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Abstract: We introduce a new approach to clustering in wireless
sensor networks (WSNs). The clustering problem is viewed as a clas-
sification problem. We map the output of the Least Squares Support
Vector Machine (LS-SVM) to probability and present a scheme for es-
timating clusters obtained from it. We show that the application of the
LS-SVM gives a good estimate of a cluster formation. Through the use
of the mixtures of kernels we have obtained better results than with one
kernel. A computer experiment involving the sensor clustering is being
carried out.
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1. Introduction

In a wireless sensor network (WSN) (see Akyildiz, 2002), the sensor nodes sense
information and send it to selected sensors called clusterhead sensor nodes. The
clusterhead sensor nodes are responsible for collecting data from the environment
and sending them to the sink. Given the constrained radio transmission range of
the sensor and the need of conserving energy, the clusterhead sensors need to be
located as close to the sensors as possible. By means of the clustering of sensor
nodes in the sensor field, we prevent large amounts of packet transmission and save
energy power.

The main the objective of clustering scheme is to generate energy-efficient clus-
ters for randomly deployed sensor nodes where each cluster is managed by a clus-
terhead sensor node. A key determinant of the effectiveness of WSNs is their
longevity, which is limited by the energy that is stored in each sensor. Therefore,
the clustering scheme which uses it for acquisition, processing and communication
must be as energy-efficient as possible.

We recall that the clustering has been proposed by D.J. Baker et al. (1981) to
form a cluster. This approach allows us to manage the cluster and relay the col-
lected data. In the paper by Heinzelman et al. (2002) a clustering-based approach,
called LEACH was proposed. In this approach all clusterhead sensors communi-
cate directly with the base station whereas other sensor nodes forward their data
through the clusterheads. More recently, in Tang and Li (2006) a clustering ap-
proach has been proposed for QoS supporting and an optimal energy allocation.
In the paper by Krishnan et al. (2006) some algorithms which involve the so called
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local “growth budgets” to neighbours were proposed. In this methodology, an upper
bound on the expected time for network decompostion was derived. Nevertheless,
none of these algorithms aim at minimizing the energy during the formation of the
clusters. The primary goal of these algorithms is to minimize the number of clusters
so that a sensor node in any cluster is at most d hops away from a clusterhead.

Based on a statistical learning theory as a new tool for data classification,
feature selection and function estimation, the support vector machines (SVM) have
been introduced by Cortes and Vapnik (1995) and Vapnik (1998a,1998b). Briefly,
the SVM method maps input data into a high dimensional hypersurface where it
may become linearly separable. Thus, the SVM is used to minimize the structural
task whereas the previous techniques are based on the minimization of the number
of misclassified points on the training set. Among others, the SVM were used
in many pattern recognition problems (see Mitéran, 2003), feature selection (see
Barzilay, 1999), face authentication (see Jonsson, 1999). A modified version of the
SVM called least squares SVM (LS-SVM) was proposed by Suykens and Vandewolle
(1999) and Suykens et al. (2002). In this approach a set of liner equations instead
of a quadratic programming problem is used. Recently, many solutions with the
SVM methods are being implemented in low-cost VLSI chips.

The main goal of this paper is to introduce a novel method of clustering sensor
nodes in WSNs. The proposed method is based upon an LS-SVM formulation with
a mixture of a radial basis function and polynomial kernels. The two-dimensional
sensor field is mapped into the sensor energy intensity surface, and then the sensor
clustering process is efficiently realized. The mixture of kernels gives a better
performance than any single kernel. A number of numerical case studies indicate
the usefulness of this approach.

The rest of the paper is organized as follows. In section 2, we describe the
clustering problem in a wireless sensor network. Section 3 introduces a support
vector machine for problem solving. In section 4, we give some computational
results. Section 5 concludes the paper.

