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To propose a framework for evolutionary visual learning which:

• Provides high flexibility of image processing and analysis (rich choice 

of intermediate representations and processing methods), 

• Enables hierarchical concept building,

• Relies mostly on general vision knowledge, and is, as far as possible, 

application-independent and task-independent,

• Provides high processing speed (e.g., does not necessarily rely on 

raster processing). 

The proposed method: 

� Genetic Programming (GP) with individuals 

implementing image analysis procedures. 

� GP operators process visual primitives (precisely: sets of visual 

primitives, SOPs) rather than raster images.

Visual primitive = an entity that represents a salient local feature

of the image, described by some elementary attributes.

In this work: each primitive corresponds to image location with 

prominent gradient. A primitive is described by 4 attributes: 

coordinates x and y, gradient orientation, and intensity.

GP types: Scalars, sets of primitives (SOP), attribute labels (A).   

GP operators: Terminals: 

• The primitive representation VP(z) of the input raster image z, 

• A ‘name’ (tag) of a single primitive attribute: x coordinate, y coordinate, 

orientation, or intensity,

• An ephemeral random constant (ERC). 

GP operators: Non-terminals:

• Scalar operators (arithmetic, basic scalar functions). 

• Selectors: Filter the primitives received from child node(s) according to 

some criterion/condition. Return value of type SOP. 

There two types of selectors:

� Non-parametric: Processing does not depend on attributes.  

Examples: Set union, set intersection, set difference, etc.

� Parametric: Processing does depend on primitive attributes. 

Example: The operator LessThan applied to child nodes 

(P, ‘orientation’, 2) filters out all primitives from P for which the 

value of the attribute ‘orientation’ is less than 2. 

• Aggregators: Combine the values of a chosen primitive attribute for 

primitives received from child node(s). Return scalar values.

There two types of aggregators:

� Non-parametric: Mostly statistical descriptors. 

Example: The operator Mean applied to child nodes 

(P, ‘x_coordinate’) computes and returns the mean value of 

coordinate x of all primitives in P.

� Parametric:  

Example: The operator CentralMoment applied to child nodes 

(P, ‘y_coordinate’, 3) computes and returns the central moment of 

order 3 of coordinate y of all primitives in P.

Operator summary:

• The approach enables smooth transition from low-level, local concepts 

and features to the more general ones. 

• Reasonable location accuracy obtained at low design costs.

• Low computational complexity of processing: 

Average processing time ~0.5 ms per image and individual

(implementation in Java).

• Application-independence. 

• Extra knowledge, if needed, may be easily incorporated 

by extending the set of GP operators. 

Future and related work:

• Extension to other types of primitives (e.g., regions)

• Application to other types of tasks (e.g., recognition)
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The task: To locate computer screen in indoor scene.

Data source and preprocessing:

• The MIT-CSAIL Database of Objects and Scenes 

http://web.mit.edu/torralba/www/database.html

• Database folder: aug1_static_atb_office_bldg400

• Actual screen locations given as image annotation. 

• Number of source images containing exactly one computer screen: 38

• Cropped copies created to avoid bias towards the center of the scene.

• Final number of images in the training set I: 

38×(1(original) + 4(cropped versions)) = 190

Research topic:

• Evolutionary synthesis of image analysis programs. 

• An attempt to evolve an [almost] complete data flow starting from 

the input raster image and ending up with the final decision.

Problems identified in previous work (e.g., [Bhanu, Lin, Krawiec 2005]): 

• The evolving programs operated only on raster images and scalar 

features extracted from them. Intermediate representations were not 

supported. The set of feature extraction methods was limited. 

• Time-consuming raster processing becomes a bottleneck for 

evolutionary learning (costly fitness calculation).

Legend for the images in right-hand column: 

•Rectangular shape – actual screen location (based on database annotation)

•Short sections (all) – VP(z), i.e., primitives as obtained from the input image

• Section location corresponds to primitive location. 

• Section slant depicts primitive orientation. 

•Bold short sections – s(z), i.e. primitives selected by the individual

The code of one of the best individuals (simplified for presentation):

Moment, CentralMoment, PercentileSum, Mean, Product, MedianAggregator

Equals, LessThan, GreaterThan∪, ∩, \, SymmetricDifferenceSelector

+, –, ×, /, sin, cos, exp, logScalar

ParametricNon-parametricType

3Retries

7Maximum tree depth

1000Population size 

0.9Crossover probability

0.1Mutation probability 

50Number of generations

GenerationalAlgorithm type

SettingParameter

Carried out once, prior to the evolutionary run.

Input: raster image z. Output: z’s visual primitive representation VP(z)

1.Filter the input image z using bank of four Gabor filters 

with orientations: 0, 45, 90, and 135 degrees.

2.Create set C of primitive candidates containing 5% of brightest pixels in 

filter responses. 

3.Find the brightest candidate in C and, based on it, create a primitive 

p=(x,y,intensity,orientation) and add it to VP(z). Remove from C all 

candidates located closer than dmin from p  (dmin= 20 pixels). 

4.If C ≠ ∅, go to 3. Otherwise, stop and return VP(z).

Resulting # of primitives per image: 103 to 145 (average: 122.2).

Other parameters set to ECJ’s defaults [Luke 2002]

Objective function (minimized): Penalizes the solution s for selecting  

primitives more distant that dmin from the screen to be located, and 

rewards s for selecting primitives less distant than dmin

where:

I training set z training image

s(z) individual’s response to z de Euclidean distance

p primitive t target (screen) location
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Left: Input image z Right: Output s(z) produced

by the best individual (in bold)

Fitness functionEvolutionary algorithm

Fitness

Set of 
training 
images IApplication of s

to each image z
from I

Comparison of individual’s output 

s(z) with the desired value 

Individual 
(procedure) s

Population of 
individuals - image 
analysis procedures

Genetic operators

Procedure
Procedure

Procedure P

Procedure
Procedure

Procedure

Particular form depends 

on type of task being 

solved (recognition, 

detection, tracking, etc.)

Primitive Extraction

Processing performed by the best evolved individual for selected images: 

(raw fitness 1.24×10-6)

Coordinate_Y
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(exp 
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(Selector <

(Selector >

(Selector <

(Selector >
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Coordinate_Y 
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(exp 0.97))

Coordinate_X 

(cos 
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(Selector >

VP(z)
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0.19) 

Orientation))) 

(continued in right column)

• Extended and unsupervised

version of the method to be 

presented at CEC’2006: Individuals 

compete to elaborate an exact, 

general, and simple description of 

the input image. 

• Long-term goal: incremental 

acquisition of visual concepts 

of gradually increasing complexity.
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The central idea 

of this work 


