
BrilliANT:

The Winner Entry of the GECCO'2007

Ant Wars Contest

Wojciech Ja±kowski, Krzysztof Krawiec, Bartosz Wieloch

Poznan University of Technology, Pozna«, Poland
Institute of Computing Science
Research Report RA-05/07

July 14, 2007

Introduction and game rules

BriliANT is the name of a program that won the GECCO'2007 Ant Wars

contest. Ant Wars was one of the competitions organized within GECCO'2007,
Genetic and Evolutionary Computation Conference, in London, England, July
7�12, 2007. The goal was to evolve a controller for a virtual ant that collects
food in a square toroidal grid environment in the presence of a competing ant. In
a sense, this game is an extension of the so-called Santa-Fe trail task, a popular
genetic programming benchmark.

An Ant Wars game takes place on a square toroidal grid of size 11x11. At
the beginning of the game, the two opponent ants are placed at predetermined
board locations. The starting coordinates of Ant 1 and Ant 2 are (5, 2) and
(5, 8), respectively.

Before game starts, 15 pieces of food are randomly distributed over the
board. No piece of food can be located in ants' starting cells.

Each ant has a limited �eld of view (FOV) consisting of a square neigh-
borhood of size 5x5 centered at its current location. An ant receives complete
information about the states of all cells within FOV (empty, food, enemy).

The game lasts for 35 moves per each player. Ant 1 moves �rst. If an ant
moves into an empty cell, nothing happens. If an ant moves into a cell with
food, it scores 1 point and the cell is emptied. If an ant moves into the cell
occupied by the opponent, it kills the opponent: no points are scored but only
the survivor can go on collecting food until the end of the game. A game is won
by the ant that reaches the highest score. In case of a tie, Ant 1 is the winner.

As the game outcome strongly depends on the actual food distribution, the
games are grouped into matches. Each match lasts 5 games. The match winner
is the �rst player to win 3 games. In the �rst four games of a match contestants
take roles of Ant 1 and Ant 2 alternatively. In the 5th game the player with the
highest total score in the �rst 4 games plays Ant 1. In case both players have
reached the same total score, the player with the highest score in a single game
plays Ant 1. If a further tie occurs, the ants are assigned randomly.

Task speci�cation

The Ant War contestants were required to evolve an ANSI-C function with the
following interface:

int Move(int **grid, int my_row, int my_column)

where grid is a pointer to an integer 2-dimensional array representing the status
of cells in the grid (FOV), while my_row, my_column are integers representing
current ant position, with cell grid[0,0] being the upper left-most cell of the grid,
and scanning the grid row-wise (C-like array memory storage). Contestants were
required to produce a text �le, no longer than 5Kbytes, containing the code of
the function that conformed the above interface.

1

For the FOV state as given by grid, the function must indicate ant's next
move by returning one of the following values:

• 0 = move one step NW

• 1 = move one step N

• 2 = move one step NE

• 3 = move one step E

• 4 = move one step SE

• 5 = move one step S

• 6 = move one step SW

• 7 = move one step W

Each game corresponds to a new run of the program which calls the Move

function, so possible static variables used by it are re-initialized at every game
restart.

The contest winner was selected by playing a round robin tournament be-
tween all contenstants. In the case of tie at the end of the tournament, a
tie-break game/tournament would be played between the top-ranked entries.

Motivations for our ant design

One of our �rst observations concerning Ant Wars was that ant's FOV is rather
small (24 �elds when excluding the actual ant's position). If one considers food
locations only and takes into account rotational invariance and symmetry, there
are 224/4/2 = 221 = 2097152 unique FOV states (when ignoring the constraint
placed on the amount of food and the existence of opponent). As FOV occupies
approx. 20.7% of the ant's world and the total number of food pieces amounts
to 15, the expected number of food pieces within FOV is slightly more than
3 when the game begins. Also, the probability of having n food pieces within
FOV drops quickly as n increases and, for instance, for n = 8 it amounts to less
than 0.5%. This further reduces the number of realistically possible FOV states
by several orders of magnitude.

