
Document transformations for data processing in
information systems 1

Łukasz Budnik2, Henryk Krawczyk2

Abstract: The paper presents XML-based approach to automating
user’s document lifecycle transformations. It discusses a user case of
Endoscopy Recommender System. The ERS system uses self-developed
XSD to Java, Java to XML transformations that allow data acquisition
and data storing processes to be fully automated. The implemented
XML data binding approach provides validation of basic types, lists
and other objects. ERS uses IBM DB2 pureXML engine as an efficient
XML storage. In addition, ERS utilizes the IBM DB2 XSR repository
to provide XML validation and to keep data consistent.

Keywords: document transformations, document lifecycle,
database engines, web-based systems, programming platforms, execu-
tion environments

1. Introduction
All information processing systems base on users’ documents. Throughout all vari-
ety of both obstacle and modern systems, these documents conform always to the
very same lifecycle. There are three basic lifecycle states that can be defined as:

• user’s document state — interacting phase, in which user actually operates
on the document and interacts with it

• business object state –– processing phase, in which the document as system’s
business object is processed (the business logic)

• database record state — storing phase, in which the values of business object
are saved in persistent storage

The flow through the lifecycle states is given in Fig. 1. The pattern, shown in
Fig. 1 can be implemented in different ways. However, designing and implementing
efficient and automated transformations is always a challenge. Many systems,
especially legacy systems, suffer from severe difficulties when transforming user’s
documents. Not all transformations fit precisely, most of them is not processed
automatically. Information processing system can benefit greatly from carefully
designed, advanced, and automated transformations mechanism. On the other
1 The paper is sponsored by the Polish Ministry of Science and Higher Education grant No. N519
022 32/2949

2 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
ul. Gabriela Narutowicza 11/12, 80-952 Gdańsk, Poland
e-mail: lukasz.budnik@vega.eti.pg.gda.pl, hkrawk@eti.pg.gda.pl

312 Ł. Budnik, H. Krawczyk

Figure 1. User’s document lifecycle

hand, poorly designed mechanism can be a serious threat to the stability and
reliability of the whole system.

XML has been chosen as a base of the new system. XML is a perfect solution
for exchanging data. Recently presented research results show that the number
of XML data has grown 5 times during 3 years, from 2004 to 2006 (see Borre,
2006). In modern information systems more and more business objects are made
available for external users. For example, many information systems come with
Web Services modules that allows remote access to specific data in XML format.
This results in an increasing number of systems that use XML data binding for
their business objects. XML data binding technique provides a direct way to use
XML documents in various applications without knowing the actual structure of
XML documents and given programming language XML API itself. Although there
are some limitations, this approach can be successfully used in simple applications
that use fixed-structure XML for data exchange.

The popularity of XML is also reflected in trends of developing modern
databases. IBM came in 2006 with IBM DB2 9 pureXML (see Nicola, 2006 and
IBM, 2006) –– first hybrid database. Also, Oracle and MS SQL provide XML
data type. Some of the open-source databases begin to implement basic XML sup-
port, for example, MySQL 5.1 provides functions for extracting and updating XML
documents.

XML allows to distinguish and separate structure, content, and style (see W3C,
2006). XML’s features are as follows:

• productivity –– concentration on the content of the document, highly opti-
mized syntax, user can create own markups and structures

• usability –– readability for machines (ordinary text file)

• data sharing –– integration, localization and extraction

Document transformations for data processing in information systems 313

• portability –– independence of hardware and software

To support XML technology, WC3 developed two standards that are strongly
linked with it. These are: XML Schema (XSD) (see W3C, 2004) for defining
XML structure, and XSLT (see W3C, 1999) for expressing style sheets, styling
and transformations. What is more, both XSD and XSLT are defined as XML
documents themselves.

XML Schema is the ultimate solution for describing XML documents. XSD
defines a set of basic data types (these include numbers, strings, dates, URLs, etc.),
and provides means of defining new ones: complex data types (elements containing
other elements), and simple types, derived directly from basic types, with various
restrictions added (e.g., string’s pattern, minimum/maximum length). With XSLT
one can transform XML documents into another XML or visualize content with
complex styling operations. XSLT is widely used for generating XHTML web pages
from XML data.

