to mimic

this social behaviour of ants. More formally, an ACO algorithm operates on a

directed graph G=(V,A). It is iterative in nature. At every step, it generates K

solutions, corresponding to K independent ’ants’, in a random fashion. However,

the generation is done with a certain probability distribution. The probability of an

agent moving from vertex i to vertex j is given by:

pi,j =
(ταi,j)(η

β
i,j)∑

(ταi,j)(η
β
i,j)

(2.1)

where:

• τi,j is the amount of pheromone present on the arc (i,j)
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• ηi,j is a heuristic, a priori -knowledge-based quality of arc (i,j). This is usually

inversely proportional to the distance between nodes i and j

• α and β are parameters which determine how much the amount of pheromone,

and the a priori arc quality, respectively, influence the final probability.

After the K solutions have been generated, the pheromone update phase follows.

The new amount of pheromone accumulated on arc (i,j) is calculated, taking into

account the previous value, the evaporation rate (ρ) and the contributions made by

ants in the current iteration ∆τi,j:

τ l+1
i,j = ρτ li,j + ∆τi,j (2.2)

where ∆τi,j is given by:

∆τi,j =
∑
k∈A

1

Lk
(2.3)

where A is the set of indices of ants which visited arc (i,j) in the current iteration,

and Lk is the length of the path of ant k.

After the redistribution of pheromone, an additional phase called daemon actions

may occur. Daemon actions can be used to implement centralized actions which

cannot be performed by single ants, such as the invocation of a local optimization

procedure.

The entire cycle (solution generation, update of pheromone quantities, daemon

actions) is repeated until some stop condition is satisfied. An important advantage of

Ant Colony Optimisation over more classic techniques such as Simulated Annealing

or Tabu Search is that ACO can dynamically respond to changing the structure of

input data, and reconfigure the solution to match the changes. This is particularly

important in applications such as network routing, where hardware failures may

spontaneously occur and a quick reconfiguration of network traffic routes is of key

importance.

2.3.2 Particle Swarm Optimization

This stochastic optimization technique, introduced by Kennedy and Eberhart [20],

is based on a simulation of a simplified social model of bird flocks and fish schools. It

was in part inspired by previous research of Heppner and Grenander concerning the

simulations of synchronous bird flock maneuvers during flight. Both scientists had

the insight that processes which occur at the level of an individual bird influence the

dynamics of the entire flock. Therefore their models were based on the manipulation

of distances between individuals, and the behaviour of the flock was regarded as the

superposition of every individual’s attempt to maintain an optimal distance between
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itself and its immediate neighbours. This is an example of an emergent phenomenon,

where the local interaction of each part with its immediate surroundings causes a

complex chain of processes leading to some order on the global level.

Like the previously discussed Ant Colony Optimization technique, Particle Swarm

Optimization is an iterative algorithm. Also similarly, at each step a population of

independent particles is maintained. The particles represent potential solutions, i.e.

they are points in solution space. The population is initialized in a random fash-

ion. Each particle has a vector of velocities associated with it. The dimension of

the vector is equal to the dimension of the problem being solved. Also, for every

particle, the following information is maintained: the best solution visited so far by

the particle, denoted pbest, and the best solution found by k immediate neighbours

(in terms of solution space) of the particle under consideration, referred to as lbest.

At every step of the simulation, the velocity vector of every particle is adjusted.

For particle i, dimension j, and iteration number k, the new partial velocity is

calculated as:

vki,j = vk−1
i,j + 2rand()∗ (pbesti,j− currenti,j) + 2rand()∗ (lbesti,j− currenti,j) (2.4)

where:

• rand() is a random real number,

• currenti,j is the value of particle i ’s coordinate j in the solution space

Particle Swarm Optimization has the advantage of being very simple to imple-

ment and not requiring any complex computations. Yet despite its simplicity it has

proven quite effective in solving several classes of problems.

2.3.3 Artificial Neural Networks

History

The origins of this metaheuristic can be traced back to the 1940s, when McCulloch

and Pitts attempted to create computer models of biological neural networks based

on contemporary neurological knowledge. The newly-emerged field gained much

interest, which continued into the mid 1960s. During this period, many important

contributions were made, such as Rosenblatt’s Perceptron model, or the ADAp-

tive LINear Element (ADALINE) by Widrow and Hoff (1960). Beginning in late

1960s, a period of disappointment began with little interest offered by the scientific

community to the topic of artificial neural networks. It was not until the 1980s

that the area experienced a revival, with the significant article collection Parallel

Distributed Processing, edited by Rumelhart and McClelland, being a mark of its

reestablishment as an important method in artificial intelligence.
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Biological and artificial neurons

Artificial Neural Networks (ANNs) can be thought of as a data processing paradigm

where many simple, interconnected processing entities (neurons) collaborate to solve

a problem. The approach is based on a simplified model of the learning processes

which occur within the human brain.

Figure 2.2: Structure of a neuron. Source:
http://training.seer.cancer.gov/moduleanatomy/images/illuneuron.jpg

A neuron is a specialized biological cell capable of transmitting electrochemi-

cal impulses. It obtains input signals from surrounding neurons through structures

called dendrites, which are cytoplasmatic extensions projecting from the cell body

(Fig. 2.3). Inside the cell body, the signals received through the dendrites are

aggregated. When a neuron becomes active, it sends out its own electrochemical

impulse through the axon, a long cytoplasmatic extension which splits into thou-

sands of branches. At the end of each branch, structures called synapses are formed.

Synapses connect the axon to dendrites of adjacent neurons, thereby creating a neu-

ral network.

Upon receiving an input impulse, a neuron does not always become active. The

sum of all incoming impulses is compared to the neuron’s individual threshold volt-

age value. If the sum is greater, the neuron fires its own impulse, which is then

propagated to neighboring neurons through the synapses.

It should be noted that the strength of a signal which a neuron receives through

any of its dendrites is not constant, but rather it depends on the effectiveness of the

source synapse. Moreover, a synapse’s effectiveness can also vary with time, as it
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is associated with certain biochemical factors (e.g. the amount of neurotransmitter

present within the synapse).

This means that from a mathematical standpoint, the aggregation which occurs

within the neuron’s body can be viewed as a weighted sum of signals, where weights

correspond to the effectiveness of the synapses. This is how the artificial neuron

models its biological counterpart. Figure 2.3 depicts the complete model.

Figure 2.3: Artificial neuron. Source:
http://69.10.233.10/KB/recipes/NeuralNetwork1.aspx

The subtraction of the neuron’s threshold value θ from the weighted sum of

inputs is a way to standardize the activation function - the neuron fires when this

difference is greater than 0.

Although in biological neurons the activation function is a threshold function,

such a function is rarely used in artificial neurons due to the fact that it is prob-

lematic for most network training algorithms because of its non-differentiability.

Instead, the sigmoid function is used:

f(x) =
1

1 + e−βx
(2.5)

Learning

One of the more influential researchers of neurological systems (Donald Hebb) be-

lieved that the process of learning in biological neural networks occurs mainly

through the effectiveness of the synapses, i.e. the weights of the information in-

puts in every neuron [36]. This approach is followed also in the learning of artificial

neural networks.

Artificial Neural Networks learn by example. They cannot be programmed to

perform a specific task. Instead, a neural network is fed a set of example objects,
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and it modifies its weights accordingly in order to optimize some quality criterion.

The learning process is done using a specified learning algorithm.

All learning methods used for adaptive neural networks can be divided into two

major categories:

• supervised learning - for every training object, the desired output of the net-

work is known. Therefore, an error function can be defined which measures

the network’s total divergence from the desired values for the entire training

set. The aim is to obtain a set of weights which minimizes this error function.

• unsupervised learning - no explicit desired return values are known - therefore

no error can be measured. This type of learning is sometimes referred to

as self-organisation, in the sense that it self-organises data presented to the

network and detects their emergent collective properties.

The learning process is usually iterative. Weights of the neurons’ data inputs

are systematically changed, and the network’s performance is reevaluated using the

new set of weights. This process continues until some stop criterion is met, e.g. the

total error has decreased below a threshold value, or the difference in error in two

subsequent iterations does not change significantly.

Architecture

In order to be usable in any real application, every artificial neural network must

possess data inputs and data outputs. Therefore, an ANN contains at least two

layers of neurons - the input layer and the output layer. Also, additional layers

are usually present, referred to as hidden layers. The neurons in these layers have

internal functions within the network, and they are not directly observable neither

from the input, nor the output side (see Fig. 2.4).

There are two main classes of network architectures. The distinction is made

with respect to whether or not we allow feedback connections, i.e. connections from

the outputs of a neuron in layer l to the inputs of a neuron from layer k ¡= l.

• feed-forward network - feedback loops are not allowed. The signal flows in one

direction only.

• feedback network - they allow the formation of connections in both direc-

tions. Feedback networks are very powerful and can get extremely compli-

cated. Feedback networks are dynamic; their ’state’ is changing continuously

until they reach an equilibrium point. They remain at the equilibrium point

until the input changes and a new equilibrium needs to be found. Feedback ar-

chitectures are also referred to as interactive or recurrent, although the latter

term is often used to denote feedback connections in single-layer organisations.
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Figure 2.4: A simple feed-forward network. Source:
http://www.hml.noaa.gov/ohh/images/margen/ann.jpg

Applications

Neural networks have proven to be a versatile tool, capable of modelling very com-

plex functions. In particular, their non-linear characteristics make the spectrum of

their applications very broad. Neural networks are well suited to tasks of data pro-

cessing and analysis, prediction and classification. So far, they have been successfully

applied in areas such as function approximation, pattern recognition, biomedical en-

gineering, time series analysis, stock market prediction, neuropsychology, physics,

geology, and many others [36].

2.4 Evolutionary algorithms

This family of metaheuristics is inspired by the biological processes of evolution,

adaptation and Darwinian survival of the fittest. The algorithms perform computa-

tions by simulating the evolution of a population of individuals, which correspond

to potential solutions in the solution space of the underlying problem.

2.4.1 Outline of operation

The simulation is carried out over a specified number of iterations. It may also end

prematurely if some convergence criterion is met, e.g. the improvement in solution

quality in k consecutive iterations has not exceeded ∆fthr. Every iteration consists

of three general phases - selection, recombination and mutation.
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Selection

This phase is a realization of the survival-of-the-fittest mechanism. During selection,

solutions (individuals) currently available are evaluated with respect to their qual-

ity. The evaluation function, defined on the set of all possible solutions, is referred

to as the fitness function, and it is highly domain-specific. This fitness function is

analogous to an individual’s abstract ability to survive in its environment. Once

all individuals have been evaluated, some method is applied in order to select a

subset of individuals which will proceed to the next phase. These are the individ-

uals which managed to ’survive’. The purpose of this is to ensure that the better

individuals within the population survive, and thus to make the entire population

converge towards better solutions with each iteration. As in the case of real, biolog-

ical organisms, selection is an important driving force of the evolutionary process.

In the context of metaheuristics, it may also be viewed as a mechanism for solution

intensification as defined in Section 2.2.1.

Many different selection methods have been developed for various applications

of evolutionary algorithms - some deterministic, others randomized. Most of these

methods make use of two values associated with every individual i : the probability

of reproduction pi and the expected number of copies ei. They are defined as:

pi =
fitnessi∑
j fitnessj

, ei = N ∗ pi (2.6)

where N is the population size. In this section, a couple of the most popular selection

methods will be described.

• fitness proportionate selection - randomly draws N individuals from the pop-

ulation, selecting each individual i with probability pi.

