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Abstract

This paper introduces a novel method of visual learning based on Genetic Program-
ming, which evolves a population of individuals (image analysis programs) that pro-
cess attributed visual primitives derived from raw raster images. The goal is to evolve
an image analysis program that correctly recognizes the training concept (shape).
The approach uses generative evaluation scheme: individuals are rewarded for re-

producing the shape of the object being recognized using graphical primitives and
elementary background knowledge encoded in prede�ned operators. Evolutionary
run is driven by a multiobjective �tness function to prevent premature convergence
and enable e�ective exploration of the space of solutions. We present the method in
detail and verify it experimentally on the task of learning two visual concepts from
examples.

Key words: Visual learning, genetic programming, generative pattern recognition,
evolutionary synthesis.

1 Introduction

Visual learning seems to be the most promising way of building scalable and
adaptive image analysis systems. Unfortunately, learning in computer vision
is usually limited to parameter optimization that concerns only a particu-
lar processing step, such as preprocessing, segmentation, feature extraction,
etc. Reports on methods that synthesize complete object recognition systems
starting from raw image data are rare. Most algorithms are also application-
speci�c, which makes the acquired knowledge di�cult to transfer to other
applications.

The most popular way of equipping a vision system with learning capabil-
ity consists in introducing an o�-shelf machine learning (ML) algorithm into
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the chain of image processing, analysis, and interpretation. Though usually
straightforward, this approach implies serious simpli�cations in terms of rep-
resentation of input data (commonly a �xed-length vector of image features)
and the expected output (discrete, nominal decisions). Also, given the large
number of features that can be derived from the input image, and conseqently
high dimensionality of the input space (when compared to non-vision ML
applications), the risk of over�tting becomes grave, unless human interven-
tion constrains the search by, e.g., preselecting only a handfull of the most
promising features.

In this paper, we hypothesize that visual learning may bene�t from a novel
way of assessing learner's ability to recognize (interpret) an input image. The
proposed assessment method is more thorough than in conventional ML as, in
a sense, it forces the learner to prove its `understanding' of the input image.
Technically, learners are encoded as a genetic programming (GP) individuals
[1], i.e., as expression trees built of elementary operators that dwell in a popu-
lation maintained by an evolutionary algorithm [2,3]. Each learner processes,
analyzes, and interprets information given in a form of visual primitives (VPs)
that represent local salient features derived from the input raster image. When
exposed to an input image, the learner produces in response a simpli�ed sketch
of that image. An evolutionary �tness function examines the sketch, using mul-
tiple objectives to assess its di�erent aspects, and appropriately rewards the
individual. In such a way, the evolutionary process promotes individuals that
provide best interpretations of the input image, in the sense detailed further
in the paper.

Therefore, the primary contribution of this paper is an approach to image
interpretation and object recognition that (i) guides visual learning by esti-
mating learner's ability to reproduce the input image, (ii) engages multiple
objectives for learner's evaluation (Section 4.3), (iii) uses visual primitives as
basic `granules' of information (see Section 4.1), and (iv) relies on evolution-
ary computation (GP in particular) to e�ectively search the hypothesis space
(Section ??).

The following Sections 2 and 3 detail our motivations and summarize the
related work. In Section 4, we thoroughly describe our approach. Section 5
demonstrates the performance of the approach on a visual task of acquiring
two visual concepts. In Section 6, we provide summary and draw conclusions
for further research.
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2 Motivations

Any machine learning algorithm requires guidance when searching the space
of hypotheses (identi�ed with learners and individuals in this paper) [4,5].
In supervised learning, this guidance is usually driven by the quality of dis-
crimination of decision classes, technically expressed as classi�cation accuracy,
sensitivity, selectivity, or a similar measure. This approach is characteristic for,
among others, the `wrapper' approach to feature selection and construction
in machine learning [6,7]. We claim that such way of evaluating learner's per-
formance is rather super�cial, as it focuses exclusively on the �nal output
from the learner and does not examine the processing that led to it. If the
number of possible hypotheses is high and the number of training examples
low, which often the case in visual learning, many of hypotheses may perform
well by pure chance, despite, for instance, relying on object features that are
essentially irrelevant for the task being solved. Though such over�tting can be
fought by constraining the hypothesis space, such an intervention is usually
arbitrary and requires domain knowledge.