In the paper we show how to implement XML-based user’s document lifecycle
in a real, medical systems we consider. The system’s name is Endoscopy Recom-
mender System. The system’s business client is Gastrointestinal Endoscopy Clinic
at the Medical University of Gdansk. ERS’s task is to assist physicians in their
work. Currently used version of the system — ERS 2005 (see Krawczyk, 2006) is
not able to cope with dynamics of the changes taking place in medical procedures
and requirements set by physicians.

To achieve such capabilities we propose a distributed web-based system that
aims at efficient acquisition and validation of medical data; it should store, process,
and output the data in visually attractive and readable way.

2. Verified user’s document lifecycle
The presented earlier user’s document lifecycle (see Fig. 1) is only conceptual and
needs to be evaluated in detail. With all modern powerful enterprise solutions at
our side, we decided to simplify to the maximum the user’s document lifecycle. At
first, we simplified user’s document states by introducing only two states, that are
as follows:

• business object with implemented business logic

• serialized object as an XML document –– used for both presentation and
storage

Also, the proposed solution includes propositions of automated mappings be-
tween these two forms.

For describing XML medical documents we used XML Schema. With all the
information provided by schema, one can use it for generating business objects (Java
or any other OOP language) and for data validation (based on XSD restrictions).

Our idea was to build auxiliary stand-alone application that could read XML
Schema and transform it into Java classes that could be used by the ERS system.
Such application must consists of two modules:

314 Ł. Budnik, H. Krawczyk

Figure 2. Idea of the XML Schema to business object

• XSD parser — a module that traverses XML Schema and extracts all types
definitions

• Java objects generator –– a module that, basing on parsed XML Schema, gen-
erates classes with proper fields, dedicated getters/setters, and serialize/de-
serialize methods

At the end of the whole process, a programmer can implement business methods
for calling other objects, sending messages, etc. The idea of XML Schema to
business object is shown in Fig. 2. As a part of our approach, an example data
acquisition layer was proposed. New fully automated data acquisition layer was
meant to implement web forms to business objects mapping mechanism. The
mechanism would allow business objects to be automatically instantiated with all
their fields populated with the corresponding web form fields’ values. The suitable
mapper should work in two ways:

• XForm-to-BusinessObject — business object must be automatically created
and its fields populated after the form is submitted

• BusinessObject-to-XForm — web form fields must be populated based on
bound business object — for example, used during data editing

As a last stage of our XML-oriented approach, we propose an efficient XML
data storing mechanism. XML can define highly flexible structure, when compared
to relational model and storing XML documents in relational tables is a step back
(see Nicola, 2005). IBM DB2 pureXML has revolutionized support for XML data
in modern databases. XML documents are stored in dedicated XML column type
that preserves document’s hierarchy and allows to traverse its contents with XPath
queries. IBM DB2 pureXML engine comes with three new query types: XQuery
(see Chamberlin, 2002, W3C, 2007), SQL with embedded XQuery, and XQuery
with embedded SQL.

All mentioned earlier proposals led us to defining new, fully automated user’s
document lifecycle. The revamped and detailed lifecycle including XForm acquisi-
tion, business object serialization/deserialization, and XML storage is presented in
Fig. 3. The basic user’s document states are placed in boxes.

3. Architecture proposition
We describe approach to a flexible framework for web front-end with a high ab-
straction level that can deliver various business features. Our goal was to dispatch

Document transformations for data processing in information systems 315

Figure 3. Revamped user’s document life cycle

transparently user’s requests without interfering in both input and output param-
eters.

The chosen architecture in proposed solution is based on JEE technology. All
enterprise applications consist of two main modules, that in JEE naming convention
are called:

• WAR –– web application, front-end, responsible for authorization, presenta-
tion, request dispatching, and look and feel –– the dispatching domain

• EAR –– enterprise application, back-end, delivers business solutions –– the
business domain

For the final user, single business solution is delivered by a web page. Web
pages are grouped by their functionality in web modules. For example, Add web
module may contain many logical web pages performing additions like: AddPatient,
AddExamination, etc.

The only link between WAR and EAR applications is the JNDI directory, in
which EAR registers its EJB modules. Fig. 4 presents the link between WAR and
EAR problem domains, and the actual localization of user’s document states.

