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Abstract 

In this paper, we present a novel method for 
learning complex concepts/hypotheses directly 
from raw training data. The task addressed here 
concerns data-driven synthesis of recognition 
procedures for real-world object recognition 
task. The method uses linear genetic 
programming to encode potential solutions 
expressed in terms of elementary operations, and 
handles the complexity of the learning task by 
applying cooperative coevolution to decompose 
the problem automatically. The training consists 
in coevolving feature extraction procedures, each 
being a sequence of elementary image 
processing and feature extraction operations. 
Extensive experimental results show that the 
approach attains competitive performance for 
3-D object recognition in real synthetic aperture 
radar (SAR) imagery. 

1.  Introduction  

Visual learning is a challenging domain for machine 
learning (ML) for several reasons. Firstly, visual learning 
is a complex task, that usually requires problem 
decomposition, which is nontrivial in itself. Secondly, the 
visual training data is represented in a way that is 
inconvenient for most standard ML methods, and requires 
use of specialized procedures and operators to access, 
aggregate, and transform the input. Thirdly, the amount of 
data that have to be processed during the training process 
is usually much higher than in standard ML applications. 
This imposes significant constraints on the effectiveness 
of the hypothesis space search. Finally, the real-world 
image data is usually noisy and contains plenty of 
irrelevant components that have to be sieved out in the 
learning process. 

The approach for recognizing objects in real-world 
images described in this paper addresses all these issues 
and attempts to solve these problems by using important 
ideas from machine learning, evolutionary comp utation 

(EC), and computer vision (CV), and combining them in a 
novel way.  

2.  Motivation, Related Work and Contribution 

2.1  Motivation 

The primary motivation for the research described in this 
paper is the lack of general methodology for the design 
and development recognition systems. The design of 
recognition system for most real-world tasks is tedious, 
time-consuming and expensive. Though satisfactory in 
performance in constrained situations, the handcrafted 
solutions are usually limited in scope of applicability and 
have poor adaptation ability in practical applications. As 
the complexity of the task of object recognition by 
computer increases, the above limitations become severe 
obstacles for the development of solutions to real-world 
problems. In some aspects, it is similar to the way the 
complexity of the software development process made the 
developers struggle until the software engineering came 
into being. 

2.2  Related Work 

The interest in visual learning research has been rather 
limited in both ML and CV commu nities, although the 
importance of vision in the development of intelligent 
systems has been well recognized. In most approaches 
reported in the literature, adaptation is limited to 
parameter optimization that usually concerns a particular 
processing step, such as image segmentation, feature 
extraction, etc. In those cases, learning does affect the 
overall recognition result in some complex manner.  

Current recognition systems are mostly open-loop and 
human input in the design of these systems is still 
predominant. Only a few contributions, summarized in 
Table 1, attempt to close the feedback loop of the learning 
process at the highest (e.g., recognition) level and test the 
proposed approach in real-world setting. Note that, to the 
best of our knowledge, only few approaches (Teller & 
Veloso, 1997; Peng & Bhanu, 1998a; Peng & Bhanu, 



 

 

1998b; Krawiec, 2001) have been reported that learn 
using raw images as training data, and, therefore, produce 
the entire object recognition system. Moreover, a majority 
of these methods (Segen, 1994; Johnson, 1995; Maloof, 
2003) use domain-specific knowledge and are highly 
specialized towards a particular application.  

2.3  Contributions of this Paper 

(a) We propose a general approach to automatic 
learning/synthesis of recognition procedures, that (i) uses 
raw image data for training, (ii) does not require domain-
specific knowledge, and (iii) attains competitive 
performance on a complex, real-world object recognition 
task. The learning proceeds given only database of 
training examples (images) partitioned into decision 
classes, and a set of general-purpose image processing 
and feature extraction operators. We use the cooperative 
coevolution (Potter & De Jong, 2000), a new paradigm of 
EC, to handle the complexity of the task. 