Over�tting becomes even more likely when, in addition to feature selection,
learning includes also feature synthesis, meant as explicit construction of a
more sophisticated mapping from the space of raster images into the space of
image features. For instance, in our past experience with evolutionary design
of pattern recognition systems [8,9], a recognition system might happen to
evolve an irrelevant feature that was coincidentally correlated with decision
class label. Over�tting is also likely to lead to false positive errors when one
classi�es objects from beyond the problem domain, i.e., examples that do
not belong to any of decision classes that the system was trained on. For this
reason, Revow et al. prefer generative methods to statistical ones when dealing
with handwritten character recognition, stating that �statistical recognizers
can occasionally con�dently classify images that do not look like a character�
[10, p. 593].

In other words, learner's evaluation in terms of class discrimination only does
not necessarily re�ect the `appropriateness' of its entire decision making pro-
cess, in particular of the image features being used. To circumvent this prob-
lem, in our approach learner is not expected to explicitly discriminate the
positive examples from the negative ones. Rather than that, it should learn

the generative description of the positive class . To attain that, it has to detect
the important image features, and, based on them, produce a sketch that re-
produces the input shape. The reproduction process is sequential and consists
of a series of drawing actions that reproduce the input shape part by part. In
such a way, learner undergoes a more thorough evaluation when compared to
conventional supervised learning, where only decisions are considered.
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We claim also that such procedural shape reproduction re�ects to some extent
the process of human image understanding, especially if the subject of reason-
ing is shape. For instance, a person asked to prove his/her understanding of
the concept of a triangle is expected to formulate it as a speci�c arrangement
of simpler visual objects � sections. When confronted with an example of a
triangle, such a person should be not only able to recognize it, but also to pro-
duce a top-down decomposition, to identify the particular components (three
sections), and to show how this triangle can be reproduced using the section
concept. Similarly, our method is procedural (stepwise), and also generative:
the learning agent is expected to generate drawing in response to the input
stimulus.

In this paper we use genetic programming [1,11,12], a variant of evolutionary
computation, a general bio-inspired template of performing global parallel
search in high-dimensional spaces [2,3]. Its commonly quoted virtues include
relatively little task-speci�c tailoring and low risk of being trapped in local
minima of objective function. It has sound rationale in both computational
biology and in optimization theory, and has proven e�ective in a wide spectrum
of benchmarks and real-world applications.

Evolutionary computation is used here mostly because our space of genetic
programs (i.e., the space of all possible learners-hypotheses) cannot be e�ec-
tively searched by means of exact methods due to high dimensionality and
enormous cardinality. Also, like in many other applications of genetic pro-
gramming, our objective function lacks properties that could be used to speed
up the search by, for instance, prunning the unpromising parts of the search
space (as the Branch and Bound algorithm does). Heuristic or metaheuristic
search is, therefore, the only plausible method that can yield reasonably good
suboptimal solutions in a polynomial time. This is also consistent with the
practical attitude chosen here, where we do not strain to necessarily �nd a
globally optimal recognizer, being satis�ed with a well-performing suboptimal
one.

3 Related Research in Visual Learning

In most approaches to visual learning reported in literature, learning is limited
to parameter optimization and usually concerns only a particular step, such as
image preprocessing, segmentation, or feature extraction. Only a few methods
close the feedback loop of the learning process at the outermost (e.g., recog-
nition) level [13,14,15,16,17,18,19,20,8,21,22]. Learning methods that use raw
image data and produce complete recognition systems are rare, often make
use of domain-speci�c knowledge and/or prede�ned object models, and are
usually specialized towards a particular application.
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In [9,8] we proposed a method that evolved feature extraction procedures
encoded as Genetic Programming [1] and Linear Genetic Programming [11]
individuals. The approach implemented feature-based recognition, with each
individual in population encoding a particular sequence of prede�ned image
processing and feature extraction operations. When undergoing evaluation,
an individual (feature extraction procedure) produced feature values for all
images from the training set. Next, the discriminative ability of the resulting
features was measured by performing an internal cross-validation test on the
training data using a machine learning classi�er.

The idea of symbolic processing of attributed visual primitives (VPs) using
genetic programming was �rst explored in [23], where we applied it to recognize
computer screens in indoor scenes. Despite interesting results, it was obvious
that solving so speci�c task cannot lead to elaboration of more general visual
concepts and generic understanding of images. This shortcoming motivated
work presented in this paper, which shares the idea of VPs with [23], but aims
at multi-objective generative learning.