The idea of separating business and presentation code bases on the direct use of
XML. User’s requests are pre-processed on a web container and later on, passed to

316 Ł. Budnik, H. Krawczyk

Figure 4. The link between WAR and EAR applications

the enterprise application on a remote application server. The dispatcher locates
the remote EJB module, calls its business method, and waits for its XML response.

When the response is ready, the XML document is sent back to the web ap-
plication and according to the configuration and parameters, a proper output is
generated. Most frequently, the response is later transformed with XSLT style
sheets, and the final response is sent to the user.

4. User case study
Below we show how the document lifecycle is implemented in an XML-oriented
system. We consider the ERS 2007 system, where the presented in Fig. 3 trans-
formations were used for data acquisition related to patients’ personal details and
their health information.

The implemented XSD Parser was meant to be a simple parser that works only
with a small subset of the whole XML Schema standard. The basic concepts of
both XSD parser and Java business classes generator were:

• mapping complexTypes to classes –– a complexType can contain other com-
plexType

• mapping simpleTypes to Java native types with restrictions checked before
every set operation, also null values assertions

• mapping maxOccurs occurrence indicator to dynamic lists

• proper parsing and formatting XML Schema/Java types –– for example dates

Document transformations for data processing in information systems 317

• generating serialize and deserialize methods — two way XML serializing

In the proposed solution the class generator based on read XML Schema defi-
nitions and their elements’ restrictions appends validation code to all setter meth-
ods. Combined with the object-oriented encapsulation paradigm — modifications
of private fields are possible only by calling public setter methods — fields of given
business object will always have valid values. Although implemented XSD parser
supports only a small subset of XSD, the business object generator takes full ad-
vantage of supported definitions. In addition, business object generator creates two
setter methods for each field. First is called native setter that expects Java object
and provides validation. The other is a string setter that expects a string, converts
passed values to Java objects and calls the first, native one; it was introduced to
facilitate deserializing of XML documents (XML document is a string).

Given snippet of XML Schema as presented:

<xs:element name="patient" type="patientType"/>
<xs:element name="address" type="addressType"/>
<xs:element name="phone" type="phoneType"/>
<xs:simpleType name="phoneType">

<xs:restriction base="xs:string">
<xs:pattern value="[0-9]{3}(\-[0-9]{3}){2}"/>

</xs:restriction>
</simpleType>
<xs:complexType name="addressType">

...
</xs:complexType>
<xs:complexType name="patientType">

<xs:element ref="address" />
<xs:element ref="phone" minOccurs="1" maxOccurs="3"/>
...

</xs:complexType>

The snippet of automatically generated Java stub would look like:

public class Patient extends AbstractBusinessObject {
private Address address;
private List<String> phone;
// native setter, provides validation
public void setPhone(List<String> phone) {
if (phone.size() < 1) {

// throws exception;
}
if (phone.size() > 3) {

// throws exception;
}
for (String i : phone) {

318 Ł. Budnik, H. Krawczyk

if (!Pattern.compile("[0-9]{3}(\-[0-9]{3}){2}").
matcher(i).matches()) {
// throws exception;

}
}
this.phone = phone;

}
// string setter, converts string representation to Java object
// calls native setter public
void setAddressString(String address) {
Address obj = new Address();
obj.init(address);
setAddress(obj);

}
}

The implemented XForm mechanism allows business objects binding and auto-
mated fields mapping. XForm can map any number of fields. For example, after
examination physician completes examination file with the description and diag-
noses, there is no need in displaying once again all fields. In addition, a single
XForm can define any number of classes when complex objects need to be ac-
quired; for example, Patient and its Address objects’ values can be acquired in a
single XForm. When submitted, XForm detects “class” attribute and uses Java
Reflection API to automatically map web form’s fields to corresponding business
object’s fields. Furthermore, XForm is not only a static HTML component, it
provides interactive validators for all fields types. Interactive validators increase
user-friendliness. Based on AJAX technology, they validate fields behind the scene
each time the value is changed; the user is almost instantly (AJAX is asynchronous)
notified whether the entered value is correct or not. The following example shows
basic, one field XForm that defines a required text field with a callback function
that will be automatically invoked after successful validation.

