
Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Visual Learning by Evolutionary Feature Synthesis

Krzysztof Krawiec1 KKRAWIEC@VISLAB.UCR.EDU
Bir Bhanu BHANU@CRIS.UCR.EDU
Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA

—————
1 On a temporary leave from Poznan University of Technology, Poznan, Poland.

Abstract

In this paper, we present a novel method for
learning complex concepts/hypotheses directly
from raw training data. The task addressed here
concerns data-driven synthesis of recognition
procedures for real-world object recognition
task. The method uses linear genetic
programming to encode potential solutions
expressed in terms of elementary operations, and
handles the complexity of the learning task by
applying cooperative coevolution to decompose
the problem automatically. The training consists
in coevolving feature extraction procedures, each
being a sequence of elementary image
processing and feature extraction operations.
Extensive experimental results show that the
approach attains competitive performance for
3-D object recognition in real synthetic aperture
radar (SAR) imagery.

1. Introduction

Visual learning is a challenging domain for machine
learning (ML) for several reasons. Firstly, visual learning
is a complex task, that usually requires problem
decomposition, which is nontrivial in itself. Secondly, the
visual training data is represented in a way that is
inconvenient for most standard ML methods, and requires
use of specialized procedures and operators to access,
aggregate, and transform the input. Thirdly, the amount of
data that have to be processed during the training process
is usually much higher than in standard ML applications.
This imposes significant constraints on the effectiveness
of the hypothesis space search. Finally, the real-world
image data is usually noisy and contains plenty of
irrelevant components that have to be sieved out in the
learning process.

The approach for recognizing objects in real-world
images described in this paper addresses all these issues
and attempts to solve these problems by using important
ideas from machine learning, evolutionary comp utation

(EC), and computer vision (CV), and combining them in a
novel way.

2. Motivation, Related Work and Contribution

2.1 Motivation

The primary motivation for the research described in this
paper is the lack of general methodology for the design
and development recognition systems. The design of
recognition system for most real-world tasks is tedious,
time-consuming and expensive. Though satisfactory in
performance in constrained situations, the handcrafted
solutions are usually limited in scope of applicability and
have poor adaptation ability in practical applications. As
the complexity of the task of object recognition by
computer increases, the above limitations become severe
obstacles for the development of solutions to real-world
problems. In some aspects, it is similar to the way the
complexity of the software development process made the
developers struggle until the software engineering came
into being.

2.2 Related Work

The interest in visual learning research has been rather
limited in both ML and CV commu nities, although the
importance of vision in the development of intelligent
systems has been well recognized. In most approaches
reported in the literature, adaptation is limited to
parameter optimization that usually concerns a particular
processing step, such as image segmentation, feature
extraction, etc. In those cases, learning does affect the
overall recognition result in some complex manner.

Current recognition systems are mostly open-loop and
human input in the design of these systems is still
predominant. Only a few contributions, summarized in
Table 1, attempt to close the feedback loop of the learning
process at the highest (e.g., recognition) level and test the
proposed approach in real-world setting. Note that, to the
best of our knowledge, only few approaches (Teller &
Veloso, 1997; Peng & Bhanu, 1998a; Peng & Bhanu,

1998b; Krawiec, 2001) have been reported that learn
using raw images as training data, and, therefore, produce
the entire object recognition system. Moreover, a majority
of these methods (Segen, 1994; Johnson, 1995; Maloof,
2003) use domain-specific knowledge and are highly
specialized towards a particular application.

2.3 Contributions of this Paper

(a) We propose a general approach to automatic
learning/synthesis of recognition procedures, that (i) uses
raw image data for training, (ii) does not require domain-
specific knowledge, and (iii) attains competitive
performance on a complex, real-world object recognition
task. The learning proceeds given only database of
training examples (images) partitioned into decision
classes, and a set of general-purpose image processing
and feature extraction operators. We use the cooperative
coevolution (Potter & De Jong, 2000), a new paradigm of
EC, to handle the complexity of the task.