This suggests that it is di�cult to build a sophisticated strategy based only
on the current FOV state. Probably more may be gained by virtually extending
the FOV, i.e., keeping track of board state as the ant moves. To enable this,
we equip our ants with memory, which involves the following three components,
each of them implemented as a two-dimensional array overlayed over the board:

• food memory F that keeps track of food locations observed by the ant
during game,

• certainty table C that describes ant's belief in past board states,

2

• track table V that marks the cells visited by ant in the past.

At each move, the ant copies food locations from its FOV into F . Within
FOV, old states of F are overridden by the new ones, while F cells outside the
current FOV remain intact. As board states may change subject to opponent's
behavior and make the memory state obsolete, we also simulate memory decay
in certainty table C. Initially, the certainty for all cells is set to 0. During
the game, the certainty for the cells within FOV is always 1, while for cells
(with food) outside FOV it exponentially decreases at each game move (with
arbitrarily-chosen factor 0.9).

Table V stores ant's `pheromone track', which is supposed to help avoid the
already visited locations. It is initially �lled with zeros, and visiting the cell is
re�ected by setting the corresponding table element to 1.

An ant may always escape the opponent's threat and avoid being killed.
Therefore, we did not explicitly promote any chasing or avoidance strategies.

Ant representation

To evolve our ants, we used tree-based, strongly typed genetic programming
(GP, [1]). The GP tree is expected to evaluate the utility of the move in par-
ticular direction: the more attractive the move, the greater tree's output. To
bene�t from rotational invariance, the same genetic code is invoked to evaluate
multiple orientations. However, as ants are allowed to move in directions paral-
lel to the coordinate axes as well as diagonally, we evolve two separate trees to
handle these cases: a `straight ' tree for handling main directions (N, E, S, W)
and a `diagonal ' tree to handle the diagonal directions (NE, NW, SE, SW)1.

Thus, each individual is implemented as a pair of GP trees: `straight' tree
and `diagonal' tree. We present the FOV state to the trees by appropriately
rotating the coordinate system by a multiple of 90 degrees; this a�ects both
FOV and the ant's memory. The orientation that maximizes trees' output
determines the ant's move. Ties are resolved deterministically by preferring the
earlier directions on the list.

Our GP trees involve operators that use three data types: �oat (F), boolean
(B), and area (A). The area type represents a rectangular region, given as a
quadruple of numbers: the coordinates of the rectangle center (relative to ant's
current position, modulo board dimensions), and the dimensions of the rectan-
gle. When mapping to the phenotype, the area dimensions are transformed in
such a way that their sum e�ectively does not exceed 6. For instance, (2,3),
(3,3), and (1,5) are correct area dimensions and are directly used in the pheno-
type, while dimensions (3,4) are mapped to (2,3) in phenotype.

The function set includes the following operators:

• Functions implementing terminal nodes:

1We considered using a single tree and mapping diagonal boards into straight ones; however,
this leads to signi�cant topological distortions which could possibly signi�cantly deteriorate
ant's perception.

3

� Ephemeral random constants (ERCs):

∗ Const(): Real-valued ([−1; 1)) ephemeral random constant for
type F,

∗ ConstInt(): Integer-valued (0..5) ephemeral random constant for
type F,

∗ Rect(): Ephemeral random constant for type A.

� Functions based on ant's memory:

∗ TimeLeft() � returns the number of moves remaining to the end
of the game, i.e. 35−Time(),

∗ Points() � returns the number of food pieces collected so far by
the ant,

∗ PointsLeft() � returns 15−Points().

• Functions implementing non-terminal nodes (operators):

� Functions returning boolean (B) values:

∗ IsFood(A) � returns true if area A contains at least one piece of
food,

∗ IsEnemy(A) � returns true if area contains the opponent,

∗ Logic operators: And(B,B), Or(B,B), Not(B),

∗ Arithmetic comparators: IsSmaller(F,F), IsEqual(F,F).