<form id="Patient">
<group id="dane" class="Patient">

<caption>Patient’s personal details</caption>
<description>
Please fill in all basic patient’s personal details</description>
<text id="ssn" required="1" callback="parseSSN">
<desc>SSN</desc>
<help>Please fill in the Social Security Number.</help>
</text>

</group>
</form>

In addition, ERS 2007 XForm defines powerful XFormDataSource mechanism
that allows to dynamically fetch records from DB or from request scope and cre-
ate web form’s fields and their values. The statements for XFormDataSource are

Document transformations for data processing in information systems 319

expressed in two ways: XQuery, simple query with hard-coded conditions, for exam-
ple, list of all working physicians, and XQuery with embedded SQL when dynamic
markers are needed, for example, list of examination types according to given
request scope parameter. A more sophisticated example of retrieving diagnoses
according to given examination type is presented next, as follows.

<datasource>
<type results="set">sql</type>
<query><![CDATA[XQUERY

declare namespace tns="http://www.dataweaver.org/diagnosis";
for $x in db2-fn:sqlquery(’SELECT DIAGNOSISDESCRIPTION FROM
ERS_DIAGNOSES WHERE idRange = (SELECT DISTINCT idRange FROM
ERS_EXAMINATION_TYPES WHERE
idExaminationType = :examinationType)’)/tns:diagnosis
order by $x/tns:name/text() ascending
return (

<field><value>{string($x/@idDiagnosis)}</value>
<desc>{$x/tns:name/text()}</desc></field>

)]]></query>
<markers>
<variable scope="request" name="examinationType"/>

</markers>
</datasource>

5. Deployment environments
As a deployment environment for both WAR and EAR, an application server must
had been chosen. There are many application servers available on the market,
but only few count. The most feature-rich, well documented, commonly used and
open-source application server is JBoss (see JBoss, 2007). JBoss extends Apache
Tomcat web container and adds enterprise support. JBoss has also one distin-
guishing feature — it comes with bundled lightweight and efficient SQL database
— Hypersonic SQL (HSQLDB) (see HSQLDB, 2006).

WAR application needs its own supporting data source containing information
about deployed, available and ready to use remote modules. JBoss, with its bun-
dled HSQL database, is an ideal choice. It has everything one may need when
deploying simple front-end application. Thanks to bundled HSQL database devel-
opers and people responsible for deployment do not have to worry about installing
and managing additional database engine — HSQL is already configured and starts
automatically with JBoss.

The chosen solution for the new database was a hybrid approach. Hybrid
approach takes full advantage of both relational model and XML data type. In ERS
2007 every form of the user’s document has always full information of its objects
inter-relationships. Although serialized document has all foreign keys information
and it is possible to use them in XQuery joins, we decided to introduce relational
foreign keys to elevate the overall performance of the whole database. Thanks

320 Ł. Budnik, H. Krawczyk

to the use of relational engine all joins and sub-queries are executed very fast.
Moreover, relational foreign keys have additional features for keeping the database
consistent –– with foreign keys constraints, and on update and on delete cascade
actions.

Apart from standard primary keys with auto-generated identities, indexes,
unique constraints, and foreign keys, new XML elements (see Nicola, 2005) in
ERS 2007 database are:

• data storing in hierarchical XML structures

• using XML Schema Repository (XSR) and XML validation in DML state-
ments

• using generated keys with XMLPATTERN to speed up XQuery statements

The primary and foreign keys allow to traverse the whole structure from every
possible logical point. Only specific filter conditions are expressed in XQuery.

In our solution, the very same XML Schemas that were used in the business
objects generation process were deployed in the IBM DB2 XSR repository. Thus
the whole ERS 2007 database will always provide coherent results even when mod-
ifications were performed by a different application.

To deploy XML Schema in IBM DB2 XSR repository one must issue following
command:

REGISTER XMLSCHEMA ’http://www.dataweaver.org/patient’
FROM ’file:///H:/MSc/DataWeaver/src/xsd/ea/Patient.xsd’
AS PATIENT COMPLETE

After successful registration, XML validation is possible in any DML statement.
For the registered above XML Schema, sample JDBC stub of INSERT statement
would look like:

INSERT INTO ERS_PATIENTS (PATIENTINFO) VALUES (
XMLVALIDATE(XMLPARSE(DOCUMENT cast(? as CLOB))
ACCORDING TO XMLSCHEMA ID PATIENT)

)

6. Comparison of ERS 2005 and 2007 frameworks
ERS 2005 is a fully object-oriented system written in PHP5. ERS 2005 has spe-
cialized engine, due to which it is possible to obtain modular and easy to modify
application, which was a highly desirable effect. However, there are some very se-
rious problems in ERS 2005. ERS 2005 drawbacks concentrate around inefficient
database project from year 2001 and enterprise capabilities of PHP5 technology
itself.