(b) We use EC to perform the visual learning meant as the 
search in the space of image representations (features). 

(c) We adopt a variety of linear genetic programming 
(LGP) (Banzhaff et. al., 1998) for encoding of basic 
image processing and feature extraction procedures. 

(d) We use the real image data to demonstrate our 
approach and provide a comparison of performance 
between the coevolutionary approach and standard GA.  

3.  Technical Approach 

The proposed approach operates in a learning-from-
examples scheme, with learner/inducer autonomously 
acquiring knowledge from the training examples 
(images). The output of the learner is the synthesized 
recognition system, that implements the feature-based 
recognition paradigm, with processing split into two 
stages: feature extraction and decision making. In 
particular, we include the image processing and feature 
extraction into the learning process (learning loop). The 
learner is, therefore, able to design the intermediate image 

representation that is appropriate for solving the task 
faced. Note that, from machine learning viewpoint, this 
approach may be regarded as a kind of constructive 
induction (Matheus, 1989). 

3.1  Evolving Recognition Procedures  

The learning proceeds in the framework of evolutionary 
computation, where we evolve procedures being 
sequences of elementary image processing and feature 
extraction operations. The evolutionary algorithm 
maintains a set of such procedures that are modified and 
mated during the evolutionary search (Fig. 1). The 
procedures compete with each other by means of their 
fitness values  that reflect the utility of particular 
representation for solving the problem. The best 
procedure found in the evolutionary run becomes the final 
result of the procedure synthesis.  
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Figure 1. The overall architecture of our learning system. 

3.2  Representation of Feature Extraction Procedures  

An important issue that influences the performance of the 
proposed approach is the representation of individuals. To 
speed up the convergence of the search process and 
provide the system with basic knowledge, we assume that 
certain elementary building blocks are given a priori to 

Table 1. Related work in visual learning. 

Reference Approach Experimental task Training data
(Draper, 1993) Learning recognition graphs Recognizing buildings Higher-level CV concepts 
(Segen, 1994) Learning of object models Hand gesture recognition Graphs extracted from images
(Johnson, 1995) EC (GP) Locating hand in human body silhouette Binary silhouettes 
(Teller & Veloso, 1997) EC (GP variant) Face recognition Raw images (grayscale)
(Peng & Bhanu, 1998a) Reinforcement learning Segmentation of in/outdoor scenes Raw images (color)
(Peng & Bhanu, 1998b) Delayed reinforcement learning Segmentation and feature extraction, in/outdoor Raw images (color)
(Krawiec, 2001) EC (GP) Handwritting recognition Raw images (grayscale)
(Rizky et. al., 2002) Hybrid EC (GP+NN) Target recognition in radar modality 1-D radar signals
(Maloof et. al., 2003) Standard ML/PR classifiers Rooftop detection in aerial imagery Fixed set of scalar features
This contribution EC (CC+LGP) Object recognition in radar modality Raw image (grayscale)

 



 

 

the learner in a form of basic image processing, feature 
extraction, and feature transformation operators.  

A variety of linear genetic programming (LGP) (Banzhaff 
et. al., 1998) is chosen as the representation framework 
for the described system. LGP is a hybrid of genetic 
algorithms (GA), and genetic programming (GP). The 
LGP genome , i.e. the internal encoding of solution, is a 
fixed-length string of numbers that is interpreted as a 
sequential procedure. The procedure is composed of 
(possibly parameterized) basic operations that work on 
input data/images. The major advantage of this linear 
representation is low susceptibility to destructive 
crossovers, which is an important problem in GP. 

The details of LGP procedure encoding may be briefly 
summarized as follows: 

• Each procedure P is a fixed-length string of bytes 
[0..255] that encodes sequence of operators, i.e. image 
processing and feature extraction algorithms.   

• The operations work on registers (working variables) 
used for both input and output during procedure 
execution. Image registers store processed images, 
whereas real-number registers store scalar features. 
All image registers have the same dimensions as the 
input image. Each image register, apart from storing 
the image, maintains a single rectangular mask. A 
single learning parameter nreg controls both the number 
of image and number registers.  