• deterministic selection - Define [x] as the largest integer not exceeding x. First,

every individual i is copied [ei] times into the new population. The remaining

l spots are populated based on descending values of the fraction part of ei.

• random k-tournament selection - randomly chooses k individuals from the

population, and selects the one with the best fitness value. This procedure is

repeated N times.

• randomized remainder selection - this is a combination of deterministic and

fitness proportionate selection. Every individual i is copied [ei] times into the

new population. Following that, the fitness proportionate principle is applied

to select the remaining individuals, with fraction parts of each individual’s ei
used as the probability of selecting that individual.
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Recombination

The role of the recombination operator is to produce new individuals, or offspring,

based on the information contained in two or more base individuals, or parents. This

process is an analogy of mating in biological populations. The details of how the

parents’ structure is actually combined are dependent on the specific algorithm and

the problem being solved. Designing adequate recombination operators is one of the

greatest challenges in implementing evolutionary algorithms. In Genetic Algorithms

(GA) and Genetic Programming (GP), which will be discussed in detail later in this

chapter, recombination operators are usually referred to as crossover operators.

Mutation

Mutation is a unary operator, which changes the structure of an individual in a

random fashion. One again, this operator is inspired by the biological process of

mutation which occurs in the genotypes of living organisms.

Recombination and mutation of individuals are a means to ensure sufficient

diversity of solutions within the population. This allows the evolutionary algorithm

to get out of local optima which may be present in the fitness landscape.

2.4.2 History

The origins of evolutionary computation can be traced back to the 1950s. How-

ever, due to lack of adequate hardware, as well as some methodological problems

present in those early attempts, the field remained relatively unknown to the sci-

entific community [3]. With contributions from Holland, Rechenberg, Schwefel and

Fogel in the 1970, a solid methodological foundation was established. The afore-

mentioned authors introduced three strongly related, but independently developed

methods, now considered mainstream - Genetic Algorithms (Holland, [18, 19]), Evo-

lutionary Strategies (Rechenberg [32], Schwefel [34]) and Evolutionary Programming

(Fogel [15]). In the 1980s, another class of evolutionary algorithms, Genetic Pro-

graming, was introduced through the publications of S.F.Smith[35], N. Cramer [9],

J.Schmidhuber [33] and J.Koza [23].

2.4.3 Parameter encoding

Before the various evolutionary algorithms are discussed in detail, an important

aspect of their design must be addressed - the representation of the individuals and

the way they encode the problem-specific parameters.
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Genotype and phenotype space

In real-world applications, the problem’s search space is defined by a set of objects,

each with unique characteristics. The subset of parameters which is subject to

optimization forms the phenotype space. Conversely, genetic operators (mutation,

recombination) often accept abstract mathematical objects (e.g. binary strings,

arrays of integers etc.) as input parameters. These mathematical objects constitute

the genotype space. Therefore it is necessary to provide a mapping function between

both spaces.

The concepts of genotype and phenotype spaces are derived from analogous con-

cepts present in the biological studies of heredity and development of organisms.

The genotype of an organism is the class to which that organism belongs as deter-

mined by the description of the actual physical material made up of DNA that was

passed to the organism by its parents at the organism’s conception. For sexually

reproducing organisms that physical material consists of the DNA contributed to

the fertilized egg by the sperm and egg of its two parents. For asexually reproducing

organisms, for example bacteria, the inherited material is a direct copy of the DNA

of its parent. The phenotype of an organism is the class to which that organism

belongs as determined by the description of the physical and behavioral character-

istics of the organism, for example its size and shape, its metabolic activities and

its pattern of movement.

Designing a problem representation

In general, two popular approaches exist. The first is to choose one of the standard

algorithms and to design a mapping function in accordance with that algorithm’s

requirements. The second is to design such a representation which is as close to

the phenotype space as possible, thereby avoiding the problem of mapping spaces

altogether.

An important advantage of the first approach is that many empirical and theo-

retical results are available for the standard types of evolutionary algorithms. On

the other hand, a complex coding function may introduce additional non-linearities

and certain mathematical difficulties, significantly obstructing the search process.

2.4.4 Genetic Algorithms

Genetic Algorithms have been applied to many optimization problems, both discrete

and continuous [16]. They remain the most efficient known ways of solving certain

hard combinatorial problems.
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Representation

Original genetic algorithms, as proposed by Holland, operated on individuals en-

coded as binary strings of fixed length. Therefore, they usually enforce the use of

encoding and decoding functions of the form:

h : M → {0, 1}l, h′ : {0, 1}l →M (2.7)

which map solutions ~x ∈M to binary strings h(~x) ∈ {0, 1}l. For problems where

there are many parameters of different types/ranges, this can lead to quite complex

mappings h and h’.

The reason why Genetic Algorithms adhere to binary representations of individ-

uals is a result obtained in schema theory, a theory which can be applied to the

study of the performance of genetic algorithms. The term schema refers to a string

over the alphabet {0, 1, ∗}. This string can be viewed as a template for binary

strings, where the characters 0,1 are fixed, and the symbol * represents any of the

two. Consider the template 00*. The two binary strings which match this template

are 000 and 001.

The schema theorem of genetic algorithms states that the classic genetic al-

gorithm, with the assumption that the operators of mutation and crossover are

detrimental, delivers a near-optimal sampling strategy for schemata in the course of

evolution [16]. However, this result applies only to an optimization criterion where

the collective fitness of all individuals processed during all iterations of the evolution

is optimized - not to the desired criterion of finding the single optimal value. More-

over, certain experiments have shown that the binary encoding function can actually

make the problem more complex by introducing an additional multimodality.

Mutation and recombination

Mutation in Genetic Algorithms was originally introduced as an auxiliary operator

of small importance. It changes an individual’s binary representation by randomly

flipping every bit with a small probability pm. The classic version of the mutation

operator assumes that pm remains constant over the entire simulation, however stud-

ies exist which reveal that introducing a variable, or even self-adapting, mutation

rate, may be helpful in terms of convergence reliability and velocity [2].

As for the recombination operator, the original Genetic Algorithm performed

a one-point crossover. This operation is carried out in the following manner: two

parent individuals are randomly picked from the population, and a crossover point

(position within the bit string) is chosen. The bit strings of both individuals are

split at the crossover point, thus yielding 4 fragments, which are then assembled in

such a way that the left substring of an individuals is concatenated with the right

substring of the other individual. Therefore, one crossover operation produces 2
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new individuals, while destroying the parents. The crossover is usually applied with

a certain probability, which enables some individuals to pass to the next generation

unaltered.

Certain modifications of the crossover operator have been proposed. These in-

clude increasing the number of crossover points, and the so-called uniform crossover

method, where every bit of the new individual’s string is randomly chosen from one

of the parents. Another interesting extension is the participation of more than 2

parents in the crossover. This generalized crossover operator is reported to improve

convergence properties of the genetic algorithm in some applications [1].

2.4.5 Evolutionary Strategies

This technique was developed by Rechenberg and Schwefel at the Technical Univer-

sity of Berlin for the purpose of solving difficult discrete and continuous optimization

problems.

Representation

The classic version of Evolutionary Strategies uses a representation based on fixed-

length vectors of real numbers. There is no need for a decoding function - the ele-

ments of the vector are phenotypic features of the individual. However, additionally

to the object variables, every individual also keeps track of its set of strategy parame-

ters. These parameters enable the algorithm to evolve not only the problem-specific

variables, but also its own evolution parameters. More formally, every individual
~i = (~x, ~σ) consists of object variables ~x ∈ <N and strategy parameters ~σ ∈ <N+

Reproduction and self-adaptation

Mutation is performed independently on every element of the real vector. For an

element xi, the new value x
′
i depends on the current value, and the corresponding

element in the strategy parameters vector:

σ
′

i = σi ∗ exp(τ
′ ∗N(0, 1) + τ ∗Ni(0, 1)) (2.8)

x
′

i = xi + σ
′

i ∗Ni(0, 1) (2.9)

where the notation Ni(., .) indicates that the random variable is resampled for

every index value i, whereas τ and τ
′

are called learning rates.

Mutation is thus applied to the problem variables as well as the evolution pa-

rameters. This contrasts with the classic genetic algorithm template, where the

mutation and crossover probabilities were fixed.
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Evolutionary Strategies also make use of a recombination operator. New indi-

viduals are created based on ρ parents, 2 =< ρ <= µ, where µ is the population

size. The actual operations performed on the object variable part and the simula-

tion parameter part of the individual’s representation are usually different. Types

of crossover include discrete recombination (similar to uniform crossover in Genetic

Algorithms), intermediary recombination (usually arithmetic averaging or geometric

crossover) and others.

Selection

A (µ, λ)-Evolutionary Strategy uses a deterministic selection method such that µ

individuals (parents) create λ > µ offspring using the aforementioned mutation and

recombination operators, and the new population is filled with µ best offspring (with

respect to the fitness function).

Another widely used, also deterministic selection scheme is the (µ+λ)-strategy.

It chooses µ best individuals from the union of the parents and their offspring, which

guarantees that the best fitness function value per generation cannot deteriorate in

the course of the simulation.

2.4.6 Evolutionary Programming

Evolutionary Programming (EP) was introduced by Fogel as an attempt to create

artificial intelligence. The idea was to evolve Finite State Machines, which repre-

sented individual organisms in a population of problem solvers. The FSMs were

tasked with the prediction of events based on former observations. The perfor-

mance of every individual can then be measured by comparing its prediction with

the actual event.

Method of operation

Evolutionary Programming is not associated with a single representation of individ-

uals. Vectors of real numbers (both fixed length and variable length), binary strings

and matrices are among the representations successfully used with EP.

Evolutionary Programming relies almost exclusively on mutation as its repro-

duction operator. Recombination is not used.

Originally, the mutation operator was used to modify the Finite State Machines.

An FSM is an abstract machine which transforms a sequence of input symbols into

a sequence of output symbols, based on a finite set of states and a finite set of

transition rules. During mutation, one of the following changes to the FSM was

performed: addition/deletion of a state, change of the initial state, change of a

transition rule, change of an output symbol.
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As Evolutionary Programming was adapted for use with different problem rep-

resentations, the mutation operator underwent changes to reflect the new represen-

tations. Currently, when dealing with a real-vector representation, the mutation

operator operates in a manner similar to that defined in Evolutionary Strategies.

Evolutionary Programing uses a selection method which is a probabilistic version

of ES’ (µ+ λ)-scheme.

2.4.7 Extensions

The last two decades have seen an outburst of applications and research concern-

ing evolutionary algorithms. Many approaches have been developed which elude

classification to any of the three aforementioned mainstream categories, while still

following the general paradigm outlined in Section 2.4.1. Specifically, many new

dedicated representations of individuals have emerged, along with special mutation

and/or recombination operators. Today, designing problem-specific representations

and operators is one of the key elements of successfully applying evolutionary algo-

rithms to difficult optimization problems.

2.5 Genetic Programming

Genetic Programming is another realization of the evolutionary programming paradigm.

However, in Genetic Programming, individuals do not represent explicit solutions to

the problem under consideration, but rather they are programs. These programs ac-

cept input data and produce corresponding output values. In this context, Genetic

Programming may be regarded as an automated procedure of evolving programs to

solve a particular problem.

2.5.1 Representation

Canonical Genetic Programming represents the programs (individuals) as tree struc-

tures. The nodes, which are the building blocks of the tree, can be divided into two

categories - terminal nodes and non-terminal nodes. The former corresponds to in-

put variables of the problem. Terminal nodes simply return the value of a variable

for the input object currently being processed, and take no formal parameters. The

latter is a category which contains functional nodes. Every non-terminal node is

associated with a function which accepts one or more parameters (see Fig. 2.5).