The approach presented here may be considered as a special case of gener-
ative pattern recognition. In a representative study on that topic, Revow et

al. used a prede�ned set of deformable models encoded as B-splines and an
elastic matching algorithm based on expectation maximization to recognize
handwritten characters [10]. In [24], an analogous approach proved useful for
recognizing hand-drawn shapes. However, our method goes further, as it does
not use explicit models of objects, but encodes them implicitly in the genetic
programming code. Secondly, our `implicit models' are not handcrafted but
automatically derived from the training data in the process of evolutionary
learning. And, last but not least, our learners have to reproduce the input
image using multiple drawing actions, which forces them to discover how to
break up the analyzed shapes into elementary components.

4 Visual Learning Driven by Image Reproduction

The proposed approach may be shortly characterized as generative visual

learning, as our evolving learners try to reproduce the input image and are
rewarded according to the quality of that reproduction. In that process, learn-
ers focus on a particular aspect of visual information, which is shape in this
study. Other factors, like color, texture, shading, etc., are ignored.

Image reproduction takes place on a virtual canvas spanned over of the input
image. On that canvas, a learner is allowed to perform elementary drawing

actions, DAs for short. To enable reconstruction, DAs have to be compatible
with the image aspect that is to be reconstructed. As in this paper we con-
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Figure 1. The outline of GP-based generative visual learning.

sider two-dimensional closed polygons, we implement DAs as sections of �xed
width. For instance, reconstruction of a trianglular shape within this frame-
work requires the following steps: (i) detecting conspicuous features � triangle
corners, (ii) pairing the corners, and (iii) performing three DAs that connect
the paired corners. It is worth emphasizing, that learners are not given a priori
information about the concept of the corner nor about the expected number
of them, but are expected to discover these on their own.

On the top level, the proposed method uses evolutionary algorithm [2,3] to
maintain a population of individuals (solutions), each of them being a visual
learner implemented as genetic programming tree (Fig. 1). The processing
carried out by a learner L for an input image s (stimulus) may be split into
three stages. First, we detect from s visual primitives and gather them in a
set P . Next, L analyzes P and produces a drawing on a canvas c, attempting
to reproduce the shape of object shown in s. Finally, canvas c is compared
to the original input image s using two criteria, and the result of that com-
parison determines the �tness of the individual-learner L. The following three
subsections describe these major steps of the approach.
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4.1 Visual Primitives

To reduce the amount of data processed by learners and to bias the learn-
ing process towards the most relevant information, we consider only salient,
localized image features. For each detected feature, we build an independent
visual primitive (VP for short) and gather all of them in a set P . VPs are
elementary `granules' of our representation and play analogous role to termi-
nal symbols in syntactic pattern recognition or terminal elements in cognitive
image understanding.

In the left-hand part of Figure 1, we show an exemplary set of VPs obtained
in this way from an image of a triangle. The learning algorithm described in
the following sections does not make any assumption about the way VPs are
created. Possible instances of VPs include edge fragments, regions, and texems.
However, the type of detected feature determines the image aspect that is
subject to analysis. As in this paper we focus on shape, we use VPs that re�ect
edges detected in the input image s by a straightforward gradient analysis
procedure. First, we extract from s candidate VPs based on the gradient
magnitude computed by means of Sobel edge detection �lter. The candidates
are sorted with respect to decreasing gradient magnitude, and are subsequently
added to the resulting set P , one by one, with respect to this order. However,
we impose a lower limit on VPs' mutual proximity: a candidate p may be
added to P only if P does not contain any VPs that are too close, i.e., there
is no p′ ∈ P such that ||p − p′|| < dmin. Each VP in the resulting set P is
described by three scalars called hereafter attributes : spatial coordinates of its
location and gradient orientation.

As this procedure is not subject to learning, it always produces the same result
for a given training image. Thus, we run it only once prior to evolutionary run,
and cache the VPs to reduce the time complexity.

4.2 Visual Learners

To represent learners, we choose expressions used commonly in genetic pro-
gramming (GP, [1,11,12]). Genetic programming is a variant of evolutionary
computation with solutions (individuals) encoding de�nitions of functions,
called alternatively procedures. In the evaluation phase of an evolutionary
run, each individual processes a training example and returns a result which
is compared with a pre-de�ned desired value. The outcome of that comparison,
usually averaged over multiple training examples, determines individual's �t-
ness. GP proved extremely successful in many real-world applications, provid-
ing human-competitive solutions for di�erent problems, including re-discovery
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Table 1
The GP operators

Type Operators

< Ephemeral random constant, +(<,<), -(<,<), *(<,<), /(<,<), sin(<),
cos(<), abs(<), sqr(<), sgn(<)

Ω

ImageNode() (returns P ), SetIntersection(Ω,Ω), SetUnion(Ω,Ω),
SetMinus(Ω,Ω), SetMinusSym(Ω,Ω), ForEach(Ω,Ω),
AddAttribute(Ω,<), AddAttributeToEach(Ω,<), GroupProximity(Ω),
Ungroup(Ω), ForEachCreatePair(Ω,Ω,Ω), SelectorMax(Ω,A),
SelectorMin(Ω,A), SelectorCompareConstant(Ω,A,R,<), Draw(Ω)

A px, py, po

R
Equals, EqualsPercent, Equals10Percent, Equals20Percent, LessThan,
GreaterThan

G Sum, Mean, Product, Median, Min, Max, Range

of patented and discovery of patentable designs [12].