(b) We use EC to perform the visual learning meant as the
search in the space of image representations (features).

(c) We adopt a variety of linear genetic programming
(LGP) (Banzhaff et. al., 1998) for encoding of basic
image processing and feature extraction procedures.

(d) We use the real image data to demonstrate our
approach and provide a comparison of performance
between the coevolutionary approach and standard GA.

3. Technical Approach

The proposed approach operates in a learning-from-
examples scheme, with learner/inducer autonomously
acquiring knowledge from the training examples
(images). The output of the learner is the synthesized
recognition system, that implements the feature-based
recognition paradigm, with processing split into two
stages: feature extraction and decision making. In
particular, we include the image processing and feature
extraction into the learning process (learning loop). The
learner is, therefore, able to design the intermediate image

representation that is appropriate for solving the task
faced. Note that, from machine learning viewpoint, this
approach may be regarded as a kind of constructive
induction (Matheus, 1989).

3.1 Evolving Recognition Procedures

The learning proceeds in the framework of evolutionary
computation, where we evolve procedures being
sequences of elementary image processing and feature
extraction operations. The evolutionary algorithm
maintains a set of such procedures that are modified and
mated during the evolutionary search (Fig. 1). The
procedures compete with each other by means of their
fitness values that reflect the utility of particular
representation for solving the problem. The best
procedure found in the evolutionary run becomes the final
result of the procedure synthesis.

Procedure evaluationEvolutionary algorithm

Basic image
processing
operators

Cross-validation
experimentFitness

Feature vectors
for all training
images X∈D

Training
images D

LGP procedure
interpreter

Fast
classifier

P

Population of image
processing
procedures

Genetic operators

ProcedureProcedure
Procedure P

ProcedureProcedure
Procedure

Learning
loop

Figure 1. The overall architecture of our learning system.

3.2 Representation of Feature Extraction Procedures

An important issue that influences the performance of the
proposed approach is the representation of individuals. To
speed up the convergence of the search process and
provide the system with basic knowledge, we assume that
certain elementary building blocks are given a priori to

Table 1. Related work in visual learning.

Reference Approach Experimental task Training data
(Draper, 1993) Learning recognition graphs Recognizing buildings Higher-level CV concepts
(Segen, 1994) Learning of object models Hand gesture recognition Graphs extracted from images
(Johnson, 1995) EC (GP) Locating hand in human body silhouette Binary silhouettes
(Teller & Veloso, 1997) EC (GP variant) Face recognition Raw images (grayscale)
(Peng & Bhanu, 1998a) Reinforcement learning Segmentation of in/outdoor scenes Raw images (color)
(Peng & Bhanu, 1998b) Delayed reinforcement learning Segmentation and feature extraction, in/outdoor Raw images (color)
(Krawiec, 2001) EC (GP) Handwritting recognition Raw images (grayscale)
(Rizky et. al., 2002) Hybrid EC (GP+NN) Target recognition in radar modality 1-D radar signals
(Maloof et. al., 2003) Standard ML/PR classifiers Rooftop detection in aerial imagery Fixed set of scalar features
This contribution EC (CC+LGP) Object recognition in radar modality Raw image (grayscale)

the learner in a form of basic image processing, feature
extraction, and feature transformation operators.

A variety of linear genetic programming (LGP) (Banzhaff
et. al., 1998) is chosen as the representation framework
for the described system. LGP is a hybrid of genetic
algorithms (GA), and genetic programming (GP). The
LGP genome , i.e. the internal encoding of solution, is a
fixed-length string of numbers that is interpreted as a
sequential procedure. The procedure is composed of
(possibly parameterized) basic operations that work on
input data/images. The major advantage of this linear
representation is low susceptibility to destructive
crossovers, which is an important problem in GP.