The evaluation of a functional node is a recursive process. Because a non-terminal

node uses the return values of their child nodes as values for its function’s formal

parameters, the child nodes must be evaluated first.
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The terminal nodes are leaves in the tree, whereas the number of a non-terminal’s

child nodes is determined by the arity of its associated function. Together, the sets

of defined terminals and non-terminals form the primitive set of a GP system. Both

sets of nodes are problem-specific and they must be defined by the user.

Figure 2.5: A sample GP individual and the expression that it implements

By using an explicit tree-like representation of programs, Genetic Programming

avoids the problem of genotype-phenotype mapping, i.e. the mapping function is

an identity function. However, other representations of individuals have also been

applied to this methodology. One example of an alternative representation is the

one used in Linear Genetic Programming [4], where programs are represented as

linear sequences of instructions in an imperative programming language or machine

code. This contrasts with the classic representation, which is more suited to func-

tional programming languages such as Lisp. Another example is Gene Expression

Programming, a technique proposed by Candida Ferreira [13], which makes a dis-

tinction between the genotype (a linear chromosome) and the phenotype (a tree

expression).

2.5.2 Initializing the population

The population of programs is initialized in a random fashion. Among the many

methods available in the literature, the two earliest are full and grow. Both methods

generate trees with a depth not exceeding a user-supplied bound. The full method

randomly picks nodes from the non-terminal set until the maximum allowed depth

is reached. At this point, only terminal nodes are allowed. Such a procedure ensures

that all the leaves in the generated tree are at an equal depth.
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The second method, grow, does not restrict the node pool to non-terminals in the

first phase. This may cause the process to end prematurely (i.e. before the maximum

depth has been reached) if terminal nodes are selected too frequently. Therefore the

grow method produces trees which vary in sizes and depths, as opposed to the full

method. Also frequently used is a combination of both methods, referred to as

ramped half-and-half, where half of the population is initialized using grow, and the

other half using full, subject to some depth limits (hence the term ’ramped’).

2.5.3 Genetic operators

Recombination

Genetic Programming uses subtree crossover as its main recombination operator.

This type of crossover accepts two individuals as input. For each individual, a

random node is picked, referred to as the crossover point. The subtree rooted at

the crossover point in the first individual is replaced by the subtree rooted at the

crossover point in the second individual (see Fig. 2.6). The modified first individual

is returned as the result of the crossover process. It should be noted that the

crossover is not performed on actual individuals from the population, but rather on

their copies. This is done in order to preserve the parents’ genetic material for use

in potential future crossovers, as one individual may be selected for reproduction

multiple times during one generation.

Figure 2.6: Subtree crossover. Source: [29]

Trees constructed based on a typical GP primitive set tend to have branching

factors of two or more, which means that the majority of nodes in the tree are

leaves. Therefore, choosing the crossover point with uniform probability will often

result in only marginal exchange of genetic code (merely an exchange of leaves or

small subtrees). To alleviate this effect, Koza introduced the method of selecting
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functional nodes with 90% probability and terminals with 10% probability. Also,

other crossover methods have been proposed, including methods which define their

own probability distributions for selecting a node as the crossover point.

Mutation

There are at least 3 mutation operators in use with Genetic Programming. The first

one is subtree mutation. It simply randomly selects a node in the tree and replaces

the subtree rooted in it with a randomly generated subtree. A modification of this

scheme is called headless chicken mutation, which is implemented as a crossover

between the underlying individual and a newly generated tree. The third method is

point mutation. It is analogous to the mutation operator defined in standard Genetic

Algorithms. Every node is considered a candidate for mutation. With probability

pm, the node is substituted with a (randomly chosen) node of the same arity. That

is, if the node is a non-terminal, it is replaced by a functional node with the same

number of formal parameters, and a terminal is replaced by another terminal. If no

node of the same arity exists within the primitive set, no action is performed.

Reproduction

Due to the fact that the mutation and crossover operators are applied with a certain

probability, it is possible for an individual to pass to the next generation unaltered,

i.e. without being subject to any of these two processes. This is referred to as

reproduction.

2.5.4 Calculating fitness and selection

Evaluating an individual

Because individuals are programs, the evaluation process involves the execution of

the program represented by the individual under consideration for some external

input data. The obtained return values are then a basis for assigning some fitness

value to the individual. There are many potential criteria to use when determining

the individual’s quality, some of which include [29]:

• total error between the obtained and the desired output values,

• amount of resources necessary to bring the system to a required state,

• accuracy of a program acting as a classifier or pattern recognition agent,

• payoff of a game-playing program,

• compliance of a structure with design criteria supplied by the user.
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Selection

Usually, Genetic Programming makes use of the tournament selection method,

which was discussed in Section 2.4.1. However, due to the modularity of evolu-

tionary algorithms, any selection scheme can be applied.

2.5.5 Applications

Genetic Programming has produced some outstanding results in many unrelated

areas, such as economic modelling, image and signal Processing, industrial process

control, curve fitting, medicine, biology and others. Moreover, there have been

several cases where GP was able to equal or even surpass the best known human

solution. In 2 cases, this has led to a new patentable invention. Some of the human-

competitive results include [29]:

• Creation of quantum algorithms, including a better-than-classical algorithm

for a database search problem and a solution to an AND/OR query problem

• Synthesis of analogue circuits

• Creation of a cellular automaton rule for the majority classification problem

that is better than all known rules written by humans

In this thesis, Genetic Programming has been applied to the task of learning

boolean functions.



Chapter 3

Semantics of GP trees

The goal of this section is to introduce the concepts of subtree contexts and their

semantics, which are vital to understanding the approach to evaluating individuals

presented in chapter 4. Because this thesis deals with boolean functions, the afore-

mentioned concepts will be defined for the boolean domain. However, they can be

generalized to any finite domain.

3.1 Semantics of subtrees

Consider a GP individual representing a boolean function (see Fig. 3.1). Based on

the ideas presented by Poli and Page in [30], the semantics of such an individual

may be fully characterized by enumerating all possible input values and their cor-

responding outputs calculated by the function represented by the individual. Also,

given a tree, the semantics of any of its subtrees may be calculated as the semantics

of the function corresponding to the subtree.

Figure 3.1: A tree representing the boolean function f(x1, x2, x3) =
OR(x1, AND(x2, x3))

The number of possible inputs to a boolean function is determined by the number

of its arguments. Thus, for a k -dimensional function, 2k possible inputs exist. Table

3.1 illustrates the semantics of the function defined in fig. 3.1.

Following [30], we can view the semantics of a k -dimensional boolean function

as a binary string of length 2k, constructed by concatenating output values for all

possible inputs processed in lexicographic order. The semantics contained in Table

3.1 can therefore be written as 00011111.

32
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Table 3.1: Semantics of function f(x1, x2, x3) = OR(x1, AND(x2, x3))

index x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

3.2 Subtree contexts

A context is defined as a tree with a temporarily removed (arbitrary) subtree, marked

with a # character, called the insertion point [30, 26]. Given a GP tree of n nodes,

it is possible to build n-1 nontrivial contexts from it by removing particular nodes

(we discard the trivial case of removing the entire tree). For instance, the three-

node tree (or x y) gives rise to two contexts: (or # y) and (or x #). A sample

context is depicted on Fig. 3.2.

Figure 3.2: A sample context. # marks the insertion point. Source: [26]

3.3 Context semantics

The concept of semantics can be generalized to a context [26]. Some changes to

the definition need to be made due to the fact that in a context, part of the tree is

missing, and therefore the tree’s response to an input usually cannot be calculated, as

it depends on the missing subtree. However, there are cases when the entire context’s

output does not depend on the missing part. An example of such a context would be



3.3. Context semantics 34

and(false #), which always returns false. It is known that Genetic Programming

has inclinations towards the creation of such contexts [26].

A context is referred to as fixed for a particular fitness case (input object) if

its output value is completely determined (true or false) and independent of what

tree is appended at the insertion point. If a context is fixed for every possible

combination of input values, it is called fixed.

For boolean functions, the semantics of a context is a word over the alphabet

{0, 1,+,−}, of length 2d, where d is the number of the function’s arguments. The

four elements of the alphabet correspond to 4 possible cases in the interaction be-

tween the output values of the missing fragment of the tree, and the output values

of the entire tree, for a particular combination of inputs. The first case is the sit-

uation where the value of the context is false regardless of the missing subtree,

e.g. and(false #). The second case is a constant output value equal to true, e.g.

nand(false #). The third case is when the output of the tree is the same as the

output of the missing subtree, e.g. or(false #). The fourth and final case corre-

sponds to the situation where the tree’s output is the negation of the missing part’s

output, e.g. nor(false #).

Computing the semantics of a context is more complex than computing subtree

semantics. The latter is simply a function of the subtree root’s operator and the

values of its arguments, and it is completely independent of the subtree’s position

within the entire tree. Context semantics, on the other hand, is determined by three

factors (see Fig. 3.3):

Figure 3.3: The factors which influence context semantics. Source: [26]

• the operator g immediately above the insertion point

• the semantics of the context obtained by removing the parent node

• the subtree semantics of any other arguments of the parent node’s operator g.



3.3. Context semantics 35

Table 3.2: Semantics of functions and, or. Source: [26]

Parent semantics Arg. semantics and(x #) or(x #)
0 0 0 0
0 1 0 0
1 0 1 1
1 1 1 1
+ 0 0 +
+ 1 + 1
- 0 1 -
- 1 - 0

There is one obvious exception - if the insertion point is the root of the entire

tree, then there is no parent node and the context semantics is simply ’+’.

In order to be able to compute the semantics of all contexts within a given tree,

it is necessary to define a set of rules which indicate the value of the semantics for

every possible combination of argument semantics and parent semantics. One set

of rules must be defined for every primitive function present within the tree. If, for

example, we were given the task of calculating all context semantics for the tree

depicted by Fig. 3.1, the definitions of rules for the functions or and and would

have to be provided (see Table 3.2).



Chapter 4

Potential fitness in Genetic
Programming

4.1 Motivations

Most of evolutionary computation variants estimate an individual’s fitness based

on its actual behavior (phenotype). The fitness function usually does not explicitly

consider the potential offspring of the evaluated individual. The rationale for this

is at least twofold. Firstly, this is consistent with the biological evolution, which

operates here and now, and, to our current knowledge, has no means of predicting

the performance of individual’s offspring. Secondly, also most of genotypic represen-

tations used in EC make it difficult to tell in advance if a specific individual has a

chance for giving rise to a successful lineage. Having such an ’evolutionary foresight’

could be profitable for the convergence of the evolutionary run. One can argue that

the ’regular’ fitness function already does this job - if it didn’t promote the indi-

viduals that are likely to produce well-performing offspring, we would not observe

any convergence at all. An individual performs well due to some fragments of its

genetic code, so the evolutionary process promotes it in hope of re-using those por-

tions in some of the individual’s offspring. However, the code portions in question

are not examined explicitly by the fitness function. The approach studied in this

thesis investigates the fragments of individual’s code in order to predict the chance

of success for individual’s potential offspring in a more precise way than the regular

fitness function does. More precisely, it estimates the fitness of the best potential

child of the individual, assuming that such a child is obtained from the evaluated

individual by modifying it by means of a single-point mutation or a single-point

crossover. In other terms, an individual is rewarded for its potential fitness rather

than the actual fitness; hence the name of the approach. As it turns out, such a

foresight is possible within the framework of genetic programming (GP) and boolean

domains. Moreover, it may be done at a reasonable computational cost.