� Functions returning �oat (F) values:

∗ Scalar arithmetics: Add(F,F), Sub(F,F), Mul(F,F),

∗ If(B,F,F) � evaluates and returns second child if �rst child re-
turns true, otherwise evaluates and returns its third child,

∗ Functions operating on the area:

· NoFood(A) � returns the number of food pieces in area,

· NoEmpty(A) � returns the number of empty cells in area,

· NoVisited(A) � returns the number of cells already visited in
the area,

· FoodHope(A) � returns estimated number of food pieces that
may be reached by the ant within two moves (assuming the
�rst move is made straight ahead, and the next one in arbi-
trary direction).

Note that the functions that take the argument of area type compute their
return value basing not only on FOV, but on the food memory table F and
the certainty table C. For example, NoFood(a) returns the scalar product,
constrained to area a, of table F (food pieces) and table C (certainty).

One should also emphasize that essentially all function used are unsophisti-
cated. Even the most complex of them boil down to counting matrix elements
in designated rectangular areas.

4

Evolutionary setup

The ants undergo competitive evaluation, i.e., they do not confront any exter-
nally provided selection pressure, but face each other. Moreover, our approach
does not involve explicit �tness measure. Rather than that, we combine the eval-
uation phase and selection phase, so that each tournament directly determines
the outcome of selection. This feature makes our approach signi�cantly di�er-
ent from most of contributions presented in literature. Apart from conceptual
simpli�cation, this also signi�cantly lessens the computational burden.

To constrain the number of games needed for selection, we use single elim-
ination tournament: the ants are paired at random, play matches against each
other, and the winners pass to the next stage. The pairing and games repeat in
consecutive stages. The winner of the last (�nal) match becomes the result of
the selection process.

Trying to avoid the bias towards particular board state, we make each match
consist of 2× k games. The games are played on k randomly generated boards.
To provide for fair play, the contestants play two games on the same board,
once as Ant 1 and once as Ant 2; we refer to such a pair of games double-game.
To win the match, an ant has to win k + 1 or more games within the match.
In the case of tie, the total score is taken into account. If there is still a tie, a
randomly selected contestant wins.

To bene�t from on-line batch compilation of individuals into C code (see
Section), we used generational evolutionary algorithm. Typical evolutionary
run lasted for 1500 generations, involved population of size 2000, and took 48
hours on a Core Duo 2.0 GHz PC (with two evaluating threads, each for one
island). The mutation and crossover operators rely on default ECJ implemen-
tation, while the ERC mutation operators have been separately implemented
for particular ERC nodes:

• For Const() we perturb the ERC with a random, normally distributed
value with mean 0.0 and standard deviation 1/3.

• For ConstInt() we perturb the ERC with a random, uniformly distributed
integer value from interval [−1; 1].

• For Rect() we perturb each rectangle coordinate with a random, uniformly
distributed integer value from interval [−1; 1].

In all cases, we trim the perturbed values to the admissible intervals.

The technical implementation

We used ECJ (Evolutionary Computation in Java [2]) version 16 as the evolu-
tionary engine for our experiments. However, to meet contest rules that require
the ant code to be provided in C programming language, and to speed up the
evaluation process, we developed a game server � an external program invoked

5

by ECJ when needed. Technically, when ECJ comes to the evaluation phase, it
serializes the entire population into one large text �le, encoding each individual
as a separate C function with a unique name. For each individual, this involves
traversing its two GP trees and building a character strings that encodes the
corresponding expressions in C, plus a preamble (a �xed piece of code containing
function header and initialization of temporary variables).

The resulting �le is then complied and linked with the game server. Next, the
game server is launched and performs the entire evaluation and selection process,
returning the ids of selected individuals as a result to the ECJ process. As all
individuals are encoded in one C �le, the compilation overhead is reasonably
small, and it is paid o� by the speedup provided by C (compared to Java). This
entire process allows us also to monitor the actual size of C code, constrained
by contest rules to 5kB.

The F , C, and V tables are implemented as static variables declared inside
the C function.