The details of LGP procedure encoding may be briefly
summarized as follows:

• Each procedure P is a fixed-length string of bytes
[0..255] that encodes sequence of operators, i.e. image
processing and feature extraction algorithms.

• The operations work on registers (working variables)
used for both input and output during procedure
execution. Image registers store processed images,
whereas real-number registers store scalar features.
All image registers have the same dimensions as the
input image. Each image register, apart from storing
the image, maintains a single rectangular mask. A
single learning parameter nreg controls both the number
of image and number registers.

• Each chunk of 4 consecutive bytes in the LGP
procedure encodes a single operation with the
following elements: (i) operation code, (ii) mask flag –
decides whether the operation should be global (work
on the entire image) or local (limited to the mask), (iii)
mask dimensions (ignored if mask flag is ‘off’), (iv)
arguments – numbers (identifiers) of registers to fetch
input data and store the result.

An example of operation is morphological opening
(operation code) using rectangular ROI (ROI flag ‘on’) of
size 14 (ROI size) on the image fetched from image
register #4 (pointed by argument #1), and storing the
result in image register #5 (pointed by argument #2).

There are currently approx. 70 operations implemented in
the system, consisting mostly of Intel Image Processing
(Intel Corp., 2000) and OpenCV (Intel Corp., 2001)
libraries. They may be grouped into following categories:
image processing operations, mask – related operations,
feature extraction operations, and arithmetic and logic
operations.

Given the above settings, an LGP procedure P processes a
single input image I in the following steps (see Fig. 2):

1. Initialization of register contents: Each of the nreg
image registers is set to I. The masks of images are set
to consecutive local features (here: bright ‘blobs’)
found in the image, so that mask in the ith image

register encompasses ith local feature. Real-number
registers are set to the midpoint coordinates of
corresponding masks; in particular, real-number
registers 2i and 2i+1 store the x and y coordinates of
the ith image mask.

2. Execution : the operations encoded by P are carried out
one by one. As a result, the contents of image and
real-number registers change (see example in Fig. 2).

3. Interpretation: the values computed and stored in the
real-value registers are interpreted as the output
yielded by P for image I. Let us denote by fi(P,I) the
value stored by P in the real-value register #i when
processing image I. Then, for an image I, the LGP
procedure outputs a vector of features:

() () ()IPfIPfIPf
regn ,,,,,, 21 K

LGP procedure

Image register #1

Image register #2

Real-number register #1

- operation code - input argument - output argument - change of register’s value

Op #1: Image
norm

Op #2: Image
thresholding

Op #3: Add scalar
to each pixel

Initial register
contents

Register contents
after op#1

Register contents
after op#2

Register contents
after op#3

order of execution

Figure 2. Illustration of the process of genome interpretation
during LGP procedure execution.

3.3 Cooperative Coevolution

To cope with the inherent complexity of the visual
learning task, we should find a way to decompose the
problem into subtasks rather than trying to solve it in one
step. For that purpose, we use the cooperative
coevolution, a variety of evolutionary computation.

Evolutionary computation is widely recognized as a kind
of metaheuristics, i.e. general-purpose search algorithm
that provides suboptimal solutions in polynomial time.
However, according to Wolpert’s ‘no free lunch’ theorem
(Wolpert & Macready, 1997), the search for an universal,
best-of-all metaheuristic (optimization or learning)
algorithm is futile. In other words, the average
performance of any metaheuristic over a set of all
possible fitness functions is the same.

In real world however, not all fitness functions are equally
probable. Most real problems are characterized by some
features that make them specific. The practical utility of a
search/learning algorithm depends, therefore, on its ability
to detect and benefit from that specificity. In particular,
the complexity of the problem and the way it may be
decomposed are such characteristics.