The previous version — ERS 2005 and the current version –– ERS 2007 are
compared to stress user’s document lifecycles and their transformations. The com-
parison is presented in Table 1.

Document transformations for data processing in information systems 321

Table 1. ERS 2005 and ERS 2007 document’s transformations and their life cycle
comparison

Feature ERS 2005 ERS 2007
Internal data stor-
ing and representa-
tion

XML and XSLT XML and XSLT

DBMS engine
MySQL5, inefficient rela-
tional database from year
2001

IBM DB2 pureXML,
efficient, new hybrid
database

Business objects
No business objects, all
fetched records stored as
associative arrays

Generated automatically
based on XML Schemas
with appended validation
code and XML serial-
ize/deserialize methods

Data access No DAO classes
Simplified to the maxi-
mum XML DAO classes
with IBM DB2 pureXML
validation mechanism

Acquisition layer

No automatic map-
ping supported, regular
expression validation
possible, API for creating
dynamic fields and filling
their values available

Fully automated two way
mapping: BusinessOb-
ject–XForm, advanced
interactive validation
based on XSD restric-
tions, XFormDataSource
mechanism for generating
dynamic fields from DB
and request parameters

The ERS 2007’s framework takes full advantage and uses to the maximum the
XML technology. The XML technology is used in every phase of user’s document
lifecycle:

• processing –– based on XML Schema definitions ready-to-use business ob-
jects are automatically generated; setters have validation code appended
with proper converting operations between XSD and Java types, also seri-
alizing/deserializing XML methods are created

• storing –– business objects can serialize themselves to XML documents that
are later on stored in hybrid XML database; in addition, XML Schemas used
during business objects generation are deployed in IBM DB2 pureXML XSR
repository, thanks to registering XML Schemas in XSR we benefited from
validation of XML-based DML statements and keeping records consistent

• interacting — XML representation of a document is visualized with XSLT

322 Ł. Budnik, H. Krawczyk

7. Conclusion
In order to deploy the ERS 2007 system, all Gastrointestinal Endoscopy Clinic’s
data must be migrated. This process must apply to over 40 000 patients and 60
000 examinations (not including other 13 tables).

To migrate old data we can use generated business objects from the ERS 2007
system. Based on fetched records proper business objects can be created and their
fields populated. After serialization, XML records can be imported to IBM DB2.

Our main goal is to propose a framework capable of automated user’s document
transformations with the use of the most powerful, enterprise solutions. Due to
greater flexibility of system’s distributed architecture and design, simplifying and
automating user’s document transformations we managed to reduce the time and
cost of development and maintenance (for example, extending existing business
objects, changing XML database structure). In ERS case, previous implementation
phase of business logic took 6 months, and the present one only 3 months.

Our experience shows that it is worth spending additional time in learning new
innovatory solutions and later on taking full advantage of their features. It is also
profitable to create auxiliary applications to automate certain software engineering
lifecycle phases.

References
van den Borre, S. (2006) DB2 9 & XML.

Budnik, Ł. (2007) Distributed system for gathering and analysing XML data,
Master’s Thesis, Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology.

Chamberlin, D. (2002) XQuery: An XML query language.

HSQLDB (2006) Lightweight 100% Java SQL Database Engine.

IBM (2006) IBM DB2 Database for Linux, UNIX, and Windows Information
Center.

JBoss (2007) JBoss Application Server.

Krawczyk, H., Dusza, K., Budnik, Ł. and Byczkowski, Ł. (2006)
Multidimensional Legacy Aspects of Modernizing Web Based Systems.

Nicola, M. and van der Linden, B. (2005) Native XML Support in DB2 Uni-
versal Database.

W3C (1999) The Extensible Stylesheet Language Family (XSL).

W3C (2004) XML Schema.

W3C (2006) Extensible Markup Language (XML).

W3C (2007) XML Query (XQuery).