• Each chunk of 4 consecutive bytes in the LGP 
procedure encodes a single operation with the 
following elements: (i) operation code, (ii) mask flag – 
decides whether the operation should be global (work 
on the entire image) or local (limited to the mask), (iii) 
mask dimensions (ignored if mask flag is ‘off’), (iv) 
arguments – numbers (identifiers) of registers to fetch 
input data and store the result. 

An example of operation is morphological opening 
(operation code) using rectangular ROI (ROI flag ‘on’) of 
size 14 (ROI size) on the image fetched from image 
register #4 (pointed by argument #1), and storing the 
result in image register #5 (pointed by argument #2). 

There are currently approx. 70 operations implemented in 
the system, consisting mostly of Intel Image Processing 
(Intel Corp., 2000) and OpenCV (Intel Corp., 2001) 
libraries. They may be grouped into following categories: 
image processing operations, mask – related operations, 
feature extraction operations, and arithmetic and logic 
operations. 

Given the above settings, an LGP procedure P  processes a 
single input image I in the following steps (see Fig. 2): 

1. Initialization of register contents: Each of the nreg 
image registers is set to I. The masks of images are set 
to consecutive local features (here: bright ‘blobs’) 
found in the image, so that mask in the ith image 

register encompasses ith local feature. Real-number 
registers are set to the midpoint coordinates of 
corresponding masks; in particular, real-number 
registers 2i and 2i+1 store the x and y coordinates of 
the ith image mask. 

2. Execution : the operations encoded by P are carried out 
one by one. As a result, the contents of image and 
real-number registers change (see example in Fig. 2). 

3. Interpretation: the values computed and stored in the 
real-value registers are interpreted as the output 
yielded by P for image I.  Let us denote by fi(P,I) the 
value stored by P in the real-value register #i when 
processing image I. Then, for an image I, the LGP 
procedure outputs a vector of features: 

( ) ( ) ( )IPfIPfIPf
regn ,,,,,, 21 K  

LGP procedure

Image register #1

Image register #2

Real-number register #1

- operation code  - input argument - output argument - change of register’s value 

Op #1: Image 
norm

Op #2: Image 
thresholding

Op #3: Add scalar 
to each pixel

Initial register 
contents

Register contents 
after op#1

Register contents 
after op#2

Register contents 
after op#3

order of execution

 

Figure 2. Illustration of the process of genome interpretation 
during LGP procedure execution. 

3.3  Cooperative Coevolution 

To cope with the inherent complexity of the visual 
learning task, we should find a way to decompose the 
problem into subtasks rather than trying to solve it in one 
step. For that purpose, we use the cooperative 
coevolution, a variety of evolutionary computation.  

Evolutionary computation is widely recognized as a kind 
of metaheuristics, i.e. general-purpose search algorithm 
that provides suboptimal solutions in polynomial time. 
However, according to Wolpert’s ‘no free lunch’ theorem 
(Wolpert & Macready, 1997), the search for an universal, 
best-of-all metaheuristic (optimization or learning) 
algorithm is futile. In other words, the average 
performance of any metaheuristic over a set of all 
possible fitness functions is the same.  

In real world however, not all fitness functions are equally 
probable. Most real problems are characterized by some 
features that make them specific. The practical utility of a 
search/learning algorithm depends, therefore, on its ability 
to detect and benefit from that specificity. In particular, 
the complexity of the problem and the way it may be 
decomposed are such characteristics.  



