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Abstract. We propose a learning algorithm that reuses knowledge ac-
quired in past learning sessions to improve its performance on a new
learning task. The method concerns visual learning and uses genetic pro-
gramming to represent hypotheses, each of them being a procedure that
processes visual primitives derived from the training images. The process
of recognition is generative, i.e., a procedure is supposed to restore the
shape of the processed object by drawing its reproduction on a separate
canvas. This basic method is extended with a knowledge reuse mecha-
nism that allows learners to import genetic material from hypotheses that
evolved for the other decision classes (object classes). We compare both
methods on a task of handwritten character recognition, and conclude
that knowledge reuse leads to signi�cant improvement of classi�cation
accuracy and reduces the risk of over�tting.

1 Introduction

Most of contemporary machine learning (ML) algorithms are designed to pro-
cess isolated learning tasks. Usually, a learning algorithm (inducer) produces a
classi�er based exclusively on the training data provided for particular learning
task. In that process, the inducer relies on �xed inductive bias (priors) that does
not change from task to task. There is no way of reusing the knowledge that the
inducer could have acquired when inducing classi�ers in the past.

This limitation is conspicuously inconsistent with the human way of learning,
which is always based on individual's past experience. Priors in human learning
come from one's history of dealing with similar tasks. More than that, acquiring
new skills in isolation from past experience is impossible for humans. By reusing
knowledge, humans can successfully learn in demanding conditions, e.g., when
the number of training examples is small or in presence of data inconsistency.

The ability to reuse knowledge would be de�nitely a virtue for a machine
learning system, speeding up the convergence of the learning process, reduc-
ing the risk of over�tting, and keeping down the number of training examples
required to learn the concept. Some of these bene�ts have been already demon-
strated in related studies on, e.g., multitask learning [1]. However, the last decade



did not bring breakthrough in this topic, and knowledge reuse is still listed among
the most challenging issues in ML [14].

Incapability of ML systems to reuse knowledge is due to several reasons.
Firstly, in the most popular paradigm of inductive learning from examples de-
scribed by attribute-value pairs, it is di�cult to identify universal, or even
domain-speci�c knowledge. Attributes describing examples are highly task-speci�c,
which reduces chances of �nding their counterparts in another learning task.
Secondly, many knowledge representations used in ML make it di�cult to mod-
ularize or transfer knowledge. For instance, there is little chance for a fragment
of a neural network to be useful in another network taught to solve a di�erent
learning task.

Challenged by these limitations, in this paper we exploit the paradigm of ge-
netic programming (GP, [7]) as a vehicle for knowledge reuse. We demonstrate
that GP is a convenient platform for this purpose, due to, among others, the
symbolic knowledge representation and the ability of abstraction from a spe-
ci�c context. In particular, we use our method presented in [5] that implements
knowledge reuse between evolving learners by allowing them to cross over parts
of their genetic material. We apply the method to a large-scale task of visual
learning (handwritten character recognition) and show that knowledge reuse im-
proves the convergence of the learning process and prevents over�tting.

2 Related Work

Reported research on knowledge reuse concerns mostly knowledge reuse within
a single learning task, with the exception of multitask learning [1] and meta-
learning [19], which mostly concern learning from �xed-length attribute-value
representation. In the context of GP, knowledge reuse is often connected with
knowledge encapsulation [8,17,2,4], which is however not used in the approach
presented here. Among reported approaches, the Case Injected Genetic Algo-
rithm (CIGAR) by Louis et al. [11] resembles our contribution the most. In
CIGAR, the experience of the system is stored in a form of solutions to problems
solved earlier (`cases'). When confronted with a new problem, CIGAR evolves a
new population of individuals and injects it periodically with such remembered
cases. Experiments demonstrated CIGAR's superiority to standard GA in terms
of search convergence. However, CIGAR injects complete solutions only, works
in a strictly sequential way, and does not involve GP, making it signi�cantly
di�erent from our approach.