2. Clustering in Wireless Sensor Networks

This section describes the clustering problem in wireless sensor networks (WSNs).
A hierarchical approach leads to clustered layers as shown in Fig. 1. All or-

dinary sensor nodes are grouped into clusters with a clusterhead sensor node that
is responsible for data aggregation and sends them to the sink over the backbone
formed by clusterhead sensors belonging to higher-level of sensor nodes in the WSN.
In a cluster-based hierarchy the data are moving to the sink faster than in the
multi-hop model. It is caused by fact that in the cluster-based model only cluster-
head sensor nodes perform data aggregation whereas in the multi-hop model each
intermediate node realizes data aggregation. However, this model has one draw-
back: as the distance between clustering levels increases, the energy expenditure is
proportional to the square (in the air) of the distance.

We assume that some sensor nodes have more powerful energy resources than
the ordinary sensor nodes. We assume that they initiate the clustering process and
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possible some of them would be clusterhead sensor nodes. The clusterheads should

Fig. 1. An example of clustered layers in sensor network

be able to build a backbone network between themselves and the sink such that
they can communicate without relying on ordinary sensor nodes. We assume two
types of communication. The first one between the clusterhead sensor nodes and
the ordinary sensor nodes with a low transmission power. The second one between
the clusterheads with a higher transmission power. It is possible to use two different
frequency bands or encoding codes in each clusterhead sensor node.

The activity of the sensor network is as follows. During the initialization phase,
all the sensor nodes exchange their identifiers with the information about the actual
energy power. The sensor nodes decide to which cluster they wish to belong, based
on the strength of the signal. If the signal is stronger the sensor node decides to
which cluster it should belong. After the clusters are formed, the sensors decide
which of them should be a clusterhead. We assume that only the nodes with the
highest energy power in the clusters are selected as clusterhead sensor nodes. This
procedure is repeated after each long time period.

The proposed clustering scheme needs the following assumptions:

1) The field contains N sensors and only one sink.

2) In the sensor field there are some sensors with a higher energy power than
other sensor nodes. These sensors can initiate the clustering process.

3) All the determined clusterhead sensor nodes consume their energy more
quickly than other ordinary sensors.

4) For each sensor r is the range of radio transmission.
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5) The nodes may fail only in the event of the lack of energy power.

6) Any possible interface between the clusters and the backbone sensor is om-
mitted.

The consumption of energy in each sensor proceeds in three phases, namely

a) the sensing phase, in which each sensor node collects the data from the envi-
ronment. The energy needed to the data sensing is equal to

E1 = c1 · b (1)

where c1 is the speed of the data sensing, b is the number of the sensing bits
from the environment.

b) the computation phase, in which the sensors deplete their energy for coding,
decoding, data aggregation, etc. According to (see Sankarasubramaniam,
2003, Eq. 13) the coding/decoding energy depends on the block length m
and the number of bits b as follows

E2 = (2m · b + 2b2) · (Eadd + Emult) (2)

where Eadd and Emult are the energy needed to carry out the addition and
the multiplication in the Galois field GF(2k) with k = blog2 m + 1c, m is the
length of the channel block.

c) the communication phase. The energy consumption in the communication
phase is given by

E3(n1, n2) = (c2 · d(n1, n2))ξ + c3 · E(n1) · E(n2) + c4 ·
(

Eb

No

)(required)

(3)

where c2, c3, c4 are positive constants, ξ is the coefficient which depends on
the environment. For the air ξ is equal to 2. d(n1, n2) is the distance between
the two nodes n1 and n2. E(n1) and E(n2) are the energy of the sensor node
sending the data and sensor node receiving it, respectively. Eb

No
in db is the

ratio of energy per bit and the noise energy. This ratio has a close relationship
to the SNR (Signal-to-Noise Ratio) or SINR (Signal-to-Inference and Noise
Ratio), when interference is treated as noise (see Sklar, 1988).