Our approach relies on the most popular tree-based variant of GP [25]. Each
visual learner L is a procedure written in a form of tree, with nodes repre-
senting prede�ned elementary GP operators that process VPs. The terminal

nodes fetch the set of primitives P derived from the input image (see section
4.1), and the non-terminal (inner) tree nodes process these data all the way up
to the root node. A non-terminal node may (i) group primitives, (ii) perform
selection of primitives using constraints imposed on attributes, or (iii) de�ne
new attributes and attach them to primitives.

Table 1 presents the complete list of GP operators that our individuals are
composed of. We use strongly-typed GP (cf. [25]): a node N1 may accept node
N2 as a child only if the type of N2's output matches the type of corresponding
N1's input. The list of types includes: numerical scalars (< for short), sets of
VPs (Ω), attribute labels (A), binary arithmetic relations (R), and aggregators
(G). Importantly, sets of VPs (type Ω) may be nested, i.e., a set of VPs may
include another set of VPs as an element.

The non-terminal GP operators may be divided into the following categories:

1) Scalar operators. Scalar operators accept arguments of type < and return
result of type <. They implement basic arithmetic and the most common
unary functions, as in the famous symbolic regression benchmarks [1].

2) Selectors. A selector processes the set of VPs received from its leftmost
child. From that set it �lters out, according to some objective or condition,
some of the VPs, and returns the �ltered set. Thus, selectors accept at least
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one argument of type Ω and return a result of type Ω. Non-parametric selectors

expect two child nodes of type Ω and produce an output of type Ω. Operators
that implement basic set algebra, like set union, intersection, or di�erence,
belong to this category. Parametric selectors expect three child nodes of types
Ω, A, and <, respectively, and produce output of type Ω. For instance, the
operator LessThan applied to child nodes (R, po, 0.3) �lters out from the set R
all VPs for which the value of attribute po (orientation) is less than 0.3. Note
that, as VP nesting is allowed, R may contain an element R′ that is in fact not
a VP but another set of VPs. When a GP operator queries R′ for an attribute
value, R′ computes it by averaging the attribute values of its members.

3) Iterators. The role of an iterator is to process VPs one by one. Currently,
we have two iterators: ForEach and ForEachCreatePair. The former of them
iterates over all VPs from its left child and processes each of them using the
GP code speci�ed by its right child. The VPs resulting from all iterations
are grouped into one set of primitives and returned. The ForEachCreatePair
operator proceeds analogously, however, it has two children subtrees for pro-
cessing: each iterated VP is processed independently by both subtrees and the
VPs obtained from those subtrees are paired.

4) Attribute constructors. An attribute constructor assigns a new attribute
to the VPs received from its leftmost child node, while the rightmost child
subtree determines how the new attribute should be computed. Given a set of
primitives R, an attribute constructor passes it through its rightmost subtree.
This may be done once, where R is treated as a whole (operator AddAttribute),
or iteratively, when the subtree is executed independently for all elements of R
(operator AddAtributeToEach). For each iterated element p ∈ R, the subtree
computes a scalar value v based on the existing attributes, and v is attached at
the end of p's attribute list. Thus, attribute constructors accept one argument
of type Ω and one of type <, and return result of type Ω.

Given elementary operators from the above four categories, a learner L ap-
plied to an input image s builds gradually a hierarchy of sets of primitives
derived from s. Each application of selector (category 2 in the above list) or
iterator (category 3) creates a new set of VPs that includes other elements
of the hierarchy. Selector's output may be based on values of pre-de�ned VP
attributes (coordinates and gradient orientation), or new attributes created by
an attribute constructor (category 4). Additionally, some operators may take
as arguments scalar values (category 1). In the end, the root node of our GP
tree returns a hierarchy of nested sets of VPs built atop of P . The nodes of the
hierarchy encapsulate VPs from P and/or other sets of VPs. The particular
structure and contents of that hierarchy re�ects the processing performed by
L for image s.