How the BrilliANT evolved

To evolve our �nal contestant, we carried out a series of preliminary experiments
that veri�ed di�erent variants of the approach, including:

• single population evolution vs. island model,

• explicit �tness (based on game score) vs. implicit �tness (selection based
directly on tournament results),

• di�erent variants of selection procedure.

The best evolved ant, called BrilliANT in the following, evolved in an exper-
iment with evolutionary parameters that are summarized in Table 1. For the
parameters not mentioned here explicitly, the ECJ's defaults have been used [2].
It is worth mentioning that many other evolutionary runs produced individuals
that perform almost as well as BrilliANT.

The original encoding of BrilliANT's trees can be found in .

How the BrilliANT was chosen

The process of choosing the best-of-run ant in case of 2-players game is computa-
tionally very demanding. We believe that the fairest and most exact method to
choose the best ant is the round robin tournament with double-game matches;
this is how BrilliANT was chosen. Let us, however, point out the numbers.
Assuming that a match consists only of one double-game, the number of games
needed is more than 10,000,000. For comparison, every generation of the evo-
lutionary run involves only 4× 2× 2250 = 18000 games. That means that this
simple process of choosing the best-of-run ant is computationally as costly as
562 generations of evolution.

6

Table 1: The settings of evolutionary run. Tournament size 5 implies that 6
matches have to be played in the single elimination tournament.

Parameter Value

Crossover probability 0.8
Mutation probability 0.1

ERC mutation probability 0.1
Individual initialization method ramped half-and-half

Tree depth limit 8
Population size 2250
Generations 1350

No. games in a match 2× 6
Tournament size 5

It is important to point out that the BrilliANT was chosen in a com-

pletely autonomous way. By that we mean that no human-made �xed op-
ponent was used during this process.

Human competitiveness

In Ant Wars, one can consider two meanings of human competitiveness.

• Direct competitiveness: How does an evolved ant perform when play-
ing a game with a human?

• Indirect competitiveness: How does an evolved ant perform when play-
ing a game with a program devised by a human (called HumANT in the
following)?

In the following, we consider both these cases.

Direct competitiveness: BrilliANT meets humans

We implemented a simulator that allows humans to play games against an ant
(whether evolved or HumANT). One of us played 150 games against BrilliANT.
The results are following:

player games won total score

Human 64 992
BrilliANT 86 1079

Even when we take into account the fact, that after playing 150 games in
a row, a human player starts to make mistakes, the result (BrilliANT wins in
more than 57% of games) can be de�nitelly considered as human competitive.

7

Indirect competitiveness: BrilliANT meets HumANTs

To assess the indirect competitiveness, we provided several manually designed
ants (HumANTs). The process of designing HumANTs was iterative. Initially,
we designed GreedyANT, however it was beaten by the ant evolved in on of the
�rst evolutionary experiments. Putting more thought in the designing process
we created SmartANT. At this point we increased the maximum tree depth
from 7 to 8 and increased the number of generations from 1000 to 2000. Using
this setup, we were again able to evolved an ant that beats SmartANT. Hav-
ing learned the lessons with GreedyANT and SmartANT, we �nally designed
SuperANT and HyperANT.

HyperAnt is the best ant we could develop manually. It tries to optimize
the amount of food it can eat by considering 5 moves ahead. It is also equipped
with a probabilistic memory model and a set of several end-game rules (e.g.,
when you have 7 points, ignore the opponent and take the food).

To our surprise, we could �nd an ant (EvolANT) that is as good as the
HyperANT. When playing 2×100, 000 games against the HyperANT, EvolANT
wins 50.058% of them. This result is, however, statistically insigni�cant (α =
0.05), thus we can only say that EvolANT and HyperANT seem to be equally
good. Moreover, in order to �nd EvolANT we explicitly tested ants from the last
generations against the manually designed HyperANT. As this, in our opinion,
would violate the autonomy of an evolutionary process and introduce some
degree of human intervention, we dropped HyperANT and decided to the submit
fully autonomously evolved BrilliANT for the contest.