Looking at the energy consumption by a single sensor, we can summarize all
three components, namely

Econs(j) =
3∑

i=1

Ei(j) = E1(j) + E2(j) +
∑

k∈N(1)

E3(j, k) (4)

where N (1) is the set of neighbouring sensors of the first order of the neighbourhood
for sensor j. We assume that the set of sensors of the first order of the neighbour-
hood contains all neighbours which are available by a single hop. On the other
hand, all the sensors of the neighbouring set of the first order of the neighbourhood
for a given sensor are direct neighbours for him, because, for example, of the limits
on the transmission power.
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3. Least Squares SVM for Clustering in Wireless Sensor
Networks

3.1. An overview of the LS-SVM

Consider a given training set {(xi, yi)}N
i=1, with the input data xi ∈ Rn and output

data yi ∈ R with class labels yi ∈ {−1, +1} and the linear classifier

y(x) = sign[wT x + b] (5)

When the data of the two classes are separable we have the original SVM
classifier (see Vapnik, 1995, 1998a, 1998b) that satisfies the following conditions:

{
wT φ(xi) + b ≥ +1 if yi = 1
wT φ(xi) + b ≤ −1 if yi = −1 (6)

These two sets of inequalities can be combined into one single set as follows

yi[wT φ(xi) + b]− 1 ≥ 0, i = 1, 2. . . . , N (7)

where φ: Rn → Rm is the feature mapping the input space to a usually high
dimensional feature space. The data points are linearly separable by a hyperplane
defined by the pair (w ∈ Rm, b ∈ R). Thus, the classification function is given by

f(x) = sign{wT φ(x) + b} (8)

Instead of estimating with the help of the feature map we work with a kernel
function in the original space given by

K(xi, xj) = φ(xi)T · φ(xj) (9)

In order to allow for the violation of Eq.(7), we introduce slack variables ξi such
that

yi[wT φ(xi) + b] ≥ 1− ξi, ξi > 0, i = 1, 2, . . . , N (10)

The following minimization problem is accounted for as follows:

min
w,b,ξ

J(w, b, ξ) =
1
2
|| w ||2 +C

N∑

i=1

ξi

subject to yi[wT φ(xi) + b] ≥ 1− ξi, ξi > 0,

i = 1, 2, . . . , N, C > 0 (11)

where C is a positive constant parameter used to control the tradeoff between the
training error and the margin.

The dual problem of the system (11), obtained as a result of Karush-Kuhn-
Tucker (KKT) condition (see Kuhn, 1951), leads to a well-known convex quadratic
programming (QP). The solution of the QP problem is slow for large vectors and it
is difficult to implement in the on-line adaptive form. Therefore, a modified version
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of the SVM called the Least Squares SVM (LS-SVM) was proposed by Suykens et
al (2002).

In the LS-SVM method, the following minimization problem is formulated

min
w,b,e

J(w, b, e) =
1
2
wT w + γ

1
2

W∑

k=1

e2
k

subject to yk[wT φ(xk) + b] = 1− ek, k = 1, 2, . . . , N (12)

The corresponding Lagrangian for Eq. (11) is given by

L(w, b, e;α) = J(w, b, e)−
N∑

k=1

αk{yk[wT φ(xk) + b]− 1 + ek} (13)

where the αk are the Langrange multipliers. The optimality condition leads to the
following (N + 1) × (N + 1) linear system

[
0 Y T

Y Ω∗ + γ−1I

] [
b
α

]
=

[
0
~1

]
(14)

where
Z = [φ(x1)T y1, . . . , φ(xN )T yN ]
Y = [y1, . . . , yN ]
~1 = [1, . . . , 1]
α = [α1, . . . , αN ]

and Ω∗ = ZZT . Due to the application of Mercer’s condition (see Suykens, 2002)
there exists a mapping and an expansion

Ω∗kl = ykylφ(xk)T φ(xl) = ykylK(xk, xl) (15)

Thus, the LS-SVM model for the function estimation is given

y(x) =
N∑

k=1

αkyk ·K(x, xk) + b (16)

where parameters αk and b are based on the solution to Eqs. (13) and (14).