Figure 2 illustrates selected steps of learner's processing, i.e., of building a
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Figure 2. A fragment of learner's code (i) and its processing. (ii) A set of four visual
primitives. (iii) A GP operator groups primitives b and c into group (set) p1. (iv)
Consequent GP operators build another two sets of VPs, p2 and p3. (v) The primitive
hierarchy for (iv).

VP hierarchy in response to an input image. Figure 2(i) shows the fragment
of learner's code � a path from one of its leaves to the root node. The re-
maining sub�gures illustrate the outcomes of particular tree nodes on that
path, in bottom-up order. Figure 2(ii) illustrates P , the input image repre-
sentation returned by the ImageNode operator; it contains four VPs, each of
them depicted as a short segment marked by a letter. This set of primitives
is then fetched by GP operator 1, which groups primitives b and c into one
subset named p1, illustrated in Figure 2(iii) as a dashed-line oval. In Fig. 2(iv)
we demonstrate the �nal result of processing, which includes three groups of
primitives. In particular, each of the shapes denoted by p1, p2, and p3, corre-
sponds to a single VP group built on this processing path. In Fig. 2(v), this
resulting hierarchy is shown in an abstract way, without referring to the actual
placement of particular VPs in the input image. Note that the hierarchy does
not have to contain all VPs from P , and that a particular VP from P may
occur in more than one branch of the hierarchy. Importantly, the primitive
hierarchy (v) should not be confused with the GP tree (i).

10



4.3 Drawing Actions and their Evaluation

As outlined in Section 4, in our approach learner is expected to reconstruct
the essential features of the input image s. To meet that goal, it performs
drawing actions (DAs) that boil down to insertions of elementary graphical
elements (sections) into an output canvas c. To implement DAs within the GP
framework, an extra GP operator called Draw is introduced (Tab. 1). Draw
expects one argument � a set of VPs obtained from its only child node � and
returns it una�ected. Its only function is to draw on c sections connecting
each pair of VPs contained in the processed set of VPs. Learner's code may
include multiple Draw nodes, located in di�erent parts of the GP tree, not
necessarily at the root. This allows selective drawing and gradual, part-by-part
reproduction of complex objects.

After learner L �nishes its processing, c stores the cumulative result of all DAs
it has performed in response to s. A particular DA may contribute (exclusively
or partially) to two types of errors:

(1) False positive error: Drawing a section in c at location where there is no
edge in the input image s.

(2) False negative error: Not drawing a section in c at location where there
is an edge in the input image s.

For images of closed polygons placed on a uniform background, which we
consider in the experimental part, the number of pixels lit in the input image
s is usually very small compared to the total number of image pixels. Thus,
the a priori probability of false positive error is much higher than that of
the true positive error. Moreover, they vary across images, so it would be
di�cult to aggregate them arbitrarily using, e.g., weighted sum. Thus, to avoid
such aggregation we rely on multi-objective evaluation, penalizing learners
separately for committing both types of errors by means of two maximized
objectives: fp() and fn(). The objective fp() measures the true positive ratio
that depends on the cumulative brightness of pixels that are lit in the input
image s and have been subject to any DA. The objective fn() computes the
true negative ratio in an analogous way. Formally, for a set of training images
S:

fp(L) =
1

|S|
∑
s∈S

1

|c|
∑

s[x,y]>0∧ c[x,y]>0

max(s[x, y]− c[x, y], 0) (1)

and

fn(L) = 1− 1

|S|
∑
s∈S

1

|s| − |c|
∑

s[x,y]>0∧ c[x,y]>0

max(c[x, y]− s[x, y], 0) (2)
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where s[x, y] denotes the brightness of a pixel in the training image s, and
c[x, y] denotes the brightness of the corresponding canvas pixel. Terms pre-
ceding the summations provide normalization: |S| is the number of training
images, and |c| and |s| denote the total cumulative brightness (sum) of all
pixels lit in c and s, respectively.

The following properties of fp() and fn() need emphasizing:

1) Computing fp() and fn() requires considering only pixels which have been
a�ected by DAs (condition c[x, y] > 0 in formulas (1) and (2)). This immensely
reduces computation time, as such pixels usually constitute a small fraction
of the image.

2) DAs traversing the same pixel [x, y] cumulatively increase its brightness
c[x, y]. Thus, overlapping DAs decrease the c[x, y] − s[x, y] term in formula
(2). As fp() has an analogous property, the learner is penalized for super�uous
DAs on both objectives. In this way, we promote simplicity by favoring learners
which not only reproduce the shape, but also minimalize the number of DAs.