36
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4.2 Learning boolean functions

Consider an n-dimensional boolean function f(x1, x2, . . . , xn). There exist 2n pos-

sible input combinations. Let us number the input combinations 1..2n, and let fi de-

note the value of function f for the i -th input combination, i.e. fi = f(xi1, x
i
2, . . . , x

i
n).

The task for the learning agent may then be defined as follows: given the values fi,

a set of functional primitives and a set of terminals (representing the independent

variables), construct a function g(x1, x2, . . . , xn) such that the value:

p = |{i : fi = gi ∧ 1 ≤ i ≤ 2n}| (4.1)

is maximized. In other words, the function g should be a representation of

function f whose values are the same as those of f for as many fitness cases (input

combinations) as possible. Ideally, g should have the same values as f for every

fitness case.

4.3 Potential fitness for boolean functions

Usually, when applying Genetic Programming to learning boolean functions, the

value defined in Eq. 4.1 is not only the end criterion for the quality of the learning

result (function g), but simultaneously it is the intermediate fitness function in

every step of the evolution. The potential fitness approach is an alternative to such

a methodology. Algorithm 1 shows an outline of the approach, whereas Algorithm

2 contains the general contract of the function contextScore.

Algorithm 1 Outline of the Potential Fitness approach for evaluating individuals.
The parameter T represents the tree being evaluated.

treeFitness ← −2n

for all contexts c ∈ contexts(T) do
cFit ← contextScore(T,c)
if cFit > treeFitness then

treeFitness ← cFit
end if

end for
return treeFitness

The method of operation of the Potential Fitness approach will be discussed in

detail within this section.

In order for the potential fitness scheme to be applicable to a problem, two

conditions must be met:

• the function to be learned is defined in the boolean domain, and

• the function’s values for each fitness case are known a priori.
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Algorithm 2 General contract of the contextScore(T,c) function. The notation
output(T,c,S,f) represents the output of tree T for fitness case f with subtree S
rooted at the insertion point of context c.

cF ← 0
for all fitness cases f do

if ∀s1,s2 output(T,c,s1,f)=output(T,c,s2,f) then
if output(T,c,*,f)=desired(f) then

cF ← cF + 1
else

cF ← cF - 1
end if

end if
end for
return cF

The potential fitness function attempts to estimate the chance of the tree being

modified (by means of crossover) so that its fitness is maximized. It does so by

calculating certain information about every possible context of a tree. Each context

corresponds to a situation where the root of the missing subtree (insertion point)

is chosen as the crossover point. Therefore it is a convenient way to examine the

possible impact of the crossover operation at that node on the entire tree.

The presented method makes use of an important distinction between two classes

of elements within context semantics for boolean functions (see Section 3.3). It is

the distinction between fixed elements (0 and 1 ) and non-fixed elements (+ and -).

The fixed part of the semantics indicates the fitness cases for which the performance

of the context cannot be changed (improved or deteriorated). The non-fixed part of

the semantics, on the contrary, indicates the fitness cases for which the performance

of the context may still be changed by substituting an appropriate subtree in place

of #.

The fitness function iterates over all contexts of the tree being evaluated. For

every context, the algorithm keeps track of a special variable referred to as the con-

text’s score, with an initial value of 0. The semantics of the context is examined. For

any fixed value of the semantics, the score is incremented if that value is consistent

with the tree’s desired output, and decremented otherwise. The non-fixed elements

of the context semantics are ignored.

The scoring scheme rewards a context for hits and penalizes for misses. However,

it does not care about the remaining fitness cases, i.e., the ones that could be

correctly classified provided an appropriate tree would be substituted in place of #.

Two contexts that are fixed to a different extent (e.g. one of them being fixed at 2

positions and the other one having 4 fixed positions), may still have the same score.

Clearly, for n fitness cases, the worst possible score is -n and the best possible score

(ideal) is n.
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The potential fitness of the entire tree is simply the maximum of scores of all its

contexts. In other words, the potential fitness finds the best possible context with

respect to evolvability, i.e., such a location in the tree that would result in the best

fitness when substituted by an appropriate subtree. Note that the fitness value is

not influenced by the number of maximum-score contexts within the tree.

As an example, consider a problem where the function to be learned, f(x1, x2),

is two dimensional and its values are defined as 1100. Assume that a function g =

or(x1, x2) needs to be evaluated. In order to do this, 3 contexts need to be evaluated.

The first one, #, can obviously be skipped. This leaves two valid contexts: or(x1,#)

and or(#, x2). However, the function or is commutative, which means that only one

of these two contexts needs to be considered, as the other one will yield the same

score. We will calculate the score of the context or(#, x2). The semantics of this

context is +1+1 (see Section 3.3 for instructions on calculating context semantics).

As the non-fixed components are ignored during score calculation, only the second

and the fourth elements of this semantics are relevant for score calculation. In the

former case, context semantics is consistent with the tree’s desired output, so the

score is incremented and amounts momentarily to 1. However, context semantics is

different from the tree’s desired output for the last, fourth fitness case. This causes

the score to be decreased and brings it back to its original value, i.e., 0. Thus, the

overall score of this context is 0.

4.4 Calculating potential fitness

This section covers three methods of computing the potential fitness function. The

first two methods are exact - they always return the maximum score of a context

within the tree. They follow the pattern represented by Algorithm 1, because they

iterate over all contexts of the tree and choose the maximum score. They differ

only in the way they implement the function contextScore, i.e. Algorithm 2, which,

as the name implies, is tasked with calculating the score of a single context. The

third method is a randomized heuristic. It does not follow the schema represented

by Algorithm 1, as it does not consider all contexts within a tree, but only a small

subset of them.

4.4.1 Calculation using context semantics

This method (referred to as Algorithm A) is based on three simple steps. The first

step is to compute the subtree semantics of the tree being evaluated - this means

calculating the return value of every node within the tree. The next step involves

the computation of the semantics of every context which may be obtained from

the tree. This is a top-down process, starting at the root of the tree (see Section
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3.3). This process makes use of the information gathered in step one (the subtree

semantics). Finally, for every context, the semantics string is examined and the

score value is calculated. The maximum score is memorized and returned as the

result for the entire tree.

Algorithm 3 Computing the potential fitness of tree T using context semantics.
Algorithm A’s implementation of the contextScore function.

cFit ← 0
for i = 1 to 2n do

sem ← contextSemantics(T,c,i)
if sem = 0 or sem = 1 then

if sem = desiredi then
cFit ← cFit + 1

else
cFit ← cFit - 1

end if
end if

end for
return cFit

Computational complexity

In step one, each node of the tree is examined exactly once, and for every node,

all fitness cases must be enumerated in order to determine the node’s output value

for every one of them. Therefore the complexity of this part is m ∗ 2n, where m is

the number of nodes within the tree and n is the dimension of the function being

learned.

Phase two is similar in terms of complexity. It iterates through all nodes of the

tree, and for each node it does a simple table lookup to determine the semantics for

every fitness case (one of 0, 1,+,−). The computational effort is thus again m ∗ 2n.

The final step once again iterates through all nodes and examines the semantics

of the context whose insertion point corresponds to that node. In order to calculate

the context’s score, the semantics string (of length 2n) must be fully checked.

From the above it may be concluded that the estimated total computational cost

for an m-node tree is 3m ∗ 2n

4.4.2 Exact calculation with Branch and Bound

Limits of Algorithm A

The second exact method was developed for two reasons. The first reason is ex-

tensibility. In order to use the first method (Algorithm A), the rules for calculating

context semantics for every operator (function) within the primitive set must be
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provided. That is, a table such as Table 3.2 must be defined for all the functions

used. This would involve the necessity to modify the source code of the evaluat-

ing subsystem of the application every time a new function is added. The method

presented in this section does not suffer from a similar problem.

The second reason is an attempt to decrease execution time, by designing a

method which can benefit from the speedup resulting from packing individual boolean

values (bits) into integer variables. This technique can be applied to calculating the

subtree semantics of any tree. Since the values of any variables which are part of the

problem are of boolean type, they only occupy one bit within an integer variable.

Also, due to the fact that on most modern processors, bit operations operate on

groups of bits (words) rather than single bits anyway, we can group many boolean

values together in an integer variable whose length corresponds to the processor’s

word length. This way, the algorithm has to perform a lot less operations - if the

word’s length is k, only 1
k

of the original workload has to be performed. Of course, if

the total number of fitness cases is less than the word length, the gain in execution

time is smaller.

However, this method cannot be applied to calculating context semantics. This

is because the possible values of context semantics are no longer restricted to boolean

values - there are 4 possibilities (0,1,+,-). Thus, the semantics of a context for a

specific test case cannot be expressed by one bit (as it was the case with subtree

semantics). Moreover, there is no straightforward way of representing the arbitrary

rules of calculating semantics values (such as in Table 3.2) by means of the available

bit operators (and, or, xor, not). Therefore, bit packing cannot be immediately

applied to Algorithm A.

Definition

The method, referred to as Algorithm B, does not explicitly calculate context seman-

tics. It is based on the observation that for the purposes of score calculation, we do

not need the actual semantics string, but rather it is only required to identify those

fitness cases for which the tree’s output is independent of the missing subtree. This

can be done in the following manner. First, the (subtree)semantics of every subtree

in the tree are calculated and stored. Following that, every context is considered.

The subtree located at the insertion point is replaced by an artificial node, referred

to as One, which returns 1 for all fitness cases. The next step is to calculate the

modified tree’s output for every fitness case. However, we do not need to recompute

the return values of every node within the tree. It is sufficient to update the values

of the nodes on the path from the insertion point to the tree root, because the other

values have not changed since they were last memorized. Therefore, the change in-

duced by the artificial node needs to be propagated to the tree root. As an example,
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consider the tree depicted by Fig. 4.1. Suppose the insertion point is node 10. We

would then replace node 10 with the artificial node One, and we would recalculate

the values for nodes 7,3 and 1. It should be emphasized that this time, once again

all calculations are performed in the boolean domain, which means we can make use

of bit grouping to obtain a significant speedup. Note that the computational effort

associated with propagating the artificial node’s values up the tree is proportional

to the depth of the insertion point.

After the return value of the tree has been calculated, it is stored for use in the

next phase of the algorithm. Then, this procedure is repeated, only with another

artificial node, Zero, which returns zeroes for every fitness case, inserted in place of

One. Once again the modified values are propagated to the root of the tree, and

the tree’s semantics are obtained.

Figure 4.1: Updating the subtree semantics on the path to the root

Now that the semantics of the two versions of the tree (with Zero or One at

the insertion point) have been calculated and stored, it is time to determine the

context’s score. This can be done in a manner which makes use of the bit grouping

mechanism, which is key to preserving good execution speed. Assume that the

length of the processor’s word (natural group of bits used as operands for any

arithmetic/logic operations) is d. On most modern computers, d is equal to 32 or

64. Thus, N boolean values (bits) can be stored in dN
d
e words. For the purpose of

explaining this part of the algorithm, the following notation will be used:

• onei: represents the i -th chunk (word) of the tree’s responses obtained while

the artificial node One was integrated into the tree

• zeroi: represents the i -th chunk (word) of the tree’s responses obtained while

the artificial node Zero was integrated into the tree
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• desiredi: represents the i -th chunk (word) of the desired outputs of the tree

• getNumBitsSet() is a function which takes one word of length d as its sole

argument and returns the number of bits in it which are equal to 1. Of course,

this function has to be implemented in an efficient way, i.e. the number of

operations has to be significantly less than d. This can be achieved by storing

the number of set bits for every possible word in memory. If the word length is

too big, this information may not fit into the computer’s physical memory, and

the cost of calculating it may be too computationally expensive. Therefore,

it is often beneficial to tabularize only a portion of the existing word space.