 

 

In the last few years, cooperative coevolution  (CC) 
(Potter & De Jong, 2000), a variety of EC, has been 
reported as a promising approach to handle the increasing 
complexity of problems posed in artificial intelligence 
and related disciplines. There are two important factors 
that make CC different from standard EC. Firstly, instead 
of having just one population of individuals, in CC one 
maintains many of them. Secondly, individuals in 
particular population encode only part of the solution to 
the problem, as opposed to EC, where each individual 
encodes complete solution to the problem. Therefore, 
individuals from populations cannot be evaluated 
independently; they have to be combined with some 
representatives from the remaining populations to form a 
solution that can be evaluated. That is why evolution 
proceeds here in each population independently, with the 
exception of the evaluation stage. The joint evaluation 
scheme forces the individuals from particular populations 
to cooperate. 

Let n denote the number of populations. To evaluate an 
individual X  from ith population (Fig. 3), it is temporarily 
combined with selected individuals (so called 
representatives) from the remaining populations j, j=1,…,  
n, j≠i, to form the solution. Then, the entire solution is 
evaluated by means of the fitness function and X gets the 
resulting fitness value. Evaluation of an individual from 
ith population does not affect the remaining populations.  

initialize populations 
loop 

for each population 
 for each individual X 
  combine X with representatives of  
   remaining populations to form solution S 
  evaluate S and assign its fitness to X 
 end for 
 select mating candidates 
 mate parents; use their offspring as next generation 
end for 

until stopping condition  
return best solution 

Figure 3. Outline of  cooperative coevolution algorithm. 

As a result, the evolutionary search in a given population 
is driven by the context build up by the representatives of 
remaining populations. The choice of representatives is, 
therefore, critical for the convergence of  the evolution 
process. Although many different variants are possible 
here, it has been shown that so-called CCA-1 scheme 
works best (Wiegand, Liles, & De Jong, 2001). In the first 
generation a representative of ith population is an 
individual drawn randomly from it. In the following 
generations a representative of ith population is the best 
individual w.r.t. the previous generation.  

The major advantage of CC is that it provides the 
possibility of breaking up a complex problem into 

components without specifying explicitly the objectives 
for them. The way the individuals from populations 
cooperate emerges as the evolution proceeds. In (Bhanu 
& Krawiec, 2002) we provided experimental evidence for 
the usefulness of CC in feature construction for standard 
machine learning problems. Here we claim that CC is 
especially appealing also to the problem of visual 
learning, where the overall target is well defined, but 
there is no a priori knowledge about what should be 
expected at intermediate stages of processing, or such 
knowledge requires an extra effort from the designer.  

3.4  Combining Cooperative Coevolution and Linear 
Genetic Programming 

In the proposed approach, we use cooperative coevolution 
to scale down the task of LGP procedure synthesis 
(Section 3.2). Although this can be done in many different 
ways, in this initial contribution we break up the task at 
genome level, with each population being responsible for 
optimizing a pre-defined fragment (substring) of LGP 
code of fixed length (Fig. 4).  

... ...

Part synthesized by 
population #1

...…

Part synthesized by 
population #2

Part synthesized by 
population n

Solution (complete LGP procedure P) order of LGP execution
 

Figure 4. Cooperation enforced by the concatenation of LGP 
procedure fragments developed  by particular populations. 

The evaluation of an individual X from a given population 
consists in concatenating (always in the same order) its 
genome with the genomes of the representatives of the 
remaining populations to form a single LGP procedure P. 
P is then executed for all images from the training set (see 
Section 3.2). The values computed by P for all training 
images  

( ) ( ) ( ) TIIPfIPfIPf
regn ∈∀,,,,,,, 21 K , 

together with the images’ class labels constitute the 
dataset T that is the basis for evaluation of an individual 
(so-called fitness set). Then, a fast classifier is trained and 
tested on these data (see Fig. 1), using predefined internal 
division of the training set into training-training set and 
training-testing set. For this purpose, we used the naïve 
Bayesian classifier, modeling the input variables 
(features) by normal distribution. The resulting predictive 
recognition ratio,  

T
T

in  images of # total
 from objects classifiedcorrectly  of # , 

becomes the evaluation (fitness) of the solution-procedure 
P, and is subsequently assigned to the individual X. 