Quite interestingly, we observed that EvolANT was a bit over�tted � it
heavily loses against BrilliANT (in 51.8% of 2×100, 000 games). This is probably
caused by the way it was chosen: by playing matches against HyperANT only.
BrilliANT, however, loses against HyperANT (in 51.9% of 2× 100, 000 games).

The following table shows the results of Ro und Robin Tournament (2×5000
games in a match) between several mentioned ants.

player matches won games won total score

EvolANT 6 34712 449858
HyperANT 5 34940 452247
BrilliANT 5 34472 457250
Evol2ANT 5 34178 458121
SuperANT 4 33934 450203

Noname1ANT 2 33439 450427
Noname2ANT 1 31524 437863

SmartANT 0 21669 365867

Names in bold represent the evolved ants. Apart from ants mentioned earlier,
Evol2ANT is a `younger brother' of EvolANT evolved in the same experiment,
whereas Noname1ANT and Noname2ANT are some ants from very early, pre-
liminary experiments.

8

Basing on the games won column, we can notice that the competition be-
tween top designed and evolved is very tight, and that the number of games per
match must be large to spot the di�erence in players' performance.

Interesting behaviors observed in evolved ants

While experimenting with Ant Wars approach we observed several interest-
ing phenomena. One of them was the emergence of kamikaze ants. The ants
from several initial generations play poorly and are likely to be killed by the
opponent. With time, they learn how to avoid the enemy and, usually at 200-
300th generation, the best ants become perfect at escaping that threat (see Fig.
1b). However, in some scenarios such behavior may be undesired. In particular,
a deadlock may occur where two ants hesitatingly walk around a single piece of
food but refuse to consume it, fearing the opponent. When the game is coming
to an end and the likelihood of �nding more food becomes low, it may pay o�
to sacri�ce ones life in exchange for food. In several experiments, we observed
spontaneous emergence of such behavior at later evolution stages, after a long
period of ruling of `perfect escapers'. This e�ect can be shown in Fig. 1b.

Note that, although these �gures have been obtained by playing matches
between the best-of-generation ants and HumANTs, the evolutionary process as
such is completely autonomous as it does not rely on external information but
on competitive evaluation as de�ned in Section .

9

0%

10%

20%

30%

40%

50%

60%

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f w
in

s

generation

(a) Percent of wins against the hyperANT

0%

10%

20%

30%

40%

50%

60%

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ki
lle

d
pe

r
ga

m
e

generation

(b) Percent of deaths per game

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

po
in

ts
 p

er
 g

am
e

generation

(c) Average score per game

Figure 1: Graphs show evolution dynamics for a typical process of evolution.
Each point corresponds to an best-of-generation ant chosen on the basis of 500
games against the HyperANT. The presented values are averaged over 2×10000
games against HyperANT. It can be noticed that the evolution process usually
converges around 1300 generation when the wining rate against a �xed opponent
ceases to improve.

10

Bibliography

[1] J. Koza. Genetic programming � 2. MIT Press, Cambridge, MA, 1994.

[2] S. Luke. ECJ evolutionary computation system, 2002. (http://cs.gmu.edu/
eclab/projects/ecj/).

11

The original encoding of BrilliANT's trees

Note that the C encoding uses di�erent notation for the `rect()' function: the
four arguments correspond to lower left and upper right coordinates of the
rectangular area relative to ant's current position (as opposed to midpoint and
dimensions used in this original GP code).

The `straight' tree:

add
if

not
or

isEnemy
rect(0,-3,2,1)

and
isEnemy rect(-2,-1,3,2)
isEnemy rect(-1,0,1,2)

if
isFood

rect(0,-2,1,2)
mul

foodHope
if

isFood rect(-1,-3,1,1)
noFood rect(-2,-3,3,3)
add (add foodHope foodHope) (mul timeLeft foodHope)

add
sub

add (add foodHope foodHope) (mul timeLeft foodHope)
pointsLeft

if
isEnemy rect(0,0,1,2)
sub (mul timeLeft foodHope) pointsLeft
add (add constint(5) pointsLeft) (noEmpty rect(-2,-2,3,2))