As an example if the word length is 32, it is sufficient to store the result of

the function for every possible word of length 16. Then, the computation of

the function’s value for a 32 -bit word requires only the access to two memory

cells (for both 16 -bit halves) and their addition.

• N is the number of fitness cases, i.e. N = 2d, where d is the dimension of the

function f being learned

• d is the word length. For simplicity, it is assumed that N is a multiple of d,

although the presented algorithm can be generalized to the case where this is

not necessarily true.

The algorithm for computing the score of a context can be outlined in the fol-

lowing way:

Algorithm 4 Algorithm B’s implementation of the contextScore function. Param-
eters T and c are respectively the tree and context under evaluation.

score ← 0
insertSubtree(T,c,One)
propagateToRoot(T,c)
one ← output(T,c,One)
insertSubtree(T,c,Zero)
propagateToRoot(T,c)
zero ← output(T,c,Zero)
for i = 1 to dN

d
e do

oneXzero ← onei xor zeroi
desiredXone ← desiredi xor onei
score ← score + d - getNumBitsSet( oneXzero or desiredXone)
score ← score - getNumBitsSet( not(oneXzero) and desiredXone)

end for
return score

The first action is to set the score to 0. Then, for every chunk of the solution, the

score is updated accordingly. The variable oneXzero is the value of the xor operation

performed on the chunks of vectors one and zero. Therefore, every position within
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oneXzero with a value of 0 corresponds to a fitness case whose value does not

depend on the missing subtree (the xor operator has a value of zero iff both its

operands have the same values). Conversely, every bit in oneXzero with a value of

1 corresponds to a fitness case whose value does depend on the missing subtree.The

variable desiredXone is the value of the xor operation performed on the chunks of

vectors one and desired. Any bit of value 0 within this variable reflects the situation

where the output value of the tree with artificial node One for the corresponding

fitness case is the same as the desired value. A value of 1 means that the output

and the desired value are different for this fitness case.

Consider a variable whose value is the bitwise or of oneXzero and desiredXone.

Every set bit within this variable corresponds to a fitness case for which either

the tree’s output is different than the desired value, or the tree’s output is not

independent of the missing subtree. Therefore, if we denote the quantity of set bits

as q, then d-q is the number of bits which do not fulfill any of the two aforementioned

conditions - i.e. the number of fitness cases for which the context semantics are

fixed and equal to the desired values. The score is incremented by d-q. In the

next step, the score must be decremented by the number of fixed positions within

the context semantics which differ from the desired values. This quantity can be

easily calculated as the number of set bits within the result of the bitwise and of

the negation of oneXzero and desiredXone.

Computational complexity

In contrast to Algorithm A, where the effort associated with calculating every con-

text’s score within the tree is the same, the cost of calculating a context’s score

using Algorithm B is proportional to the insertion point’s depth within the tree.

More formally, the cost, c(x), may be expressed as follows:

cB(x) = 2c1depth(x)nchunks + c2nchunks (4.2)

where x is the insertion point, nchunks is equal to dN
d
e, c1 is a constant representing

the unit of time necessary to compute the output of one node for one chunk of

input data, assuming that the values of all its arguments are known, and c2 is an

analogous constant representing the total cost of the operations performed inside

the loop in Algorithm 4. The dominating component of this sum is the fragment

2 ∗ c1 ∗ depth(x) ∗ nchunks. The constant term 2 reflects the fact that the altered

subtree’s values must be propagated to the root twice (once for both of the artificial

nodes Zero and One).

Consider a tree comprised of M nodes. We can thus express the mean effort of

computing an average context’s score as:
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c̄B =
2
∑
x(c1depth(x)nchunks + c2nchunks)

M
≈ 2c1nchunks

∑
x depth(x)

M
(4.3)

The sum in the last term in Eq. 4.3 is simply the mean depth of all nodes within

the tree, i.e.

h̄ =

∑
x depth(x)

M
(4.4)

The symbol h̄ is used to denote mean node depth within the tree in order to

avoid confusion with the length of the word d. The mean complexity can therefore

be expressed as:

c̄B ≈ 2c1nchunksh̄ (4.5)

Compare this to the cost of the same operation for Algorithm A:

c̄A = cA1N (4.6)

where cA1 is a constant representing the cost of computing a single value of semantics.

The ratio of the mean costs for both algorithms is:

ρ =
c̄B
c̄A

=
2cB1 nchunksh̄

cA1N
=

2cB1 h̄

cA1 d
(4.7)

If we assume that cB1 ≈ cA1 , Eq. 4.7 becomes:

ρ ≈ 2h̄

d
(4.8)

Therefore, Algorithm B will outperform Algorithm A, i.e. ρ will be less than 1,

if 2h̄ < d. A good intuition why this condition can often be satisfied in practice is a

result from the field of discrete mathematics. It is known that the expected depth of

a node in a randomly constructed binary tree of N nodes is O(logN) (the proof can

be found in [8]). While a GP individual(tree) subject to crossovers and mutations

does not meet the formal assumptions which are necessary for this theorem to hold,

the relationship h̄ = O(logN) usually holds for GP primitive sets with a high (2

or greater) average branching factor. Moreover, the classic implementations of GP

usually impose some constraints on the initial maximum depth of the constructed

trees, and also on the maximum depth of any tree obtained through recombination

or mutation. Combined with the fact that the word length, d, is up to 64 on modern

computers, this shifts the performance ratio in favor of Algorithm B.

Applying Branch and Bound

Owing to the top-down nature of the computations, the performance of calculating

the potential fitness can be enhanced even further by using the well-known Branch

and Bound paradigm. This can be applied to both Algorithm A and Algorithm B.
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At any node, apart from calculating the corresponding context’s score, a quan-

tity, denoted s+, may be computed. This quantity represents the maximum gain in

the score which may be attained by exploring the subtree rooted in the current node.

The value of s+ is simply the number of non-fixed positions within the semantics

of this context. This is because once a position within the context semantics has

become fixed, it will certainly not change by modifying any subtree whose root is a

successor of the currently considered node. However, more non-fixed positions can

become fixed. Ideally, all of the currently non-fixed nodes can become fixed in such

a way that they correspond to the desired values.

Once s+ has been computed, it is easy to identify a situation where there is no

point in delving deeper into the subtree, because the maximum score of a single

context will certainly not be improved. This is the case when the sum of the current

context’s score and s+ is less than or equal to the maximum score of any context

found so far. The cost of calculating s+ is negligible when compared to the cost of

calculating the context’s score for both algorithms.

Although both Algorithm A and Algorithm B can benefit from this technique, it

seems that the gain from performing the same cuts on a tree is greater for Algorithm

B. Consider an example where the evaluated individual is the same as the one

depicted by Fig. 4.1. We decide that the successors of node 3 do not need to be

analyzed. For Algorithm A, the gain by doing so would simply be 3
10

of the total

workload, because the cost of evaluating every node is the same. For Algorithm B,

however, the gain is 3+3+4
4+4+4+3+3+3+3+2+2+1

= 10
29
≈ 0.34. Similarly, if the cut were to

be performed below node 7, the respective gains of the two algorithms would be 1
10

and 4
29
≈ 0.13.

4.4.3 Heuristic randomized calculation

There is one more advantage of Algorithm B over Algorithm A. Recall that context

semantics must be calculated in a strictly top-down fashion, because the seman-

tics of a context is a function of the semantics of its immediate parent context.

Algorithm B is free from this constraint, and thus the score of every context can

be computed independently and in any order. This gave rise to the randomized

approach presented in this section.

This heuristic accepts a single input parameter which determines the maximum

percentage of the full workload which may be performed (with respect to processing

the entire tree). Following that, the algorithm picks random nodes from the evalu-

ated tree with a probability distribution based on their depth within the tree, and

calculates the score of every picked node’s corresponding context. The number of

nodes picked is such that the sum of the computational effort does not exceed the

specified threshold. The maximum score among the evaluated context is returned
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as the potential fitness of the tree. Of course, this method does not guarantee to

find the actual maximum value within the tree.

This algorithm was designed to be a tradeoff between the quality of the obtained

results and execution speed.



Chapter 5

Experimental results

5.1 Experimental setup

The potential fitness function was implemented as an extension to the Evolution-

ary Computations in Java (ECJ) framework. For all experiments, the standard

parameter file koza.params found within ECJ was used. This involves the following

settings:

• no mutation, only crossover and reproduction

• crossover probability 0.9

• reproduction probability 0.1

• tournament selection with tournament size 7

• maximum tree depth for crossover operations: 17

• uniform probability distribution for selection of crossover point

• every individual is a single tree (no Automatically Defined Functions)

• the elements of the primitive set are untyped, i.e. all nodes return a result of

the same type

• population size: 1024 individuals

• number of generations: 100

• during construction of a random tree, non-terminals are picked with a proba-

bility of 0.9 and terminals with a probability of 0.1

• the Ramped Half and Half method is used for creating the initial population

with a maximum depth limit randomly chosen from the range [2; 6].

48
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5.1.1 Benchmark problems

A total of 7 benchmark problems were used in this study. They can be classified

into three problem groups, two of which are well-known and widely used as testbeds

for learning boolean functions.

Odd Parity

The n-bit Odd Parity function fop(x1, x2, . . . , xn) assigns to every one of the possible

2n input combinations the sum of each argument’s value modulo 2, i.e. fop(x1, x2, . . . , xn) =

(
∑
i xi) mod 2. Therefore, the function returns one if the number of set bits is odd,

and 0 if it is even. For the purpose of the experiment, the following primitive set

was used:

• terminals: x1, x2, . . . , xn representing the input variables

• non-terminals: two-argument functions and(x,y), or(x,y), nand(x,y), nor(x,y)

Three problems from this category were used in the study: 4-,5-, and 6-Odd

Parity. The category is marked as k -OP on plots.

Multiplexer

The n-bit Multiplexer function’s input can be classified into 2 groups. The first

group corresponds to information inputs. The second group contains address inputs.

The number of information inputs relates to the number of address inputs in the

following way:

nA = log2nI (5.1)

For any bit string of length n, the first nI bits represent the values of their respective

information inputs. The next nA bits represent the number of the information input

whose value should be returned as the function’s output value. As an example,

consider the (4+2)-bit Multiplexer function and a possible input 010111. The values

of information inputs 0,1,2 and 3 are respectively 0,1,0 and 1. The address bits,

11, point to input #3. Therefore, the value of the 6 -bit Multiplexer function for

this input string would be 1. The following primitive set was used:

• terminals: x1, x2, . . . , xn representing the information inputs, and a1, . . . , am

representing the address inputs

• non-terminals: two-argument functions and(x,y), or(x,y), one-argument func-

tion not(x), three-argument function if(x,y,z)

The if(x,y,z) function returns the value of y if x is true; otherwise, it returns the value

of z. It should be noted that in order to retain the ability to perform calculations
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on groups of bits, or words, this function was expressed in terms of simpler boolean

functions and, or, not :

if(x, y, z) = or(and(x, y), and(not(x), z)) (5.2)

The functions 6 -Multiplexer and 11 -Multiplexer were used for testing. The category

is marked as k -MUX on plots.

Comparator

The n-bit Comparator function, n = 2i, i ∈ N , treats the input string as two binary

integers, each of length n/2. The return value is 1 if the number encoded by the

first n/2 bits is greater then the second number. Otherwise, the return value is 0.