 

 

In this framework, particular populations can specialize in 
different stages of the recognition task. In particular, we 
expect that the populations delegated to the development 
of the early parts of LGP procedure would tend to 
specialize in image processing, whereas the populations 
working on the final parts of the LGP procedure would 
focus on feature extraction and aggregation.  

4.  Experiments  

The objective of the computational experiments is to 
explore the overall idea of LGP-based synthesis of 
recognition procedures using cooperative coevolution for 
search, in the context of demanding, real-world object 
recognition task using images of 3-D objects. The results 
are obtained using a PC with single Pentium 1.8 GHz 
processor. 

To provide a reference solution, we run a separate series 
of standard linear genetic programming (LGP), which, in 
fact, is a special case of CC that uses just one population. 
To make this comparison reliable, we fix the total genome 
length  (the total procedure length is the same for both CC 
and standard LGP), and fix the total number of individuals 
(the total number of individuals from all populations in 
CC is equal to the number of individuals maintained in 
the single population of the corresponding LGP run). To 
estimate the performance the learning algorithm is able to 
attain in a limited time, evolution stops when its run time 
reaches the predefined limit.  

4.1  Parameter Setting 

The following parameter setting has been used in the 
experiments: mutation: one-point, prob. 0.5; crossover: 
one-point, prob. 1.0, genome cutting is allowed at every 
point; selection operator: tournament selection with pool 
size = 5; number of registers (image and numeric) nreg: 8; 
number of populations n: 3; selection of representatives: 
CCA-1 (see Section 3.3); time limit: 1000 and 2000 
seconds; procedure length (total genome length): 72 
bytes, i.e., 18 operations; total population size: 300 - 900 
individuals. All the remaining parameters were set to 
default values used in software packages ECJ (Luke, 
2002) and WEKA (Witten & Frank, 1999). 

4.2  Data and the Learning Task 

The proposed approach has been tested on the demanding 
task of object recognition in synthetic aperture radar 
(SAR) imagery. The MSTAR public database (Ross et. 
al., 1998) of SAR images taken at one foot resolution has 
been used as the data source. The task posed to the system 
was to recognize three different objects (decision classes): 
BRDM2, D7, and T62 (see Fig. 4) at 15° depression angle 
and any azimuth (0°-359°).  

The difficulties associated with the object recognition task 
in real SAR images are:  

• Non-literal nature of the data, i.e. radar images appear 
different than visual ones. Bright spots on the images, 
called scattering centers, correspond to those parts of 
the object which reflect radar signal strongly. No line 
features are present for these man-made objects at this 
resolution. 

• Low persistence of features under rotation (high 
rotation-variance). 

• High levels of noise. 

BRDM2 D7 T62

 
Figure 5. The representatives of three decision classes. Top row 
– visual photographs, bottom row - corresponding 48×48 pixel 
SAR images.   

From the MSTAR database, 507 images of three objects 
classes (see Fig. 5) have been selected. The resulting set 
of images has been split into disjoint training and testing 
parts to provide reliable estimate of the recognition ratio 
of the learned recognition system (see Table 2). This 
selection was aimed at providing uniform coverage of the 
azimuth (for each class, there is a training image for 
approx. every 5.62° of azimuth, and a testing image every 
2.9°-5.37°, on the average).  

Table 2. Dataset statistics. 

Class Total 
Training 

set
Aspect 
interval

Testing 
set

Aspect 
interval

BRDM2 188 64 5.62° 124 2.90°
D7 188 64 5.62° 124 2.90°
T62 131 64 5.62° 67 5.37°
Total 507 192 315

Number of images

 
The evolutionary process uses the training data for the 
learning/synthesis (precisely speaking, for the fitness 
computation), whereas the testing images are used for test 
only. The original images have different sizes, so they are 
cropped to 48×48 pixels. They are also complex (2-
channel), but only theirs magnitude part is used in the 
experiments. No other form of preprocessing (e.g., 
speckle removal) is applied. 