In this paper, we investigate visual learning. As image interpretation is in-
herently complex, it is di�cult to devise a learning method that solves such a
task as a whole. Rather than that, most methods proposed so far introduce some
learning or adaptation at a particular stage of image processing and analysis,
which enables easy interfacing with the remaining components of the recognition
system. For instance, training a machine learning classi�er on some prede�ned
image features is a typical example of such an approach. In this paper, we pro-
pose a learning method that spans the entire processing chain, from the input



image to the �nal decision making, and produces a complete recognition system.
Former research on such systems is rather scant [18,16,13,10,3].

3 Generative Visual Learning

The approach, originally proposed in [9] and further developed in [6], may be
shortly characterized as generative visual learning, as our evolving learners aim
at reproducing the input image using some simpler means. Reproduction takes
place on a virtual canvas spanned over the input image. On that canvas, the
learner (genetic programming individual) is allowed to perform some elementary
drawing actions (DAs for short) in response to the input image. In particular, we
consider handwritten characters and, to enable learners to restore their shapes,
our DAs line sections. Fitness function compares the contents of the canvas to the
input image, and rewards individuals that provide high quality of reproduction.
Thus, an individual is here awarded not for the �nal result of decision making
only, but for its `understanding' of the pattern being analyzed.

Such an evaluation method allows us to examine the processing performed by
an individual-learner in a more thorough way than in non-generative approach,
where individuals are expected to produce a scalar feature or a binary decision in
response to the input image. Thanks to that, the risk of over�tting, so immense
in learning from high-dimensional image data, becomes signi�cantly smaller.

To reduce the amount of data that has to be processed, our approach ab-
stracts from raster data and relies only on selected salient features found in the
input image s. The features correspond to prominent local luminance gradients
derived from s using a straightforward procedure described in [5]. For each de-
tected feature, we build a visual primitive (VP), described by three scalars called
hereafter attributes; these include two spatial coordinates of the edge fragment
and the local gradient orientation. The complete set of VPs derived from s, de-
noted in the following by P , is usually several orders of magnitude more compact
than the original image s, yet it well preserves the sketch of s.

On the top level, the proposed method uses evolutionary algorithm that
maintains a population of visual learners (individuals, solutions), each of them
implemented as GP expression. Each learner L is a procedure written in a form of
a tree, with nodes representing functions that process sets of VPs. The terminal
nodes (named ImageNodes) fetch the set of primitives P derived from the input
image s, and the consecutive internal nodes process the primitives, all the way
up to the root node. We use strongly-typed GP (cf. [7]), which implies that two
nodes may be connected to each other only if their input/output types match.
The following types are used: numerical scalars, sets of VPs, attribute labels,
binary arithmetic relations, and aggregators.

The GP functions may be divided into scalar functions, selectors (select some
VPs based on their attributes), iterators (process VPs one by one), and group-
ing operators (group VPs based on their attributes and features, e.g., spatial
proximity). Given these operators, an individual-learner L applied to an input
image s builds a hierarchy of VP sets derived from s. Each invoked tree node



creates a new set of VPs that includes other elements of the hierarchy. In the
end, the root node returns a nested VP hierarchy built atop of P , which re�ects
the processing performed by L for s. A more detailed description of this process,
including the full list of GP functions, may be found in [9].

Individual's �tness is based on DAs (drawing actions) that it performs in re-
sponse to visual primitives P derived from training images s ∈ S. To reconstruct
the essential features of the input image s, the learner is allowed to perform DAs
that boil down to drawing sections on the output canvas c. To implement that
within the GP framework, we introduce an extra GP function called Draw. It
expects as an argument one VP set T and returns it unchanged, drawing on can-
vas c sections connecting each pair of VPs from T . Evaluation of L consists in
comparing the contents of c to s and assumes that the di�erence between c and
s is proportional to the minimal total cost of bijective assignment of lit pixels of
c to lit pixels of s. The total cost is a sum of costs for each pixel assignment. The
cost of assignment depends on the distance between pixels: when the distance is
less than 5, the cost is 0; maximum cost equals 1 when the distance is greater
than 15; between 5 and 15 the cost is a linear function of the distance. For pixels
that cannot be assigned (e.g., because there are more lit pixels in c than in s),
an additional penalty of value 1 is added to the total cost. In order to compute
the minimal total cost of assignment, an e�ective greedy heuristic was applied.