The following primitive set was used:

• terminals: x1, x2, . . . , xn representing the input variables

• non-terminals: two-argument functions and(x,y), or(x,y), nand(x,y), nor(x,y)

Two problems from this category were used in the study: 4- and 6-Comparator.

The category is marked as k -CMP on plots.

5.1.2 Examined algorithm variations

In order to provide adequate material for a valid performance evaluation, a spectrum

of algorithm variations was analyzed. The following basic algorithm types were used:

• standard Genetic Programming (GP) - the canonical form of boolean function

learning, with a fitness function as described in Section 4.2.

• Genetic Programming with Subtrees (GPS) - this variation is similar to stan-

dard GP in that it uses the same fitness function, however, instead of returning

the number of correctly processed instances for the tree root, it returns the

maximum number of hits calculated over the set of all subtrees. Therefore, an

individual’s evaluation calculated by the GPS method is not less than its GP

counterpart.

• Potential Fitness, exact calculation (PF) - as described in Section 4.4.2.

• Potential Fitness, randomized approach (rPF) - as described in Section 4.4.3.

In addition, each one of the base types listed above was examined in two configu-

rations. The difference between them was the presence or absence of lexicographic

parsimony pressure[25]. If parsimony pressure is enabled, the fitness function is

modified in such a way that in case of equality between two individuals, the decisive

criterion is tree size - the individual with fewer nodes is considered superior. In case

of a draw on both criteria, a random individual is designated as the winner.
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5.2 Results

5.2.1 Overview

In Section 5.2.2, the algorithms listed in 5.1.2 are examined with respect to their

success rate and mean quality of the best individual per generation.

Section 5.2.3 deals with the comparison of running times of all the aforemen-

tioned algorithms.

In Section 5.2.4, the impact of using the Branch and Bound algorithm with Po-

tential Fitness calculation is examined. In particular, the percent of total workload

performed by the algorithm is presented on a per-problem basis. The base algorithm

used in this part of the study is Algorithm B described in Section 4.4.2.

Finally, Section 5.2.5 outlines the details of the distribution of the Potential Fit-

ness function across a population of individuals. Averaged histograms of Potential

fitness are presented for each considered benchmark problem. Also, spectrograms

demonstrating the relationship between relative potential fitness and relative depth

of a node within the tree are shown.

5.2.2 Solution quality

In this section, the performance of the Potential Fitness approach will be charac-

terized in terms of success rate (frequency of finding the optimal individual), mean

generation in which the ideal individual was found (calculated only over those runs

that found the ideal), mean hit rate of the best-of-run individual (calculated over

both ideals and non-ideals), and mean size (number of nodes) of the best-of-run in-

dividual. The results have been calculated based on 400 independent evolutionary

runs. Two algorithms which employ Potential Fitness (PF and rPF) along with two

standard algorithms (GP and GPS) are compared (see Section 5.1.2 for a descrip-

tion of the algorithms). The GPS method is used in order to make the comparison

between GP and PF more fair, because by definition standard GP considers far less

solutions than PF. GPS makes up for this difference by considering all subtrees of

the given individual when calculating the fitness.

The results indicate that in most cases, the deterministic Potential Fitness ap-

proach outperforms both GP and GPS in a statistically significant manner in terms

of average hit rate. This seems to be true regardless of whether parsimony pressure

is enabled or not. Also, for some cases, PF arrives at optimal solutions earlier than

the other algorithms.

The main area where PF is clearly superior, though, is the success rate. For most

of the more difficult problems (as 5-,6-Odd Parity, 11-Multiplexer), the success rate

is effectively doubled. For one problem (6-Comparator), it is nearly tripled.

On the other hand, GPS does only slightly better than GP. This clearly indicates
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that the superiority of PF should be attributed to the concept of score, and not to

the fact that all (strictly: almost all) tree nodes are tested against the desired values.

The effect of enabling lexicographic parsimony pressure on the performance of the

algorithms is twofold. Apart from reducing the average tree size and thus shortening

the average run time, parsimony pressure usually increases the success rate and the

best-of-run’s hit rate. In particular, all the methods become able to occasionally

find the optimal solution for the 6-Odd Parity problem. PF is still superior in terms

of success rate and best-of-run hit rate, though on average it benefits less from

parsimony pressure than GP and GPS: its trees are smaller only about 35% than

those evolved without parsimony pressure, whereas GP’s and GPS’s are reduced by

50% and 60%, respectively. As a result, PF trees are now approximately 60% larger

than those produced by the other methods. This may be a side-effect of the potential

fitness function that promotes individuals which would get worse evaluation from

the regular fitness function and lose tournaments with equally-well performing yet

smaller trees.

As for the randomized version of the PF algorithm, rPF, its performance is

disappointing. This approach was designed as a tradeoff between execution speed

and quality of obtained solutions, however the results suggest that using rPF is not

worth the computational overhead, since the gain in solution is, if any, marginal.

In fact, in some cases rPF actually performs worse than standard GP. Only in

three cases was it able to produce results which are significantly better than those

obtained with GP: twice for the 6-Comparator problem (with parsimony pressure

enabled/disabled) and once for the 6-Odd Parity problem (with parsimony pressure

disabled).

Figures 5.1 through 5.7 show the dynamics of the mean fitness function. In most

cases, PF shows faster convergence from the very beginning of the evolutionary run.

Only for Mux-11 (see Fig. 5.1), PF initially lags behind GP, but around the 35th

generation starts to overtake it. Of course, for a very easy problem like Mux-6 (Fig.

5.2), all methods almost always converge quickly to the ideal solution and their

comparison is inconclusive.
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Table 5.1: Success rate and mean generation number when ideal individual is
found, averaged over 400 evolutionary runs - parsimony pressure disabled

Success rate Ideal found in generation

GP GPS PF rPF GP GPS PF rPF

Odd-4-parity 0.755 0.755 0.918 0.780 33.1 33.1 23.8 29.03
Odd-5-parity 0.048 0.055 0.220 0.010 74.3 67.1 69.9 92.0
Odd-6-parity 0.000 0.000 0.000 0.000 — — — —
Mux-6 0.995 0.998 1.000 1.000 9.2 11.4 11.1 10.89
Mux-11 0.283 0.145 0.530 0.230 61.1 68.4 63.0 69.7
Cmp-4 0.990 1.000 1.000 1.000 7.6 8.6 6.2 7.2
Cmp-6 0.390 0.178 0.740 0.470 53.8 57.6 44.3 44.76

Table 5.2: Hit rate and tree size of best-of-run individual, averaged over 400
evolutionary runs - parsimony pressure disabled.Statistically significant differ-
ences in hit rate marked in bold (t-test, significance level 0.01).

Hit rate Tree size

GP GPS PF rPF GP GPS PF rPF

Odd-4-parity 15.67 15.69 15.90 15.73 243.8 260.8 242.7 245.2
Odd-5-parity 28.39 28.49 30.05 28.66 402.8 416.4 452.2 406.1
Odd-6-parity 50.43 50.88 53.45 51.28 455.8 461.8 523.3 471.8
Mux-6 63.99 63.99 64.00 64.00 49.8 107.7 83.8 73.8
Mux-11 1950.87 1919.51 1996.8 1952.1 275.2 324.2 357.4 307.4
Cmp-4 15.99 16.00 16.00 16.00 67.1 87.7 69.6 72.43
Cmp-6 62.97 62.46 63.68 63.28 230.1 245.2 256.9 236.1

Table 5.3: Success rate and mean generation number when ideal individual is
found, averaged over 400 evolutionary runs - parsimony pressure enabled

Success rate Ideal found in generation

GP GPS PF rPF GP GPS PF rPF

Odd-4-parity 0.830 0.878 0.928 0.87 26.4 27.2 23.1 25.1
Odd-5-parity 0.103 0.140 0.295 0.14 69.9 70.3 73.1 74.6
Odd-6-parity 0.005 0.010 0.018 0.005 71.0 72.0 85.4 82.0
Mux-6 0.998 0.998 1.000 1.000 8.1 7.5 10.5 10.0
Mux-11 0.328 0.278 0.535 0.340 54.0 48.8 61.3 66.3
Cmp-4 0.910 0.843 0.998 0.931 7.2 7.3 6.3 7.1
Cmp-6 0.250 0.153 0.738 0.480 52.7 52.3 43.9 48.1
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Table 5.4: Hit rate and tree size of best-of-run individual, averaged over 400
evolutionary runs - parsimony pressure enabled.Statistically significant differ-
ences in hit rate marked in bold (t-test, significance level 0.01).

Hit rate Tree size

GP GPS PF rPF GP GPS PF rPF

Odd-4-parity 15.73 15.82 15.91 15.81 117.6 116.3 157.8 132.17
Odd-5-parity 28.99 29.32 30.37 28.78 174.0 179.4 254.1 179.5
Odd-6-parity 51.70 52.83 54.45 52.24 239.0 234.5 338.4 248.0
Mux-6 63.98 63.99 64.00 64.00 26.7 33.2 60.6 48.5
Mux-11 1950.05 1922.34 1988.0 1940.8 132.7 115.1 217.9 168.3
Cmp-4 15.91 15.82 15.99 15.94 45.3 43.5 53.3 51.28
Cmp-6 61.95 61.12 63.56 62.92 76.2 64.6 137.8 108.0

Figure 5.1: 11-Multiplexer. Average fitness as a function of generation num-
ber.
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Figure 5.2: 6-Multiplexer. Average fitness as a function of generation number.

Figure 5.3: 4-Odd Parity. Average fitness as a function of generation number.
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Figure 5.4: 5-Odd Parity. Average fitness as a function of generation number.

Figure 5.5: 6-Odd Parity. Average fitness as a function of generation number.
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Figure 5.6: 4-Comparator. Average fitness as a function of generation number.

Figure 5.7: 6-Comparator. Average fitness as a function of generation number.
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5.2.3 Running times

This section presents the running times of the various algorithms used for calculation

of potential fitness, which were described in Section 4.4. Also, the running times of

the standard GP evaluating algorithm are provided to enable a comparison.

Each algorithm is examined in two configurations - with and without lexico-

graphic parsimony pressure. Two types of timing information are collected - the

average evaluation time and the average total time of the evolutionary run.

In particular, the following algorithms are used for the comparison:

• standard GP evaluation with bit packing, denoted GP

• Algorithm A with Branch and Bound (see Section 4.4.1), denoted A

• Algorithm B with Branch and Bound (see Section 4.4.2), denoted B

• randomized algorithm for calculating potential fitness (see 4.4.3), denoted rPF.

When parsimony pressure is enabled, the relative total running times averaged

across all 7 problems for algorithms A,B and rPF are, respectively, 6.04, 3.01 and

1.62, where the value 1.00 represents the total running time of the evolutionary run

when using the standard GP algorithm. This means that, just as it was expected,

Algorithm B performs significantly better than Algorithm A for most problems.

The gain in execution speed becomes more apparent as the dimension of the prob-

lem increases - the most spectacular example is the 11-Multiplexer problem, where

Algorithm B outperforms Algorithm A in a nearly 5 to 1 ratio, in terms of mean

evaluation time. For the smaller and simpler problems, Algorithm A seems to have

the upper hand, although only by a small margin. Also, the randomized heuristic

for calculating potential fitness, rPF, needs considerably less computation time than

both exact methods. However, as it was shown in Section 5.2.2, the small gains in

solution quality do not justify the computational overhead of 60% over standard GP.