3) The objectives rely on pixel brightness, and not on their numbers. This
makes them more continuous and improves the convergence of the learning
process, especially when the input image is not binary but grayscale.

4) An ideal learner provides [fp, fn] = [1, 1] and perfectly reproduces the shape
using a minimal amount of drawing. On the other extreme there is an anti-ideal
with [fp, fn] = [0, 0], which produces an inverse (a negative) of the original
input image s. Evaluation [1, 0] is assigned to any individual that �lls the
entire canvas with DAs. Analogously, any learner that does not perform any
DA receives �tness [0, 1]. In practice, these extreme cases are unlikely to occur.

5 Experimental Evaluation

5.1 Experiment Objectives and Training Data

In this part we use the proposed approach to recognize triangles and sections.
Though straightforward for humans, these tasks are nontrivial, as learner's
only input is a set P of a few dozens of VPs, each of them described by
coordinates px, py and gradient orientation po. Learners have no a priori infor-
mation on, e.g., spatial proximity of VPs, their collinear alignment, etc. The
VPs located next to triangle vertices are not marked as special in any way;
their importance has to be discovered in the learning process.

For the triangle task we prepared a training set containing images of 10 tri-
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Figure 3. The training set of triangles.

Figure 4. The training set of sections. Each long line represents one training example;
the two short sections constitute noise that is included in each example.

angles of di�erent sizes, shapes, and orientations, placed in a raster image of
640×480 pixels (Figure 3). Similarly, we prepared training data for the sec-
tion task, composed of 10 examples shown together in Fig. 4. To make this
task more demanding, we introduced some extra noise, represented by two
very short sections. The noise is presented to the learner together with each

training image. The task of the learner is to ignore that noise and reproduce
the shape of the section.

Prior to the evolutionary runs, we extract VPs from all training examples using
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Figure 5. The VP representation P of one of the section examples (including noise).

the procedure described in section 4.1. Though, in terms of data volume, the
resulting image representation P is usually several orders of magnitude smaller
than the original image s, the essential sketch of the input image is usually
well preserved. Figure 5 shows a visualization of P derived from one of the
objects from Fig. 4. Each segment corresponds to a single VP, with orientation
depicted by slant. Notice the two VPs resulting from the presence of noise in
the original image.

Visual primitives have discrete coordinates that are not always perfectly con-
sistent with the actual location of triangle pixels due to unavoidable rounding
errors. Preliminary evolutionary runs have shown that this issue may severely
impact the convergence of the algorithm: individuals that reproduce well the
overall shape may receive low �tness due to minor shit of DAs with respect to
the input image. Thus, when computing fp() and fn(), we `fuzzify' the input
images by passing them through a lowpass �lter, while for DAs we set section
width to 3. This alleviates the problem of coordinate discretization and makes
the objectives more continuous.

5.2 Parameter Settings

Our evolutionary algorithm maintains a population of 4000 individuals, ini-
tialized using Koza's standard ramped half-and-half operator with ramp from
2 to 6 [1]. Evolution runs for 100 generations and uses Pareto-ranking for selec-
tion. For this purpose, individuals are ranked from the best to the worst rank
using dominance relation based on objectives fp() and fn(), where an individ-
ual L1 dominates individual L2 if L1 is at least as good as L2 on all objectives
and strictly better on at least one objective. Then, we randomly select an
individual from rth rank (r=1,2,. . . ) with probability γr−1/2 (γ=0.6). Thus,
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Figure 6. The Pareto non-dominated fronts of solutions for selected generations.

probability of selection drops exponentially with rank number. Each selected
individual follows randomly one of three paths: with probability 0.5 it crosses
over with another individual and produces o�spring, or with probability 0.4
it undergoes mutation, or it is directly copied into the next generation with
probability 0.1. For this purpose, we use standard GP crossover and mutation,
which consist in, respectively, swapping randomly selected subtrees of GP code
and replacing a randomly selected tree node with a randomly generated sub-
tree. The tree depth limit is set to 8, so mutation or crossover that produces
a deeper tree must be repeated. If feasible individual(s) cannot be produced
within 5 such trials, the original individual(s) are passed as the result.

The method has been implemented with help of the ECJ package [17] and Java
Advanced Imaging library [26]. For evolutionary parameters not mentioned
here explicitly, ECJ's defaults have been used.