4.3  Results 

Table 3 compares the recognition performances obtained 
by the proposed coevolutionary approach (CC) and its 



 

 

regular counterpart (LGP), for two different  limits 
imposed on the evolutionary learning time, 1000 and 
2000 seconds. To obtain statistical evidence, all 
evolutionary runs have been repeated 10 times, so the 
table presents the average performances of the best 
individuals found.  

The direct comparison resulting from Table 3 shows the 
superiority of the CC to LGP. This applies to both the 
performance of the synthesized systems on the training as 
well as on the test set. In all cases, the observed increases 
in accuracy are statistically significant with respect to the 
one-sided t-Student test at the confidence level 0.05. Note 
that, within the same time limit, CC usually ran for a 
smaller number of generations on the average, due to the 
extra time required to maintain (perform selection and 
mating) in multiple populations. 

Figure 6 and Table 4 show, respectively, the receiver 
operating characteristics (ROC) curves and confusion 
matrices for the best individuals found in the first two 
experiments reported in Table 3 (time limit: 2000 
seconds, procedure length: 72, total # of individuals: 300). 
Each curve shows the true positive ratio, i.e., the share of 
correctly recognized objects, as a function of false 
positive ratio, i.e., the share of incorrectly classified 
objects (without taking into account the non-recognized 
objects).  

These parametric characteristics have been obtained from 
the test set, by varying the confidence threshold of the 
naïve Bayesian classifier. Approximately 40 different 
values of the threshold have been used to obtain the 
curves. The confidence threshold imposes a lower limit 
on the ratio of a posteriori probabilities of the first and 
the second most probable decision classes. If, for a 
particular test example, the ratio is lower than threshold, 
no recognition decision is made and the example remains 
unclassified. The ROC curves clearly show the superiority 
of the coevolution. For instance, when no more than 5% 
of false positives is allowed, the procedure evolved using 
CC recognizes correctly approximately 91% images, 
whereas for LGP the accuracy is around 68%. 

Figure 7 presents the processing carried out on a BDRM2 
image (taken at 342.3° aspect) by the best procedure 
found in one of evolutionary runs. For clarity, the picture 
shows the interpretation of the LGP procedure in a form 
of data-flow graph. Each column of images shows the 

content changes of particular image register. Note that 
this procedure uses only first four of the total of eight 
image registers available, and, although the registers have 
initially the same contents (the input SAR image), their 
mask positions (small red squares) are different.  
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Figure 6. ROC curves obtained for the test set using the best 
individuals found in the first two experiments shown in Table 3. 

The execution of the LGP procedure starts from the top 
and proceeds downwards through several intermediate 
image processing steps. Rounded and slanted boxes 
denote global (working on the entire image) and local 
(working on the marked rectangular ROI mask) image 
processing operations, respectively. Eventually, two of 
the executed operations yield scalar features (the x 
coordinate of the shifted ROI (f1(X,I)), and the normalized 
difference of two processed images f2(X,I)). The overall 
processing ends with the final recognition decision made 
by the (previously trained on the training set) classifier; 
this includes a posteriori probabilities yielded by the 
naïve Bayesian classifier. 

The operations used in this particular are: AbsDiff – pixel-
wise absolute difference of a pair of images, HiPass3x3 – 
high pass convolution filter using 3×3 mask, CrossCorrel 
– cross-correlation of a pair of images, PushROIX – 
(local) shifts the current image’s ROI to the closest bright 
‘blob’ in horizontal direction,  Gaussian – (local) image 
smoothing using 3×3 Gaussian mask, MorphClose – 
morphological closing operation, LogicalOr – pixel-wise 
logical ‘OR’ operation. Note that, commonly for genetic 

Table 3. The average performances of best individuals evolved in 10 independent runs for 1000 and 2000 seconds training time limit. 