In the last few years, cooperative coevolution (CC)
(Potter & De Jong, 2000), a variety of EC, has been
reported as a promising approach to handle the increasing
complexity of problems posed in artificial intelligence
and related disciplines. There are two important factors
that make CC different from standard EC. Firstly, instead
of having just one population of individuals, in CC one
maintains many of them. Secondly, individuals in
particular population encode only part of the solution to
the problem, as opposed to EC, where each individual
encodes complete solution to the problem. Therefore,
individuals from populations cannot be evaluated
independently; they have to be combined with some
representatives from the remaining populations to form a
solution that can be evaluated. That is why evolution
proceeds here in each population independently, with the
exception of the evaluation stage. The joint evaluation
scheme forces the individuals from particular populations
to cooperate.

Let n denote the number of populations. To evaluate an
individual X from ith population (Fig. 3), it is temporarily
combined with selected individuals (so called
representatives) from the remaining populations j, j=1,…,
n, j≠i, to form the solution. Then, the entire solution is
evaluated by means of the fitness function and X gets the
resulting fitness value. Evaluation of an individual from
ith population does not affect the remaining populations.

initialize populations
loop

for each population
 for each individual X
 combine X with representatives of
 remaining populations to form solution S
 evaluate S and assign its fitness to X
 end for
 select mating candidates
 mate parents; use their offspring as next generation
end for

until stopping condition
return best solution

Figure 3. Outline of cooperative coevolution algorithm.

As a result, the evolutionary search in a given population
is driven by the context build up by the representatives of
remaining populations. The choice of representatives is,
therefore, critical for the convergence of the evolution
process. Although many different variants are possible
here, it has been shown that so-called CCA-1 scheme
works best (Wiegand, Liles, & De Jong, 2001). In the first
generation a representative of ith population is an
individual drawn randomly from it. In the following
generations a representative of ith population is the best
individual w.r.t. the previous generation.

The major advantage of CC is that it provides the
possibility of breaking up a complex problem into

components without specifying explicitly the objectives
for them. The way the individuals from populations
cooperate emerges as the evolution proceeds. In (Bhanu
& Krawiec, 2002) we provided experimental evidence for
the usefulness of CC in feature construction for standard
machine learning problems. Here we claim that CC is
especially appealing also to the problem of visual
learning, where the overall target is well defined, but
there is no a priori knowledge about what should be
expected at intermediate stages of processing, or such
knowledge requires an extra effort from the designer.

3.4 Combining Cooperative Coevolution and Linear
Genetic Programming

In the proposed approach, we use cooperative coevolution
to scale down the task of LGP procedure synthesis
(Section 3.2). Although this can be done in many different
ways, in this initial contribution we break up the task at
genome level, with each population being responsible for
optimizing a pre-defined fragment (substring) of LGP
code of fixed length (Fig. 4).

... ...

Part synthesized by
population #1

...…

Part synthesized by
population #2

Part synthesized by
population n

Solution (complete LGP procedure P) order of LGP execution

Figure 4. Cooperation enforced by the concatenation of LGP
procedure fragments developed by particular populations.

The evaluation of an individual X from a given population
consists in concatenating (always in the same order) its
genome with the genomes of the representatives of the
remaining populations to form a single LGP procedure P.
P is then executed for all images from the training set (see
Section 3.2). The values computed by P for all training
images

() () () TIIPfIPfIPf
regn ∈∀,,,,,,, 21 K ,

together with the images’ class labels constitute the
dataset T that is the basis for evaluation of an individual
(so-called fitness set). Then, a fast classifier is trained and
tested on these data (see Fig. 1), using predefined internal
division of the training set into training-training set and
training-testing set. For this purpose, we used the naïve
Bayesian classifier, modeling the input variables
(features) by normal distribution. The resulting predictive
recognition ratio,

T
T

in images of # total
 from objects classifiedcorrectly of # ,

becomes the evaluation (fitness) of the solution-procedure
P, and is subsequently assigned to the individual X.

In this framework, particular populations can specialize in
different stages of the recognition task. In particular, we
expect that the populations delegated to the development
of the early parts of LGP procedure would tend to
specialize in image processing, whereas the populations
working on the final parts of the LGP procedure would
focus on feature extraction and aggregation.