This suggests that it is hard to find a randomized heuristic which would produce so-

lutions of a quality similar to the deterministic algorithm, while having significantly

lower running times.

As for the case where parsimony pressure is disabled, the respective average

relative total running times are 4.23, 2.49 and 1.30. Once again Algorithm A is

inferior to Algorithm B. It is interesting that the differences in running times between

GP and the two exact methods are smaller than it was the case when parsimony

pressure was enabled. This can probably be attributed to the better performance of

Branch and Bound on the larger trees produced by the evolutionary process when

there is no pressure to reduce tree size. The performance of Branch and Bound is

examined in detail in section 5.2.4.
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There is one more interesting phenomenon which occurs in the two simple prob-

lems - 4-Odd Parity and 4-Comparator. For these two problems, the potential-fitness

based algorithms actually have average running times which are smaller than those

of standard GP. This is probably the result of the fact that for 4-bit problems, the

differences in evaluation times are still small enough that they can be compensated

by the superior success rate of the potential fitness approach - the ideal individual

is found considerably earlier and the evolutionary process can be ended without

running through a full 100 generations.

Table 5.5: Mean evaluation and total times, averaged over 100 evolutionary
runs - parsimony pressure enabled

Evaluation time Total time

GP A B rPF GP A B rPF

Odd-4-parity 2.3 7.1 8.1 4.1 10.6 21.4 22.3 13.5
Odd-5-parity 3.9 15.2 15.89 8.4 18.2 37.6 38.1 24.3
Odd-6-parity 6.5 35.1 26.0 11.8 26.6 63.6 54.9 33.12
Mux-6 0.69 9.5 6.1 3.7 2.6 15.2 12.5 6.1
Mux-11 22.5 746.0 161.6 53.1 30.1 766.0 177.6 63.1
Cmp-4 1.0 2.7 2.5 1.6 4.4 6.5 6.7 5.2
Cmp-6 1.8 12.5 8.8 5.6 7.1 21.6 18.0 13.2

Table 5.6: Mean evaluation and total times, averaged over 100 evolutionary
runs - parsimony pressure disabled

Evaluation time Total time

GP A B rPF GP A B rPF

Odd-4-parity 3.0 2.6 3.1 3.1 15.0 9.8 12.3 14.2
Odd-5-parity 8.1 16.4 16.9 15.5 42.3 51.9 52.6 51.2
Odd-6-parity 9.1 35.7 27.5 15.9 39.8 74.0 65.9 47.7
Mux-6 0.13 2.6 1.9 0.53 0.51 4.3 4.2 1.1
Mux-11 38.3 804.2 166.2 69.2 53.06 826.3 188.3 85.3
Cmp-4 0.08 0.16 0.21 0.23 0.46 0.42 0.5 0.48
Cmp-6 4.8 9.2 7.3 7.6 22.3 21.9 20.4 22.1

5.2.4 Performance of Branch and Bound

Percentage of performed workload and tree growth dynamics

In this section, the performance results of the Branch and Bound algorithm are

presented. The plots show the average percent of the total workload done by the

algorithm (100% represents the cost of processing the entire tree) as a function of

generation number. Also, the dynamics of average tree size changes are shown. The
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results are averaged over 100 independent evolutionary runs of 1024 individuals, 100

generations each.

Except the two easy problems (4-CMP and 6-MUX ), a pattern can be discerned

regarding the behaviour of BnB. In the cases where parsimony pressure is disabled,

the performed workload percentage drops almost exponentially with increasing gen-

eration number, reaching a minimum of 10% at generation 100. It is interesting that

in almost all cases, the curve which illustrates the mean tree size also has a similar

shape. For the first 20-30 generations, the growth is faster than linear (with respect

to generation number). Then, the growth rate decreases and becomes sub-linear.

This behavior causes the curve to resemble an x
1
2 plot.

As for the situation where parsimony pressure is enabled, the overall efficiency of

the BnB algorithm deteriorates a little, with an optimum usually located between

30% and 40% of the total workload. As the workload is relative, this decrease in

performance cannot be attributed directly to the fact that there are simply fewer

nodes within the tree, since the evolutionary process now favors smaller trees. It is

rather a result of more complex interactions within the population caused by the

modified fitness function (which includes tree size). It seems that two groups of

problems can be isolated based on the shape of their respective workload and tree

size curves. The first group includes the problems 11-Multiplexer, 4-Odd Parity,

and 6-Comparator. The distinguishing feature of this group is that in each case, a

threshold generation number exists which is simultaneously the point where the tree

size achieves its maximum, and the workload percentage has its minimum (e.g. Fig.

5.17). After that point, a sharp drop in tree size and a significant, yet weaker increase

of workload percentage occur. The two curves converge towards each other. This

provides some insight about the mechanics of evolving the solutions. The sharp drop

in tree size indicates that at a certain point, it becomes difficult for the evolutionary

process to find better individuals in terms of congruence with the function to be

learned, so instead it focuses on decreasing the tree size. This is particularly visible

for 4-Odd Parity and 6-Comparator, for which the overall increase in solution quality

between generation 20 and 100 is very small (see Section 5.2.2). It should be noted,

however, that the drop in performance of BnB is not nearly as severe as that of the

tree size - the most spectacular case is when tree size drops from 100% to 50%, while

the workload percentage increases from 30% to 40%.

The second group, represented by the two Odd Parity problems of higher order

(5- and 6-bit), seems more resistant to the influence of parsimony pressure. Although

the workload percentage is still significantly higher that in the parsimony pressure-

free cases (25% vs. 10%), there is virtually no decrease in performance. Once the

workload percentage reaches ca. 30% around generation 40, this level is maintained

through the remainder of the evolutionary process. Also, the drops in tree size are

much less dramatic, reaching about 75% as a minimum value.
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Figure 5.8: 11-Multiplexer without parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number

Figure 5.9: 11-Multiplexer with parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number
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Figure 5.10: 6-Multiplexer without parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number

Figure 5.11: 6-Multiplexer with parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number
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Figure 5.12: 6-Odd Parity without parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number

Figure 5.13: 6-Odd Parity with parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number
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Figure 5.14: 5-Odd Parity without parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number

Figure 5.15: 5-Odd Parity with parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number
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Figure 5.16: 4-Odd Parity without parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number

Figure 5.17: 4-Odd Parity with parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number
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Figure 5.18: 4-Comparator without parsimony pressure. Average tree size
and percentage of performed workload as a function of generation number

Figure 5.19: 4-Comparator with parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number
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Figure 5.20: 6-Comparator without parsimony pressure. Average tree size
and percentage of performed workload as a function of generation number

Figure 5.21: 6-Comparator with parsimony pressure. Average tree size and
percentage of performed workload as a function of generation number
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Average relative depth of best potential fitness

This section presents the data concerning the relative depth within the tree where

the node with the maximum potential fitness is found. The depth is measured as the

percent of the entire tree’s depth, i.e. the length of the longest path from the root to

a leaf. The plots are based on 100 independent evolutionary runs of 1024 individuals

through 100 generations each. The width of the bars on the charts represents the

averaged standard deviations of the relative height for each generation.

Finding a good (ideally, optimal) potential fitness quickly is instrumental in

achieving good performance by the Branch and Bound algorithm, as it leads to

performing a lot of cutoffs at high levels of the tree. Therefore, the average rel-

ative depth of the optimal node has a direct influence on how well the BnB can

constrain the solution space. The results shown in this section can help explain the

phenomenons described in Section 5.2.4.

It is apparent that the problems with parsimony pressure enabled generally re-

quire the evaluating agent to delve deeper into the tree to obtain the maximum

potential fitness value than in case of their counterparts which do not employ par-

simony pressure. Moreover, when the parsimony criterion is in effect, the curves

seem to have a minimum located somewhere before the 50th generation, after which

they turn towards the deeper regions of the tree. This may be a hint as to why

the performance of BnB is worse for the cases where parsimony pressure is enabled.

In contrast, the parsimony-free instances seem to follow the same pattern as it was

the case for workload percentage (see Section 5.2.4) - the relative depth decreases

exponentially.

It is also worth noting that the variances of the relative depths appear to be

different depending on whether parsimony pressure is disabled or enabled. Although

for both cases the variances generally stabilize after constantly decreasing for about

20 generations, in the former case they seem to be substantially smaller.
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Figure 5.22: 11-Multiplexer without parsimony pressure. Average relative
depth at which the optimal Potential Fitness is found, plotted against generation
number. Error bars indicate averaged standard deviation.

Figure 5.23: 11-Multiplexer with parsimony pressure. Average relative depth
at which the optimal Potential Fitness is found, plotted against generation num-
ber. Error bars indicate averaged standard deviation.
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Figure 5.24: 6-Multiplexer without parsimony pressure. Average relative
depth at which the optimal Potential Fitness is found, plotted against gen-
eration number. Error bars indicate averaged standard deviation.

Figure 5.25: 6-Multiplexer with parsimony pressure. Average relative depth
at which the optimal Potential Fitness is found, plotted against generation num-
ber. Error bars indicate averaged standard deviation.
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Figure 5.26: 6-Odd Parity without parsimony pressure. Average relative
depth at which the optimal Potential Fitness is found, plotted against generation
number. Error bars indicate averaged standard deviation.

Figure 5.27: 6-Odd Parity with parsimony pressure. Average relative depth at
which the optimal Potential Fitness is found, plotted against generation number.
Error bars indicate averaged standard deviation.
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Figure 5.28: 5-Odd Parity without parsimony pressure. Average relative
depth at which the optimal Potential Fitness is found, plotted against generation
number. Error bars indicate averaged standard deviation.

Figure 5.29: 5-Odd Parity with parsimony pressure. Average relative depth at
which the optimal Potential Fitness is found, plotted against generation number.
Error bars indicate averaged standard deviation.
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Figure 5.30: 4-Odd Parity without parsimony pressure. Average relative
depth at which the optimal Potential Fitness is found, plotted against generation
number. Error bars indicate averaged standard deviation.

Figure 5.31: 4-Odd Parity with parsimony pressure. Average relative depth at
which the optimal Potential Fitness is found, plotted against generation number.
Error bars indicate averaged standard deviation.
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Figure 5.32: 4-Comparator without parsimony pressure. Average relative
depth at which the optimal Potential Fitness is found, plotted against generation
number. Error bars indicate averaged standard deviation.

Figure 5.33: 4-Comparator with parsimony pressure. Average relative depth
at which the optimal Potential Fitness is found, plotted against generation num-
ber. Error bars indicate averaged standard deviation.
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Figure 5.34: 6-Comparator without parsimony pressure. Average relative
depth at which the optimal Potential Fitness is found, plotted against generation
number. Error bars indicate averaged standard deviation.

Figure 5.35: 6-Comparator with parsimony pressure. Average relative depth
at which the optimal Potential Fitness is found, plotted against generation num-
ber. Error bars indicate averaged standard deviation.
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5.2.5 Distribution of potential fitness

Histogram of potential fitness

This section concerns the distribution of potential fitness values within an average

individual (tree). The diagrams show histograms of relative potential fitness (per-

cent of maximum) as a function of generation number. Each point of the plot is

averaged over 1024 individuals times 100 independent runs. Because the potential

fitness value can be negative, the value 0% corresponds to −2d rather than 0 (where

d is the problem dimension).

The most important information which can be elucidated from the results pre-

sented in this section is the dynamics of the maximum potential fitness within the

average individual, i.e. the way the percentage of nodes having maximum potential

fitness within the tree changes in the course of the evolution. This relates directly

to the convergence rate of the evolutionary process. A brief theoretical analysis of

this relationship will be performed to facilitate the understanding of the results’

significance.