3.2. Mixtures of kernels

Each kernel function is characterized by its advantages and disadvantages. For
instance, a radial basis function (RBF) kernel K(x, xi) = exp{− | x − xi |2 /σ2},
where σ is the width of the radial basis function, is a typical local kernel in which
only the data that are close have an influence on the kernel values. The polynomial
kernel (see Vapnik, 1995) such as K(x, xi) = [x · xi + 1]q, where q is the kernel
parameter which defines the degree of the polynomial to be used, guarantees the
influence of all the data points that are far away from each other. Therefore, the
mixture of these kernels gives a better performance than any single kernel. As was
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defined by Smits et al. (2002), an exemplary mixture of the RBF and polynomial
kernels is given by

Kmix = ρ ·Kpoly + (1− ρ)KRBF (17)

where ρ is the mixing coefficient treated as a constant scalar.

3.3. The LS-SVM transformed into a clustering problem

We assume that the input data are split up into blocks of 16×16, 64×64, 256×256,
etc. pixels. The input data are described by a coordinate (r, z) and the output
data is the energy value. For any data block, the input points are in the form
{(ro + dr, zo + dz) : | dr |< m, | dz |< n}. All such sets of points can be translated
to the same set {(dr, dz) :| dr |< m, | dz |< n} by subtracting (ro, zo) from all the
vectors, m and n are the half numbers of the horizontal and vertical pixels of the
blocks. The LS-SVM method can be transformed into a clustering problem by the
use of the same set of input vectors but different sets of labels.

We can transform the Eq. (14) into a system
[

0 1T

1 Ω

] [
b
α

]
=

[
0
Y

]
(18)

where Y = [y1; . . . , ; yN ], Ω = K(xi, yi)+γ−1I, 1T = [11; . . . ; 1N ], α = [α1; . . . ; αN ].
Thus, the Ω is given by

Ω = K(xi, xj) + γ−1I (19)

The solution of Eq. (18) gives the values





b = 1T Ω−1Y
1T Ω−11

α = Ω−1(Y − b1)
(20)

By setting A = Ω−1 and B = 1T Ω−1

1T Ω−11
we obtain

{
b = BY
α = A(Y − b1) (21)

where A and B are precalculated matrixes that depend only on the input vector
(xk) but not on the vector yk.

The sensors are usually correlated due to the high probability that the adjacent
pixels will contain the sensors in the cluster. We assume that the sensor field is two-
dimensional and the image energy distribution of the sensor field on the surface,
known as the point spread funcion (PSF), can be approximated by the Gaussian
PSF. On the other hand, the center point of the PSF corresponds to the measured
sensor position.
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In our approach based on the mixtures of kernels, we take into consideration two
sets of indexes of the neighbourhood of the sensor image that satisfies the condition
of linearly separable patterns. We recall that the linear separability requires that
in order to be classified, the patterns must be separated from each other to ensure
that decision surfaces should consist of hyperplans.

The LS-SVM with the RBF and polynomial kernels transformed into a sensor
clustering problem has the fitted energy intensity surface function over the constant
vector space as follows

g(r, z) =
N∑

k=1

αk

{
(ρ[(rrk + zzk) + 1]q + (1− ρ) · e

−(|r−rk|2+|z−zk|2)
σ2

}
+ b (22)

where (r, z) are the coordinates of the pixels. The function g(r, z) gives the corre-
sponding energy intensity value, b and α are obtained as a solution of Eq. (20).

3.4. A multi-class formulation of the LS-SVM transformed into a sensor
clustering problem

In comparison with the standard SVM method, the LS-SVM has a lower compu-
tational complexity and memory requirements. Nevertheless, in certain situations,
such as the classification of several characters, clusters, etc., a multi-class classific-
tion is very suitable.