The (minimized) �tness of L is de�ned as the total cost of the assignment
normalized by the number of lit pixels in s ∈ S, averaged over the entire training
set of images S. An ideal learner perfectly restores shapes in all training images
and its �tness amounts to 0. The more the canvas c produced by L di�ers from
s, the greater (worse) its �tness value. Thus, �tness function rewards individu-
als that exactly and completely reproduce as many images from S as possible,
therefore promoting discovery of similarities between the training images.

In terms of ML, this generative visual learning (GVL) procedure performs
one-class learning [15], as it uses training examples from the positive class only
and tries to describe it, having no idea about the existence of other decision
classes (object classes in case of visual learning). To handle a k-class classi�-
cation problem, we run in parallel k independent evolutionary processes for n
generations, each of them devoted to one object class. The k best individuals ob-
tained from particular runs form the complete multi-class classi�er (recognition
system), ready to recognize new images using a straightforward voting procedure
detailed in Section 5.

4 Knowledge Reuse

Given the similar visual nature of learning tasks related to particular decision
classes in GVL, we expect them to require some common knowledge. There-
fore, running them in isolation may be redundant, as many decision classes may
need similar fragments of GP code to, e.g., detect the important features like
stroke junctions. For instance, locating the lower end of the shape of letter Y
presented in an image may require similar subtree of GP operators as locat-



Fig. 1. The architecture of CCKR. Fig. 2. Examples of handwritten runes.

ing the lower ends of letter X. To exploit such commonalities, we enable GVL
to involve cross-class knowledge reuse (CCKR) between evolutionary processes
devoted to particular classes. For the initial m generations (m < n), called here-
after primary run, evolution proceeds exactly as in GVL. As the run devoted to
ith decision class (i = 1...k) reaches the mth generation, we store its population
in a pool Pi, so that Pi constitutes a snapshot of ith evolutionary run at mth

generation. Next, the population is re-initialized (in the same way as the initial
population of the primary run), and the evolution continues for the remaining
n−m generations, referred to as secondary run.

The secondary run slightly di�ers from the primary one in that it activates an
extra crossbreeding operator that is allowed to import genetic material from the
pools Pi. Crossbreeding works similarly to GP crossover, however, it interbreeds
an individual from the current population (a `native') with an individual from
one of the pools Pj , j 6= i (an `alien'). First, it selects a native parent from the
current population using the same selection procedure as crossover. Then, it picks
out an alien parent by �rst randomly choosing one of the pools Pj , j 6= i, and
then randomly selecting an individual from Pj , disregarding its �tnesses. Finally,
crossbreeding randomly selects two nodes Nn and Na in the native and the alien
parent, respectively, and replaces Nn by the subtree rooted in Na. The modi�ed
native parent (o�spring) is injected into the subsequent population (provided it
meets the constraints optionally imposed on GP trees). Thus, crossbreeding may
involve large portions of code as well as small code fragments.

Figure 1 outlines the CCKR approach. Each column composed of primary
and secondary run relates to learning one decision class, and arrows depict the
transfer of genetic material between them. As GVL requires k runs lasting n
generations each, while CCKR involves k runs lasting m generations and k runs
lasting n−m generations, the total number of �tness function calls (the e�ort)
is the same. Thus, if we ignore the cost of re-initialization of k populations
and the cost of cross-breeding, which are in fact very low compared to overall
computation, the time complexity of CCKR is the same as that of GVL on the
average (though the actual evolution time may vary due to variability of �tness
computation time). As the pools Pis, once created, remain unchanged, the runs
do not have to work in parallel, but may be carried out sequentially.



5 The Experiment

In experimental part, we approach a real-world multiclass problem of handwrit-
ten character recognition. The task is to recognize letters from the Elder Futhark,
the oldest form of the runic alphabet, which consists of the following characters:

f U þ a r k g w h n i j I p R s t b e m l ­ d o

Elder Futhark letters are written with straight pen strokes only, which makes
them a good testbed for our generative recognition approach that uses sections
to reconstruct the recognized shapes. Using a TabletPC computer, we prepared a
training set containing 240 images (examples, objects) of k = 24 runic alphabet
characters, each character class represented by 10 examples written by 7 persons
(three of them provided two character sets). Figure 2 shows examples of selected
handwritten characters.