Consider a population P comprised of N individuals. The next generation will

be created with the use of tournament selection of size k, crossover with probability

pxo and reproduction with probability 1 − pxo. Assume that there are exactly b

individuals having the optimal potential fitness within population P. Also, note that

the potential fitness of the entire tree is the maximum potential fitness of any of its

contexts, and during the crossover operation, the insertion point is picked randomly

with uniform probability. In order for the evolutionary process to progress quickly

in the right direction, it would be best if at least one of the best-valued individuals

were picked for crossover and its crossover point corresponded to the context with

the maximum potential fitness.

The probability that at least one of the b optimal nodes will be picked to par-

ticipate in a single tournament during selection is:

ps = 1−

(
N−b
k

)
(
N
k

) = 1−
∏N−k
i=N−b−k+1 i∏N
j=N−b+1 j

(5.3)

Of course, since the individual under consideration has the maximum value within

the population, it will win any tournament and be selected for crossover. The

crossover operation itself takes two individuals (parents) as arguments and creates

only one new individual (offspring); the other one is discarded. Therefore, although

two parents are picked through selection for crossover, the desired effect can only

be achieved if the optimal individual is picked as the first of the two parents. This

means that the expected number of cases where the best individual is considered

the base tree in a crossover operation can be expressed as:

nxo = Npxops (5.4)
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Moreover, we require that the correct context be chosen as the crossover point. In

order for this to happen at least once, it is necessary that:

nxo ∗ pmax ≥ 1 (5.5)

where pmax is the probability that the optimal context will be chosen, which may be

interpreted as the percentage of all nodes within the tree which have the maximum

potential fitness. Therefore,

pmax ≥
1

nxo
(5.6)

Equation 5.6 can now be applied to the actual experiment. As stated in Section

5.1, the parameter values are as follows: N =1024, k=7, pxo=0.9. As for the assumed

number of optimal solutions, two cases will be considered: b=1 and b=2. The

corresponding pmax values are:

p1
max ≈ 0.16, p2

max ≈ 0.08 (5.7)

The results show that for all considered problems and their variations, the average

percentage of maximum-valued nodes does not drop below 11%. This means that

as long as there are at least two individuals with the maximum fitness in every

generation, the desired effect should occur at least once. However, this does not hold

for the case where there is only one individual with the maximum potential fitness.

Such a situation may occur in the closing generations for the harder problems like

11-Multiplexer or 6-Odd Parity. Therefore it is hypothesized that these problems

could benefit from an increase in population size (in terms of average solution quality

and/or success rate).

Aside from the percentage of optimum nodes, the potential fitness histogram

appears to be heavily shifted towards the higher values. As an example, consider

the 6-Comparator problem. The vast majority of the nodes has an average quality

of over 95% of the maximum.

Also, it seems that when parsimony pressure is enabled, the percentage of opti-

mum nodes decreases considerably. This is especially visible in the second half of

the evolutionary process, i.e. generations 50-100.



5.2. Results 78

Figure 5.36: 4-Comparator without parsimony pressure. Histogram of Poten-
tial Fitness across all generations. Average from 100 independent runs.

Figure 5.37: 4-Comparator with parsimony pressure. Histogram of Potential
Fitness across all generations. Average from 100 independent runs.
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Figure 5.38: 6-Comparator without parsimony pressure. Histogram of Poten-
tial Fitness across all generations. Average from 100 independent runs.

Figure 5.39: 6-Comparator with parsimony pressure. Histogram of Potential
Fitness across all generations. Average from 100 independent runs.
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Figure 5.40: 6-Multiplexer without parsimony pressure. Histogram of Poten-
tial Fitness across all generations. Average from 100 independent runs.

Figure 5.41: 6-Multiplexer with parsimony pressure. Histogram of Potential
Fitness across all generations. Average from 100 independent runs.
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Figure 5.42: 11-Multiplexer without parsimony pressure. Histogram of Po-
tential Fitness across all generations. Average from 100 independent runs.

Figure 5.43: 11-Multiplexer with parsimony pressure. Histogram of Potential
Fitness across all generations. Average from 100 independent runs.
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Figure 5.44: 4-Odd Parity without parsimony pressure. Histogram of Poten-
tial Fitness across all generations. Average from 100 independent runs.

Figure 5.45: 4-Odd Parity with parsimony pressure. Histogram of Potential
Fitness across all generations. Average from 100 independent runs.
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Figure 5.46: 5-Odd Parity without parsimony pressure. Histogram of Poten-
tial Fitness across all generations. Average from 100 independent runs.

Figure 5.47: 5-Odd Parity with parsimony pressure. Histogram of Potential
Fitness across all generations. Average from 100 independent runs.
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Figure 5.48: 6-Odd Parity without parsimony pressure. Histogram of Poten-
tial Fitness across all generations. Average from 100 independent runs.

Figure 5.49: 6-Odd Parity with parsimony pressure. Histogram of Potential
Fitness across all generations. Average from 100 independent runs.
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Spectrogram of relative potential fitness vs. relative depth in tree

This section contains the results which show the distribution of average relative

potential fitness as a function of average depth of the node within the tree and

generation number. The results are averaged over 100 independent runs of 1024

individuals by 100 generations each. The color of a point on the plot corresponds

to the percentage of the maximum fitness within the tree for a given percentage of

the tree’s height at a specified generation number. The purpose of this data is to

answer questions of the type ’what is the average quality of nodes which lie within
1
3

of the tree height towards the end of the evolution ?’.

The results indicate that the average quality of nodes in the lower portions of

the tree (at greater depth) is generally better that that of the nodes situated near

the root. However, at about 30-40% of the tree’s height, this no longer applies and

the differences are minimal for the remainder of the depth range (40-100%).

An interesting phenomenon can be observed when comparing pairs of corre-

sponding problems for enabled/disabled parsimony pressure. In case of disabled

parsimony pressure, the diagrams become blurred around generation 50, which con-

tinues until the end of the evolution. In contrast, the diagrams representing problem

variations with parsimony pressure enabled are comprised of solid, sharp lines which

show little or no change throughout the entire generation span. The reason this oc-

curs is probably the vastly superior mean tree size of the first case compared to the

second - the basic algorithm (not employing parsimony pressure) can produce trees

up to three times as large (on average) as the ones constructed by the parsimony-

enhanced version. Therefore, more data contribute to every point on the plot, which

makes it more random.

The results suggest that there is no optimal relative depth where it is best to

search for solutions of excellent quality (near 100%), although there are extensive re-

gions within the tree where the quality exceeds 90% of the best potential fitness, and

therefore such a value can be achieved without much computational effort. However,

the results for the randomized heuristic presented in Section 5.2.2 show that this is

not enough to significantly outperform standard, canonical Genetic Programming.
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Figure 5.50: 4-Comparator without parsimony pressure. Spectrogram of Po-
tential Fitness vs. Relative Depth in tree. Average from 100 independent runs.

Figure 5.51: 4-Comparator with parsimony pressure. Spectrogram of Poten-
tial Fitness vs. Relative Depth in tree. Average from 100 independent runs.
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Figure 5.52: 6-Comparator without parsimony pressure. Spectrogram of Po-
tential Fitness vs. Relative Depth in tree. Average from 100 independent runs.

Figure 5.53: 6-Comparator with parsimony pressure. Spectrogram of Poten-
tial Fitness vs. Relative Depth in tree. Average from 100 independent runs.
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Figure 5.54: 6-Multiplexer without parsimony pressure. Spectrogram of Po-
tential Fitness vs. Relative Depth in tree. Average from 100 independent runs.

Figure 5.55: 6-Multiplexer with parsimony pressure. Spectrogram of Potential
Fitness vs. Relative Depth in tree. Average from 100 independent runs.
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Figure 5.56: 11-Multiplexer without parsimony pressure. Spectrogram of
Potential Fitness vs. Relative Depth in tree. Average from 100 independent
runs.

Figure 5.57: 11-Multiplexer with parsimony pressure. Spectrogram of Poten-
tial Fitness vs. Relative Depth in tree. Average from 100 independent runs.
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Figure 5.58: 4-Odd Parity without parsimony pressure. Spectrogram of Po-
tential Fitness vs. Relative Depth in tree. Average from 100 independent runs.

Figure 5.59: 4-Odd Parity with parsimony pressure. Spectrogram of Potential
Fitness vs. Relative Depth in tree. Average from 100 independent runs.
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Figure 5.60: 5-Odd Parity without parsimony pressure. Spectrogram of Po-
tential Fitness vs. Relative Depth in tree. Average from 100 independent runs.

Figure 5.61: 5-Odd Parity with parsimony pressure. Spectrogram of Potential
Fitness vs. Relative Depth in tree. Average from 100 independent runs.
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Figure 5.62: 6-Odd Parity without parsimony pressure. Spectrogram of Po-
tential Fitness vs. Relative Depth in tree. Average from 100 independent runs.

Figure 5.63: 6-Odd Parity with parsimony pressure. Spectrogram of Potential
Fitness vs. Relative Depth in tree. Average from 100 independent runs.



Chapter 6

Conclusions

In this thesis, a new approach to evaluating individuals in Genetic Programming

applied to boolean functions was studied. This approach, referred to as Potential

Fitness, attempts to estimate the future fitness of the individual.

The method was implemented in the Java programming language and exten-

sively investigated using the Evolutionary Computations in Java (ECJ) framework,

and 7 benchmark boolean problems from the Odd Parity, Comparator, and Mul-

tiplexer families. The calculations were performed in two configurations: with or

without the presence of lexicographic parsimony pressure.

The impact of using the Potential Fitness approach on the quality of the ob-

tained solutions was studied and compared to the performance of standard Genetic

Programming. It was determined that the new approach performs better in terms

of success rate, average hit rate of best individual, and in some cases, average num-

ber of generation when the ideal individual is found, for the vast majority of the

examined problems, both in the presence and absence of parsimony pressure.

A dedicated method for calculating the exact value of Potential Fitness for an

individual was designed. It was found that it significantly outperforms the reference

method of calculating Potential Fitness (through the definition of context seman-

tics).

A randomized method for calculating an estimate of an individual’s potential

fitness was proposed. Its running times and various aspects of the solution quality

were analyzed. It was determined that while it offers significantly lower running

times than the exact method, the quality of the obtained results is seldom an im-

provement compared to standard GP. This suggests that it is difficult to find a

heuristic algorithm which can yield an interesting tradeoff between solution quality

and execution time.

The main goal of this thesis, which was the investigation of the properties of

the Potential Fitness approach, and proposing a possibly efficient method of its

calculation, has been achieved. Part of the results were published and presented at

93
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the Genetic and Evolutionary Computation Conference (GECCO) 2008 [24].

Further research

It seems that generalizing the Potential Fitness approach to other finite domains is

difficult due to the dramatic rise in computational complexity. Also, for domains of

higher order than 2, the probability that the output value of a tree remains constant

regardless of the subtree at a specific context decreases significantly, and therefore

the number of fixed elements in the context semantics of a tree would be very low,

effectively rendering the potential fitness useless.

It could be interesting to investigate another aspect of the evolutionary process.

Perhaps if the crossover point of the tree were chosen with a probability of the

potential fitness of the corresponding context (instead of a uniform probability for

all nodes), the solution quality could be enhanced even further. This, however, would

make it necessary to calculate the potential fitness of every node, which would make

the use of Branch and Bound impossible, and thus cause the calculation times to

increase significantly, perhaps beyond an acceptable threshold.
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