5.3 The Results

To illustrate progress of evolutionary learning, in Fig. 6 we show the front
of Pareto non-dominated solutions for 10th, 50th, and 90th generation of the
triangle problem. The inset presents the selected fragment of the front in
magni�cation. Though by de�nition both objectives range from 0.0 to 1.0 in-
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Figure 7. The output of a selected individual Lt for the triangle training data (overall
�tness [0.3966,0.9995]).

clusive, the fp() objective usually does not draw close to 1.0. The reason for
this, mentioned at the end of section 5.1, is that the VPs are rarely located ex-
actly at the vertices of the recognized objects, which in turn makes it di�cult
for individuals to cover the object precisely with sections drawn on the canvas.
Nevertheless, this does not seem to deteriorate the convergence of the algo-
rithm, thanks to the fuzzy�cation of objectives, and thanks to the fact that
our dominance-based selection method takes into account only the ordering

of the individuals on objectives fp() and fn(), and not their values.

According to Fig. 6, evolution converges to solutions of a reasonable quality
already in the middle of the run. The front of non-dominated solutions is
non-convex for all depicted generations. This clearly indicates that relying on
multiobjective �tness was a right choice: without it, many potentially valuable
solutions would be depreciated by scalar evaluation.

At the end of evolution, we select the best representative from the non-
dominated solutions by scalarizing the fp and fn objectives using weighted
sum:

f(L) = wfp(L) + (1− w)fn(L). (3)

with w = 0.01 estimated experimentally. The best solution with respect to f
for the triangle task, referred hereafter to as Lt, was found in 95th generation

16



Figure 8. The output of a selected individual Ls for the section training data (overall
�tness [0.3795,0.99997]).

of the evolutionary run. Similarly, the best solutions for the sections task, Ls,
evolved in 92th generation.

Figure 7 illustrates the resulting canvas c created by Lt for the training set of
triangles. Similarly to Fig. 3, this and the following �gures show the result for
the entire training set superimposed in one �gure. Thin lines represent input
examples s ∈ S. Wide gray stripes illustrate drawing actions (DAs) issued by
Lt. To improve legibility, DAs are depicted by very thick stripes, albeit in
fact their width is smaller and amounts to 3 pixels. Darker stripes (or stripe
fragments) re�ect overlaping of multiple DAs, which negatively in�uences fp

and fn (see formulas (1) and (2)). Text label attached to each triangle contains
learner's evaluation for that example: numbers in square brackets correspond
to fp and fn, while the number following `L:' gives the actual number of
DAs issued by the learner for that example. Lt identi�es correctly 8 out of
10 triangles. In the incorrect cases, one triangle edge is reproduced thrice by
three DAs (hence darker stripes).

Figure 8 shows an analogous result for Ls and the training set of sections.
Similarly to Lt, Ls reproduces sections almost perfectly despite the presence
of noise � the very short sections represented by two separate VPs, included
in each training example.
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Figure 9. Cross-class evaluation: Responses of learners Lt and Ls to examples from
the other decision class.

5.4 The Cross-Class Test

To verify the usefulness of the evolved solutions for the purpose of object
recognition, we perform a cross-test, i.e., we apply Lt and Ls to examples
from the other shape class (negative examples). Technically, we let Lt process
all examples from the training set of sections, and, vice versa, we let Ls process
all examples from the training set of triangles.

Figure 9 presents the quantitative interpretation of the obtained results in
terms of fp and fn. As opposed to Fig. 6, where each point corresponds to
mean performance on all images from the training set, here each point repre-
sents learner's response to one input image. Empty markers are used to depict
learner's responses to examples from its positive class; for instance, empty tri-
angular markers show the responses of Lt to training triangles. Filled markers
denote learner's responses to images from its negative class; e.g., �lled squares
mark the responses of Ls to triangle images.

Figure 9 proves clearly that our learners are able to detect patterns that
do not belong to their decision class. When faced with a negative example,
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Figure 10. The testing set of triangles.

learners produce output which is, in quantitative terms, signi�cantly inferior
to the evaluation for the training (positive) examples. In particular, Lt fed
with sections usually produces low fp value (with one exception), whereas Ls

produces relatively low fn for triangles.

5.5 Test Set Veri�cation

To verify Lt's ability to generalize beyond the training data, we evaluate it
on a separate test set of 20 triangles shown in Fig. 10. Figure 11 shows Lt's
responses to these examples, which allow us to conclude that 12 out of 20
testing triangles have been recognized correctly. In the remaining cases, Lt

committed interpretation errors similar to those observed for two examples in
the training set (see Fig. 7).