The purpose of the experiment is to compare CCKR, the method with knowl-
edge reuse, to the basic approach (GVL) that provides us with control results.
Technically, we use generational evolutionary algorithm maintaining a popula-
tion of 10,000 GP individuals for n = 600 generations. The initial population
is created using Koza's ramped half-and-half operator with ramp from 2 to 6
[7]. We apply tournament selection with tournament of size 5, using individu-
als' sizes for tie breaking and thus promoting smaller GP trees and alleviating
the problem of code bloat. For GVL runs, o�spring are created by crossing over
selected parent solutions from previous generation (with probability 0.8), or mu-
tating selected solutions (with probability 0.2). For CCKR, the primary run lasts
for m = 300 generations with the same settings as GVL, while in the secondary
run the mutation probability is lowered to 0.1 to yield 0.1 to the crossbreeding
operator. The GP tree depth limit is set to 10; the mutation and crossover op-
erations may be repeated up to 5 times if the resulting individuals do not meet
this constraint; otherwise, the parent solutions are copied into the subsequent
generation. Except for the �tness function implemented for e�ciency in C++,
the algorithm has been implemented in Java with help of the ECJ package [12].
For evolutionary parameters not mentioned here, ECJ's defaults have been used.

To intensify the search, we split the population into 10 islands and exchange
individuals between them every 20th generation starting from the 50th gen-
eration. During exchange, each odd-numbered island donates 10% of its well-
performing individuals (selected by tournament of size 5) to �ve even-numbered
islands, where they replace the poorly-performing individuals selected using an
inverse tournament of the same size. The even-numbered islands donate their
representatives to the odd-numbered islands in the same way. The islands should
not be confused with the boxes depicting evolutionary runs in Fig. 1 � the island
model is implemented within each evolutionary process independently.

Using these settings, we evolve and compare CCKR recognition systems to
GVL recognition systems, with the latter serving as control results. In both
cases, this involves running k = 24 evolutionary processes, each of them using
training examples from one character class for �tness computation. The ensemble



(a)

(b)

Fig. 3. Examples of letter reconstructions. The original images are drawn with a thin
dotted line. In (a) each letter was reconstructed by a individual taught on a appropriate
class, whereas in (b) an attempt was made to reconstruct all shapes using an individual
taught on class I .

of all 24 best-of-run individuals constitute the complete recognition system. The
recognition system undergoes evaluation on the testing set of characters, which
is disjoint with the training set and contains 1440 images, that is 60 images for
each character class. The system classi�es an example t by computing �tnesses
(responses) of all individuals for t and indicating the class associated with the
individual that responded in the smallest (the best) value. Such procedure is
motivated by an obvious observation, that a learner is taught to perform well on
images from one class and its raw (minimized) �tness should be near 0 only for
images of this class. For example, in Fig. 3a, each character was reconstructed
using individual taught on its coresponding class, so all the reconstructions are
good. On the other hand, in Fig. 3b, where each shape was reconstructed using
the individual taught on class I , only the restoration of character I is correct1.

Such a simple recognition system may be obtained at a relatively low compu-
tational expense of k evolutionary runs. Given more runs, recognition accuracy

1 Though also restoration of i seems correct, closer examination reveals surplus over-
lying strokes that will be penalized by the �tness measure.



Table 1. Test-set classi�cation accuracy for di�erent voting methods.

Voting method simple vote-2 vote-3 vote-4 vote-5 vote-30

GVL 69.79±1.66 78.50±1.12 82.50±1.02 85.21±0.79 86.66±0.61 91.32

CCKR 81.94±0.89 87.88±0.49 91.19±0.41 92.58±0.31 93.18±0.27 95.56

Table 2. True positive (TP) and false positive (FP) ratios for vote-30 CCKR method.