4. Experiments

The objective of the computational experiments is to
explore the overall idea of LGP-based synthesis of
recognition procedures using cooperative coevolution for
search, in the context of demanding, real-world object
recognition task using images of 3-D objects. The results
are obtained using a PC with single Pentium 1.8 GHz
processor.

To provide a reference solution, we run a separate series
of standard linear genetic programming (LGP), which, in
fact, is a special case of CC that uses just one population.
To make this comparison reliable, we fix the total genome
length (the total procedure length is the same for both CC
and standard LGP), and fix the total number of individuals
(the total number of individuals from all populations in
CC is equal to the number of individuals maintained in
the single population of the corresponding LGP run). To
estimate the performance the learning algorithm is able to
attain in a limited time, evolution stops when its run time
reaches the predefined limit.

4.1 Parameter Setting

The following parameter setting has been used in the
experiments: mutation: one-point, prob. 0.5; crossover:
one-point, prob. 1.0, genome cutting is allowed at every
point; selection operator: tournament selection with pool
size = 5; number of registers (image and numeric) nreg: 8;
number of populations n: 3; selection of representatives:
CCA-1 (see Section 3.3); time limit: 1000 and 2000
seconds; procedure length (total genome length): 72
bytes, i.e., 18 operations; total population size: 300 - 900
individuals. All the remaining parameters were set to
default values used in software packages ECJ (Luke,
2002) and WEKA (Witten & Frank, 1999).

4.2 Data and the Learning Task

The proposed approach has been tested on the demanding
task of object recognition in synthetic aperture radar
(SAR) imagery. The MSTAR public database (Ross et.
al., 1998) of SAR images taken at one foot resolution has
been used as the data source. The task posed to the system
was to recognize three different objects (decision classes):
BRDM2, D7, and T62 (see Fig. 4) at 15° depression angle
and any azimuth (0°-359°).

The difficulties associated with the object recognition task
in real SAR images are:

• Non-literal nature of the data, i.e. radar images appear
different than visual ones. Bright spots on the images,
called scattering centers, correspond to those parts of
the object which reflect radar signal strongly. No line
features are present for these man-made objects at this
resolution.

• Low persistence of features under rotation (high
rotation-variance).

• High levels of noise.

BRDM2 D7 T62

Figure 5. The representatives of three decision classes. Top row
– visual photographs, bottom row - corresponding 48×48 pixel
SAR images.

From the MSTAR database, 507 images of three objects
classes (see Fig. 5) have been selected. The resulting set
of images has been split into disjoint training and testing
parts to provide reliable estimate of the recognition ratio
of the learned recognition system (see Table 2). This
selection was aimed at providing uniform coverage of the
azimuth (for each class, there is a training image for
approx. every 5.62° of azimuth, and a testing image every
2.9°-5.37°, on the average).

Table 2. Dataset statistics.

Class Total
Training

set
Aspect
interval

Testing
set

Aspect
interval

BRDM2 188 64 5.62° 124 2.90°
D7 188 64 5.62° 124 2.90°
T62 131 64 5.62° 67 5.37°
Total 507 192 315

Number of images

The evolutionary process uses the training data for the
learning/synthesis (precisely speaking, for the fitness
computation), whereas the testing images are used for test
only. The original images have different sizes, so they are
cropped to 48×48 pixels. They are also complex (2-
channel), but only theirs magnitude part is used in the
experiments. No other form of preprocessing (e.g.,
speckle removal) is applied.

4.3 Results

Table 3 compares the recognition performances obtained
by the proposed coevolutionary approach (CC) and its

regular counterpart (LGP), for two different limits
imposed on the evolutionary learning time, 1000 and
2000 seconds. To obtain statistical evidence, all
evolutionary runs have been repeated 10 times, so the
table presents the average performances of the best
individuals found.