In Fig. 12 we present the quantitative results of test-set evaluation. These
are presented in the same way as in Fig. 9, with each data pont marking the
response of one learner to one input image. Except for two test examples, Lt's
responses to testing triangles group clearly around the points corresponding
to training triangles. On the contrary, Ls produces responses with signi�cantly
inferior fn (less than 0.9973, compared to 0.99997 for training sections on the
average). This clearly indicates, that, by introducing appropriate similarity
measures (e.g., distance-based), or acceptance/rejection levels in the space
spanned over fp and fn, one could perform successful recognition of these
�gures.

19



Figure 11. Test set evaluation: Responses of Lt individual to testing triangles.

5.6 Interpreting the Evolved Solutions

In this section we demonstrate that the code of evolved learners is inter-
pretable, which makes our approach appealing when compared to non-symbolic
paradigms like, e.g., neural networks. In Figures 13...16, we present the GP
code of the Lt individual. To facilitate interpretation, the individual's code
is divided into four parts, with Fig. 13 presenting the root part of the tree,
and Figures 14, 15, and 16 depicting the left, middle, and right sub-branch,
respectively, referred by oval components in Fig. 13.

The �gures show both the individual's nodes (text boxes containing names of
GP operators) as well as the processing it performs for an exemplary triangle.
For each node, a rectangle placed atop of it illustrates the returned value � a
nested set of VPs � in a graphical way (this does not apply to scalar values).
Within each such box, short segments depict VPs, whereas small rectangles il-
lustrate grouping of primitives (sets of primitives). Primitive groups are some-
times embedded in each other, which results in multiple nested rectangles. The
terminal nodes labeled ImageNode return the original set of primitives P de-
rived from the input image s. Terminal nodes named v [<attribute>] return
attribute value computed for the processed set of primitives, whereas nodes
named n[<attribute>] return attribute name (e.g., Orientation). To improve
readability, two tree branches that compute scalar numerical values have been
removed (nodes marked by ellipsis `...'). Finally, for the Draw function, placed
by evolution in Lt's root node, dotted line segments re�ect drawing actions.

20



0.950

0.960

0.970

0.980

0.990

1.000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

fp()

fn
()

Lt - responses to training triangles

Ls - responses to training sections

Lt - responses to testing triangles

Ls - responses to testing triangles

Figure 12. Test set evaluation: Responses of learners Lt and Ls to new examples of
triangles.

The parts shown in Figs. 13...16 demonstrate how the learning process coped
with problem decomposition and led to evolution of three sub-branches de-
tecting particular vertices. The �nal part of the tree (Fig. 13) groups the
primitives representing triangle vertices (the SetUnion operation right below
the tree root) and carries out the DAs. Note also that, quite commonly for
GP, a great part of individual's code is e�ectively `dead', i.e., it does not con-
tribute to the actual result of computing. Though this may seem super�uous,
past research has shown that such redundancy makes individuals less prone
to loss of �tness when mutated or crossed-over [27].

6 Conclusions

The proposed learning method successfully evolves image analysis procedures
that are able to interpret compound geometrical patterns using very limited
background knowledge. Generative aspect of the approach, implemented by
means of drawing actions, enables in-depth evaluation of learner's understand-
ing of the processed pattern. As demonstrated by exemplary solution presented
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Figure 13. The root part of the learner Lt.
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Figure 14. The left sub-branch of the learner Lt (continued from Fig. 13).

in Section 5.6, the method is able to autonomously decompose a complex
recognition task into subtask. This feature potentially enables further re-use
of acquired knowledge in other tasks; such possibility has been already con-
�rmed in a preliminary study [28].

An important virtue of our method is low time complexity. This is partly due
to using positive examples only, an approach known as one-class learning in
machine learning community. This also facilitates incremental learning: adding
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Figure 15. The middle sub-branch of the learner Lt (continued from Fig. 13).

a new a new shape class does not require re-training of the existing learners.
Low time complexity results also from relatively small number of primitives
processed, when compared to the amount of raster data. For instance, each
training triangle is represented by only 30.3 primitives on the average. Another
speedup comes from the way fp() and fn() are de�ned: their computation re-
quires considering only pixels a�ected by drawing actions. Thanks to all these
features, processing of an example takes on average only 1.2ms per individual,
using our Java-based implementation running on 3.0 GHz Pentium processor.
Importantly, this applies both to training (evolutionary run) and testing.

Future research on this topic could concern other aspects of visual informa-
tion, like color or texture, and other input representations, like region ad-
jacency graphs. It would be also interesting to investigate the possibility of
some integration of di�erent aspects of visual stimuli. We plan also to verify
our approach on the real world task of interpreting hand-drawn sketches.
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Figure 16. The right sub-branch of the learner Lt (continued from Fig. 13).
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