Letter f U þ a r k g w h n i j

TP 90.0% 80.0% 100% 95.0% 98.3% 100% 98.3% 81.7% 100% 93.3% 98.3% 98.3%

FP 0.0% 18.3% 21.7% 1.7% 0.0% 1.7% 3.3% 3.3% 0.0% 6.7% 8.3% 0.0%

Letter I p R s t b e m l ­ d o

TP 100% 98.3% 93.3% 100% 95.0% 100% 100% 96.7% 80.0% 100% 100% 96.7%

FP 3.3% 1.7% 0.0% 1.7% 3.3% 0.0% 3.3% 0.0% 21.7% 6.7% 0.0% 0.0%

may be further boosted by employing more voters per each decision class, as
opposed to one voter per class in the above scheme. This is especially appealing
in the context of evolutionary computation, as each evolutionary run usually
produces a di�erent best-of-run individual, so their fusion may result in syn-
ergy. Table 1 presents the test-set classi�cation accuracy of GVL and CCKR for
the simple recognition system and the voting method with a di�erent number
of voters. The table shows averages with .95 con�dence intervals; for vote-30,
con�dence intervals cannot be provided as, with 30 independent runs for each
character class, only one unique vote-30 recognition system can be built. Quite
obviously, the more voters, the better the performance. But more importantly,
no matter what the number of voters is, CCKR impressively outperforms the
corresponding GVL approach. The gap between them narrows when the number
of voters increases, but remains signi�cant even for the vote-30 case.

Table 2 presents detailed test set results for the vote-30 CCKR experiment.
Nine out of 24 characters were recognized perfectly. Overall, only three characters
were recognized in less than 90% of cases: U , w , and l . Basing on the complete
confusion matrix (not shown here due to the lack of space), we can conclude
that U is sometimes mistaken for l , hence both yield high false positive errors.
Similarly, the recognition system occasionally incorrectly classi�es w as þ . Since
these pairs of letters are very similar to each other and even a human might �nd
them troublesome, this result may be considered appealing.

6 Conclusions

Despite the large number of decision classes (24), low number of training exam-
ples per class (10), variability of handwriting styles (7 persons), and, last but
not least, one-class learning (learners have no idea what the negative examples
look like), the presented approach of GP-based generative visual learning per-



forms surprisingly well, attaining near-to-perfect classi�cation accuracy on the
large and diversi�ed test set. This encouraging result should be attributed to
the generative trait of the proposed approach, which does not allow the evolving
learners to `skim' the training data for any discriminating feature, but forces
them to fully `understand' the recognized pattern.

The additional mechanism of cross-class knowledge reuse (CCKR) further
boosts the recognition accuracy, even when the base approach (GVL) already
uses an extensive voting procedure like vote-30. Most of erroneous recognitions
concern character classes that are hard to tell apart also for humans. With the
di�cult character classes excluded (U and l , w and þ ), CCKR attains 98.0%
recognition accuracy on the test set.

CCKR is straightforward and may be implemented by a relatively simple
extension of canonical genetic programming. The method does not increase the
computational e�ort of the learning process, and provides a signi�cant perfor-
mance improvement at the same computational expense as GVL. Thanks to
one-class learning, recognition system may be easily extended by a new decision
class by separately evolving an extra learner; the existing components of the
recognition system do not have to be modi�ed.

At the current stage, it is di�cult to conclude if the results obtained here gen-
eralize to other variants of GP-based learning. The conservative answer should
be probably negative: many other GP-based learning methods would bene�t
less from this form of knowledge reuse. For instance, GP expressions operating
in the space of attributes in conventional learning from examples, would prob-
ably be not bene�ciary of CCKR, for the reasons stated earlier in Introduction
(low probability of usefulness of GP subexpressions in other learning tasks).
However, this tentative conclusion should not restrain us from further investi-
gation of the topic. Quite on the contrary, it may be a useful hint for building
GP representations that are susceptible to knowledge reuse. In other words, it
would be interesting to pose an inverse problem: instead of trying to devise a
knowledge reuse method for a particular knowledge representation, try to de�ne
a knowledge representation that makes the knowledge reuse possible.
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