The direct comparison resulting from Table 3 shows the
superiority of the CC to LGP. This applies to both the
performance of the synthesized systems on the training as
well as on the test set. In all cases, the observed increases
in accuracy are statistically significant with respect to the
one-sided t-Student test at the confidence level 0.05. Note
that, within the same time limit, CC usually ran for a
smaller number of generations on the average, due to the
extra time required to maintain (perform selection and
mating) in multiple populations.

Figure 6 and Table 4 show, respectively, the receiver
operating characteristics (ROC) curves and confusion
matrices for the best individuals found in the first two
experiments reported in Table 3 (time limit: 2000
seconds, procedure length: 72, total # of individuals: 300).
Each curve shows the true positive ratio, i.e., the share of
correctly recognized objects, as a function of false
positive ratio, i.e., the share of incorrectly classified
objects (without taking into account the non-recognized
objects).

These parametric characteristics have been obtained from
the test set, by varying the confidence threshold of the
naïve Bayesian classifier. Approximately 40 different
values of the threshold have been used to obtain the
curves. The confidence threshold imposes a lower limit
on the ratio of a posteriori probabilities of the first and
the second most probable decision classes. If, for a
particular test example, the ratio is lower than threshold,
no recognition decision is made and the example remains
unclassified. The ROC curves clearly show the superiority
of the coevolution. For instance, when no more than 5%
of false positives is allowed, the procedure evolved using
CC recognizes correctly approximately 91% images,
whereas for LGP the accuracy is around 68%.

Figure 7 presents the processing carried out on a BDRM2
image (taken at 342.3° aspect) by the best procedure
found in one of evolutionary runs. For clarity, the picture
shows the interpretation of the LGP procedure in a form
of data-flow graph. Each column of images shows the

content changes of particular image register. Note that
this procedure uses only first four of the total of eight
image registers available, and, although the registers have
initially the same contents (the input SAR image), their
mask positions (small red squares) are different.

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
False positive ratio

Tr
ue

 p
os

iti
ve

 ra
tio

CC (Area under ROC curve: 0.956)

LGP (Area under ROC curve: 0.909)

Figure 6. ROC curves obtained for the test set using the best
individuals found in the first two experiments shown in Table 3.

The execution of the LGP procedure starts from the top
and proceeds downwards through several intermediate
image processing steps. Rounded and slanted boxes
denote global (working on the entire image) and local
(working on the marked rectangular ROI mask) image
processing operations, respectively. Eventually, two of
the executed operations yield scalar features (the x
coordinate of the shifted ROI (f1(X,I)), and the normalized
difference of two processed images f2(X,I)). The overall
processing ends with the final recognition decision made
by the (previously trained on the training set) classifier;
this includes a posteriori probabilities yielded by the
naïve Bayesian classifier.

The operations used in this particular are: AbsDiff – pixel-
wise absolute difference of a pair of images, HiPass3x3 –
high pass convolution filter using 3×3 mask, CrossCorrel
– cross-correlation of a pair of images, PushROIX –
(local) shifts the current image’s ROI to the closest bright
‘blob’ in horizontal direction, Gaussian – (local) image
smoothing using 3×3 Gaussian mask, MorphClose –
morphological closing operation, LogicalOr – pixel-wise
logical ‘OR’ operation. Note that, commonly for genetic

Table 3. The average performances of best individuals evolved in 10 independent runs for 1000 and 2000 seconds training time limit.

Each population Total Each population Total Train set Test set Train set Test set
CC 3 24 72 100 300 0.915 0.867 0.933 0.890
LGP 1 72 72 300 300 0.806 0.747 0.843 0.801
CC 3 24 72 300 900 0.927 0.874 0.940 0.883
LGP 1 72 72 900 900 0.839 0.795 0.881 0.830

2000 seconds
Recognition ratio

Method
popu-
lations

1000 seconds# of individualsProcedure length
Parameter setting

programming, not all input data (initial register contents)
and not all intermediate results are utilized for the final
decision making (e.g., the result of the cross-correlation
operation (CrossCorrel) is not further processed).