In the multi-class formalism we now use multiple output values yi with
i = 1, . . . , ny, where ny defines the number of output values (see Suykens et al.,
2002). Thus, in the primal weight space the multi-class classification system pos-
sesses the following binary classifiers





y(1)(x) = sign[w(1)T
φ(1)(x) + b(1)]

y(2)(x) = sign[w(2)T
φ(2)(x) + b(2)]

...
...

y(ny)(x) = sign[w(ny)T
φ(ny)(x) + b(ny)]

(23)

with mappings on a high dimensional feature space φ(i)(.) : Rn → Rnh ,
i = 1, 2, . . . , ny, with dimensions nh1 , nh2 , . . . , nhny

.
By the extension of Eq. (20) to a multi-class problem, we obtain

{
b = BY

α = A(Y − b1)
(24)

where matrix Y is given by

Y =




y
(1)
1 , . . . , y

(1)
N

y
(2)
2 , . . . , y

(2)
N

. . .

y
(ny)
1 , . . . , y

(ny)
N


 (25)
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and vector bM = [b(1), . . . , b(ny)], where N is the number of pixels in one processing
block.

4. Simulating experiments and results
We used the LS-SVMLab (see Pelckmans et al., 2003) within a MATLAB to sim-
ulate the clustering process for WSNs with a varying sensor density and several
kernels with different parameters. To generate the WSN for each simulation exper-
iment, the location of each sensor and energy power is found by generating three
random numbers, two of them uniformly distributed in [0, 2 α], where 2α is the
length of a side of the square area in which the sensors are distributed, and one of
them to define the current energy power uniformly distributed in [0, Emax]. In all
of these experiments, the communication range of each sensor was assumed to be
1 unit.

procedure clustering_of_WSN;
begin
while sensor_state(i) = ACTIVE do
begin
energy_of_sensor(i) := test_of_residual_energy_of_sensor(i);
if energy_sensor(i) > minimal_energy_level;
then add_sensor(i)_to_cluster(j);

end;
energy_balance_for_all_clusters;

end;

Fig. 2. Pseudo-code of the clustering procedure for WSN

Fig. 3. The clustering process with the polynomial kernel
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Our goal is to build clusters for WSN. Each of the sensors must belong to
one of them. We propose the following algorithm for this purpose (see Fig. 2).
The proposed algorithm can provide the energy balance between all the obtained
clusters. As a result, we obtain well energy balanced clusters with all of the sensors
from the sensor field.

Fig. 4. The clustering process with the RBF kernel

Fig. 5. The clustering process with the mixture of kernels

Figures 3, 4 show the output of these simulations of our algorithm with the
polynomial and the RBF kernel, respectively, for a sensor network of 30 sensors that
are distributed uniformly in a square of 100 square unit. Figure 5 gives the output
of our algorithm with the mixure of both kernels. It can be seen that the clustering
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process with a mixture of kernels gives better results, especially in the case of the
LS-SVM multi-class classifiers used for the clustering problem. It is worth noting
that there are many parameters in the proposed method. For example, the different
kernels functions may provide to several clusters with different performances.

5. Conclusions

This paper has discussed a method of building clusters in the wireless sensor net-
works. The applied strategy is possible through the use of information about the
energy power of all the sensors in the sensor field, while the communication between
the sensors is guided by a set of parameters, such as the data number sent by the
sensors, the speed of transmission, etc. The LS-SVM method has been transformed
into our clustering problem. With the use of the image energy distribution of the
sensor field surface and the mixtures of kernels, we have been able to solve the
clustering problem in WSNs.

A number of experiments illustrate the use of the proposed method both with
respect to visuability as well as generalization performance. The proposed method
has a large potential in practice. Firstly, the LS-SVMmethod to solve the clustering
problem in WSN is very sparse. Secondly, compared to the traditional clustering
methods, this method incorporates energy information in the sensors and their
localizations in the sensor networks. This information is available in all sensor
networks and is crucial in WSNs, including the routing, lifetime estimation, etc.

Since it is the first time the LS-SVM in clustering of WSNs are applied, there
still remain some problems, such as the selection of the best mixtures of kernels
and the optimization of parameters.
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