add
points
if

and
isEnemy rect(1,-1,2,1)
not (isFood rect(-1,-2,1,1))

mul
add timeLeft timeLeft
timeLeft

constint
2

if
and

and
isEnemy

rect(-1,-2,4,2)
and

isEnemy rect(-2,-1,3,2)
not (isEnemy rect(-2,-1,3,2))

and
or

isEnemy rect(-1,0,1,2)
or (isEnemy rect(0,-1,2,1)) (isFood rect(-2,-3,1,1))

isEnemy
rect(2,0,4,3)

if
and

isEnemy
rect(0,-3,2,1)

and
isEnemy rect(3,-2,4,2)
isFood rect(-1,0,1,1)

if
or

not (isEqual pointsLeft points)
or (isEnemy rect(0,-2,2,1)) (isEnemy rect(-2,0,2,4))

if
and (isEnemy rect(2,0,2,1)) (isEnemy rect(-2,-1,3,2))
add foodHope (noEmpty rect(-2,-2,2,4))
add timeLeft (noEmpty rect(-2,-1,2,1))

add
foodHope
foodHope

if
and

isFood rect(-1,-2,2,2)

12

not (isEnemy rect(-1,-1,2,1))
if

isEnemy rect(-1,1,1,2)
mul timeLeft foodHope
add (add constint(5) pointsLeft) (noEmpty rect(-2,-2,2,2))

pointsLeft
if

and
isFood

rect(0,-2,1,2)
or

isEnemy rect(0,-1,2,1)
or (isEnemy rect(0,-1,2,1)) (isFood rect(-1,-2,1,1))

if
isEnemy

rect(0,-2,2,2)
points
if

isFood rect(0,-2,1,1)
add timeLeft (mul timeLeft foodHope)
add (add constint(5) pointsLeft) constint(3)

const
-0.31385064

The `diagonal' tree:

add
if

or
or

and
not (isEnemy rect(0,-1,2,1))
isEnemy rect(0,-1,2,1)

isEnemy
rect(0,-1,2,1)

or
isFood

rect(-2,-2,5,4)
and

isFood rect(0,-3,1,3)
and (isEnemy rect(-1,0,1,2)) (isEnemy rect(0,-3,2,1))

if
or

isEnemy
rect(0,-2,2,2)

or
isFood rect(0,-3,1,3)
isEnemy rect(-1,0,1,2)

if
and

isEnemy rect(-2,-1,3,2)
isEnemy rect(-1,0,1,2)

mul
timeLeft
timeLeft

constint
3

constint
4

const
-0.31385064

add
if

isEnemy
rect(-2,-2,3,4)

if
not

and (isEnemy rect(3,-3,3,4)) (isEnemy rect(0,-1,2,1))
noFood

rect(2,-4,5,4)
if

isEnemy rect(0,-1,2,1)
add (add constint(5) pointsLeft) (noEmpty rect(0,-1,2,1))
pointsLeft

if
and

or (isEnemy rect(0,-1,5,1)) (isFood rect(-1,-2,4,2))
isEnemy rect(-2,-2,3,4)

add
points
pointsLeft

add
timeLeft
noEmpty rect(-2,-2,3,2)

if
and

13

and
or (isEnemy rect(-1,-1,2,1)) (isFood rect(-1,-3,1,1))
isEnemy rect(-2,-2,3,4)

or
isEnemy rect(1,-1,2,1)
and (isEnemy rect(0,-2,2,2)) (isEnemy rect(0,-1,2,1))

if
and

isEnemy rect(-1,-1,2,1)
and (isEnemy rect(-2,-1,3,2)) (isFood rect(0,-2,1,1))

noEmpty
rect(-2,-2,3,2)

constint
3

if
isEnemy

rect(-2,-1,3,2)
add

add (noEmpty rect(-3,0,2,5)) (noEmpty rect(-3,-1,2,3))
noFood rect(3,-3,1,4)

add
mul foodHope (mul timeLeft foodHope)
add (add foodHope foodHope) (noFood rect(-2,-3,3,3))

14