Table 4. Confusion matrices for the test set using the best
individuals found in the first two experiments shown in T able 3.

CC
Actual class BRDM2 D7 T62 None
BRDM2 118 1 4 1
D7 5 114 3 2
T62 5 1 61 0

LGP
Actual class BRDM2 D7 T62 None
BRDM2 97 3 22 2
D7 0 115 9 0
T62 1 0 66 0

Predicted class

Predicted class

5. Conclusions

In this paper, we proposed a general evolutionary learning
method that enables the learner to acquire knowledge
from complex/structural examples by autonomously
transforming the input representation. The des cribed
formulation of feature construction addresses two
important issues. (1) The elementary operations give the
learner an access to complex, structural input data that
otherwise could not be directly used. (2) By incorporating
the feature synthesis into the learning loop, the learner
searches for performance improvement by modifying the
input representation.

In experimental part, we provided an evidence for the
possibility of solving, using the proposed approach, a
demanding real-world task of visual learning. The
encouraging results for SAR object recognition have been
obtained without recurring to means that are commonly
used in conventional approaches to the design of
recognition systems, such as resorting to the database of
object models, explicit estimation of object pose, hand-
tuning of basic operations for a specific application, and,
in particular, SAR-specific concepts or features like
‘scattering center’. The obtained recognition ratios are
also comparable to those achieved by standard methods.

Our approach learns in a fully automatic manner, and,
therefore, at a little expense of human labor and expertise.
The learning process requires only training data that is
usually easy to acquire, i.e. images and their class labels,
and does not rely on domain-specific knowledge, using
only general vision-related knowledge encoded in basic
operations. The objectivity of the learning process makes
the results free from subjective flaws and biases, which
the human-designed solutions are prone to.

f1=20

Classifier

Initial register contents

Output:
recognition

BDRM2: 0.92
D7: 0.01
T62: 0.07

CrossCorrel

HiPass3x3

MorphClose

Logical Or

NormDiff

f2=173190

AbsDiff

PushROI X

Gaussian

Figure 7. A fragment of synthesized processing graph of a
selected best-of-run procedure evolved by means of cooperative
coevolution, processing an exemplary image (only 4 of total 8
registers are used by this procedure).

The proposed method may be characterized as feature-
based. Compared to the model-based recognition
approaches, there is no need for, possibly expensive,
matching an image with models from the database. Thus,
our synthesized recognition system attains high
recognition speed during the runtime. The average time
required by the entire recognition process, starting from
the raw image and ending up with the final recognition
result, totaled 4.9 ms on the average, for a single 48×48
image and an LGP procedure composed of 18 operations.
This time could be significantly reduced after re-
implementing the synthesized system and, in particular,
the classifier written in Java. We claim that this
impressive recognition speed makes our approach suitable
for real-time application.

Since the task-related knowledge is not required, our
approach is general and possibly applicable to other
recognition tasks and different image modalities. We

claim that, therefore, a new paradigm for visual learning
has been developed, that focuses on automatic learning of
pattern analysis procedures composed of relatively
simple, general-purpose image processing and feature
extraction building blocks, as opposed to the tendency of
designing highly specialized procedures for particular
recognition tasks.

From machine learning viewpoint, this result is an
outstanding argument in favor of CC for tackling complex
learning problems. The ability of coevolution to break up
complex problems into subproblems without requiring
explicit objectives/goals for them, offers an interesting
research direction for ML.

Acknowledgements

We would like to thank the authors of software packages:
ECJ (Luke, 2002) and WEKA (Witten & Frank, 1999) for
making their software publicly available. This research
was supported by the grant F33615-99-C-1440. The
contents of the information do not necessarily reflect the
position or policy of the U. S. Government. The first
author is supported by the Polish State Committee for
Scientific Research, research grant no. 8T11F 006 19.