Each population Total Each population Total Train set Test set Train set Test set
CC 3 24 72 100 300 0.915 0.867 0.933 0.890
LGP 1 72 72 300 300 0.806 0.747 0.843 0.801
CC 3 24 72 300 900 0.927 0.874 0.940 0.883
LGP 1 72 72 900 900 0.839 0.795 0.881 0.830

2000 seconds
Recognition ratio

Method  
# popu-
lations

1000 seconds# of individualsProcedure length
Parameter setting

 



 

 

programming, not all input data (initial register contents) 
and not all intermediate results are utilized for the final 
decision making (e.g., the result of the cross-correlation 
operation (CrossCorrel) is not further processed).  

Table 4. Confusion matrices for the test set using the best 
individuals found in the first two experiments shown in T able 3. 

CC
Actual class BRDM2 D7 T62 None
BRDM2 118 1 4 1
D7 5 114 3 2
T62 5 1 61 0

LGP
Actual class BRDM2 D7 T62 None
BRDM2 97 3 22 2
D7 0 115 9 0
T62 1 0 66 0

Predicted class

Predicted class

 

5.  Conclusions  

In this paper, we proposed a general evolutionary learning 
method that enables the learner to acquire knowledge 
from complex/structural examples by autonomously 
transforming the input representation. The des cribed 
formulation of feature construction addresses two 
important issues. (1) The elementary operations give the 
learner an access to complex, structural input data that 
otherwise could not be directly used. (2) By incorporating 
the feature synthesis into the learning loop, the learner 
searches for performance improvement by modifying the 
input representation. 

In experimental part, we provided an evidence for the 
possibility of solving, using the proposed approach, a 
demanding real-world task of visual learning. The 
encouraging results for SAR object recognition have been 
obtained without recurring to means that are commonly 
used in conventional approaches to the design of 
recognition systems, such as resorting to the database of 
object models, explicit estimation of object pose, hand-
tuning of basic operations for a specific application, and, 
in particular, SAR-specific concepts or features like 
‘scattering center’. The obtained recognition ratios are 
also comparable to those achieved by standard methods. 

Our approach learns in a fully automatic manner, and, 
therefore, at a little expense of human labor and expertise. 
The learning process requires only training data that is 
usually easy to acquire, i.e. images and their class labels, 
and does not rely on domain-specific knowledge, using 
only general vision-related knowledge encoded in basic 
operations. The objectivity of the learning process makes 
the results free from subjective flaws and biases, which 
the human-designed solutions are prone to. 
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Figure 7. A fragment of synthesized processing graph of a 
selected best-of-run procedure evolved by means of cooperative 
coevolution, processing an exemplary image (only 4 of total 8 
registers are used by this procedure).   

The proposed method may be characterized as feature-
based. Compared to the model-based recognition 
approaches, there is no need for, possibly expensive, 
matching an image with models from the database. Thus, 
our synthesized recognition system attains high 
recognition speed during the runtime. The average time 
required by the entire recognition process, starting from 
the raw image and ending up with the final recognition 
result, totaled 4.9 ms on the average, for a single 48×48 
image and an LGP procedure composed of 18 operations. 
This time could be significantly reduced after re-
implementing the synthesized system and, in particular, 
the classifier written in Java. We claim that this 
impressive recognition speed makes our approach suitable 
for real-time application.  

Since the task-related knowledge is not required, our 
approach is general and possibly applicable to other 
recognition tasks and different image modalities. We 



 

 

claim that, therefore, a new paradigm for visual learning 
has been developed, that focuses on automatic learning of 
pattern analysis procedures composed of relatively 
simple, general-purpose image processing and feature 
extraction building blocks, as opposed to the tendency of 
designing highly specialized procedures for particular 
recognition tasks. 

From machine learning viewpoint, this result is an 
outstanding argument in favor of CC for tackling complex 
learning problems. The ability of coevolution to break up 
complex problems into subproblems without requiring 
explicit objectives/goals for them, offers an interesting 
research direction for ML.  
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