References

Banzhaf, W., Nordin, P., Keller, R., & Francone, F.
(1998). Genetic programming. An introduction. On the
automatic evolution of computer programs and its
application. San Francisco: Morgan Kaufmann.

Bhanu, B. & Krawiec, K. (2002). Coevolutionary
construction of features for transformation of
representation in machine learning. Proceedings of
Genetic and Evolutionary Computation Conference
(Workshop on Coevolution). New York: AAAI Press,
249-254.

Draper, B., Hanson, A., & Riseman, E. (1993). Learning
blackboard-based scheduling algorithms for computer
vision. International Journal of Pattern Recognition
and Artificial Intelligence, 7, 309-328.

Intel® image processing library: Reference manual. Intel
Corporation, 2000.

Johnson, M.P. (1995). Evolving visual routines. Master’s
Thesis, Massachusetts Institute of Technology.

Krawiec, K. (2001). Pairwise comparison of hypotheses
in evolutionary learning. In: C.E. Brodley, & A.
Pohoreckyj Danyluk (Eds.), Proceedings of the
Eighteenth International Conference on Machine
Learning. San Francisco: Morgan Kaufmann, 266-273.

Luke, S. (2002). ECJ Evolutionary Computation System.
http://www.cs.umd.edu/projects/plus/ec/ecj/.

Maloof, M.A., Langley, P., Binford, T.O., Nevatia, R., &
Sage, S. (2003). Improved rooftop detection in aerial
images with machine learning. Machine Learning (in
press).

Matheus, C.J. (1989). A constructive induction
framework. Proceedings of the Sixth International
Workshop on Machine Learning. New York: Ithaca,
474-475.

Open source computer vision library: Reference manual.
Intel Corporation, 2001.

Peng, J. & Bhanu, B. (1998a). Closed-loop object
recognition using reinforcement learning. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 20, 139-154.

Peng, J. & Bhanu, B. (1998b). Delayed Reinforcement
Learning for Adaptive Image Segmentation and Feature
Extraction. IEEE Transactions on Systems, Man and
Cybernetics, 28, 482-488, August 1998.

Poli, R. (1996). Genetic programming for image analysis.
(Technical Report CSRP-96-1). University of
Birmingham.

Potter, M.A. & De Jong, K.A. (2000). Cooperative
coevolution: an architecture for evolving coadapted
subcomponents. Evolutionary Computation , 8, 1-29.

Rizki, M., Zmuda, M., & Tamburino, L. (2002). Evolving
pattern recognition systems. IEEE Transactions on
Evolutionary Computation, 6, 594-609.

Ross, T., Worell, S., Velten, V., Mossing, J., & Bryant,
M. (1998). Standard SAR ATR evaluation experiments
using the MSTAR public release data set. SPIE
Proceedings: Algorithms for Synthetic Aperture Radar
Imagery V, Vol. 3370, Orlando, FL, 566-573.

Segen, J. (1994). GEST: A learning computer vision
system that recognizes hand gestures. In R.S. Michalski,
& G. Tecuci (Eds.), Machine learning. A Multistrategy
Approach. Volume IV. San Francisco: Morgan
Kaufmann, 621-634.

Teller, A. & Veloso, M. (1995). A controlled experiment:
evolution for learning difficult image classification.
Lecture Notes in Computer Science, Vol. 990, 165-185.

Wiegand, R.P., Liles, W.C., & De Jong, K.A. (2001). An
empirical analysis of collaboration methods in
cooperative coevolutionary algorithms. Proceedings of
Genetic and Evolutionary Computation Conference, San
Francisco: Morgan Kaufmann, 1235-1242.

Witten, I.H. & Frank, E. (1999). Data mining: Practical
machine learning tools and techniques with Java
implementations, San Francisco: Morgan Kaufmann.

Wolpert, D. & Macready, W.G. (1997). No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1, 67-82.

